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Abstract

In this paper, an n-step, linear and unbranched pathway with Michaelis-Menten
kinetics is solved in a quasi-analytical way. The method, based on the Optimal Control
theory, calculates the optimal enzyme concentrations, while minimizing the operation
time. In the computation of the solution, the Lambert W -Function plays a fundamental
role, due to the presence of a non-linear kinetic model. Our method allows us to obtain
the generalized solution and the sensitivity analysis of the catalytic parameters.
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1 Introduction

This paper presents a method for obtaining the generalized solution of an n-step system
with an unbranched scheme and non-linear kinetic models in an almost exclusively analytical
way. Most of the previous papers use a bilinear (linear in the metabolite concentrations, xi,
and linear in the enzyme concentrations, ui) kinetic model for the solution. For example,
an explicit solution for n = 2, can be found in [1], while, for n = 5, the authors solved the
optimization problem numerically. The solution for n = 3 is obtained quasi-analytically
in [2]. In a previous paper [3], we addressed the minimization of the transition time, and
generalized the works of [1], [2], presenting the quasi-analytical solution for the general
case of n steps, but under the assumption of equal catalytic efficiencies of the enzymes
(ki = 1). Later, in [4], and addressing the minimization of the operation time, we extend
the theoretical analysis of [3], considering unequal catalytic efficiencies, ki.
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There are few works dealing with nonlinear models in xi. Among these, [5] used the
Michaelis-Menten (MM) model [6], though for a particular case (n = 4). In [7], a metabolic
control analysis is used to obtain the optimal behavior both in the setting of an unbranched
linear pathway and one of MM type. A mathematical model of an unbranched reaction
chain obeying MM kinetics is used in [8] for n = 3. Another numerical example with a
three-step pathway and reversible MM kinetics is shown in [9]. Besides these numerically
solved examples, [10] derives analytic equations but for a very simple example, modeling
a single enzyme that follows MM kinetics and operates in the middle of an unbranched
metabolic pathway.

Focusing on the kinetics models, the MM model has proven to be a powerful approach
for describing enzyme processes. Due to difficulties to obtain closed form solutions for this
model, several papers based upon effective scaling and singular perturbation techniques
have been written, giving fairly accurate solutions [11]. A closed form solution to the
MM equation was found, by the first time, in [12], using the Lambert W -function. A
generalization that is still valid when the initial substrate concentration is close to that of
the enzyme was recently presented in [13]. In [14] the Lambert W -function is employed
to estimate the catalytic parameters. In this paper we present both the solution for the
general case of n steps and a sensitivity analysis of the catalytic parameters (the Km and
kcat constants). Using optimal control techniques, a functional that takes into account the
operation time is minimized. We prove that the optimal enzyme concentration profile (in a
quasi-closed form) is of “bang-bang” type.

2 Theoretical Foundations

2.1 Kinetic Model

The kinetics of the Michaelis-Menten (MM) model [6] describes the velocity (rate) of lots of
enzymatic reactions. This model assumes a simple 2-step reaction: step 1 (Binding), when
the enzyme E interacts with the substrate S to form the enzyme-substrate complex ES;
step 2 (Catalysis), decomposition ES to regenerate the free enzyme E and the new product
P .

E + S
k1
�
k−1
bind.

[ES]
k2=kcat→

cat.
E + P (1)

The rate equation of the MM kinetic model is:

V0 =
d [P ]

dt
=

Vmax. [S]

KM + [S]
=

k2. [S]

KM + [S]
[ET ] (2)

where d [P ] /dt or V0 is the initial rate of product generation, Vmax is the maximum rate
and [ET ] is the total enzyme concentration. The following ratio of rate constants is called
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the MM constant, Km:

Km =
k−1 + k2

k1
(3)

The MM equation (2) shows how the initial reaction rate V0 depends on the substrate con-
centration, [S]. From (2) follows that Km can also be defined as the substrate concentration
at which the rate Vmax/2 is reached. Several simplifying assumptions are required to derive
the MM equation:

(1) The binding step is fast and the catalytic step is slower.

(2) At an early stage, when the initial velocity (V0) is measured, [P ] ≈ 0.

(3) ES reaches steady state immediately, so that [ES] is constant.

(4) [S] is constant at early times.

(5) The total enzyme concentration [ET ] is: [ET ] = [E] + [ES].

2.2 The Lambert W-Function

The Lambert W -function, W (z) is a set of functions which are the branches of the inverse
of the function:

z = f(W ) = WeW (4)

where W is any complex number. In this paper we focus on real-valued W (x), which is
defined only for x ≥ −1/e and is double-valued on (−1/e, 0).

Adding the condition W ≥ −1, we get a single-valued function W0(x) which is the
principal branch of the W -function. In this case, W0(0) = 0 and W0(−1/e) = −1. For W ≤
−1, one gets the lower branch, denoted W−1(x), which is decreasing from W−1(−1/e) = −1
to W−1(0−) = −∞.

We refer the reader to [15] for a survey on existing results on this function. For example,
by implicit differentiation, one proves easily that all branches of W satisfy:

dW

dx
=

W (x)

x(1 +W (x))
; x /∈ {0,−1/e} (5)

In [12], a closed solution to the equation (2) is given:

[S] (t) = KmW

[
[S0]

Km
exp

(
−Vmaxt+ [S0]

Km

)]
(6)

which we are going to use extensively in this work for an n-step system with an unbranched
scheme.
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2.3 Pontryagin’s Minimum Principle

We provide a summary of Optimal Control Theory in this section. More specifically, we
state Pontryagin’s Minimum Principle (PMP). An optimal control problem, in the multidi-
mensional case, with free end-time tf and free end state x(tf ) can be stated as the following
equation:

min
tf ,u(t)

J =

∫ tf

0
F (x(t),u(t), t)dt+B[tf ,x(tf )] (7)

subject to:

ẋi(t) = fi(x(t),u(t), t); xi(0) = xi0; i = 1, ..., n (8)

u(t) ∈ U(t), 0 ≤ t ≤ tf (9)

with x(t) = (x1(t), ..., xn(t)) ∈ Rn the state vector, and u(t)= (u1(t), ...,un(t)) ∈ Rn the
control vector. The optimal t∗f is unknown and to be determined. The following hypotheses
are assumed: (i) F and f = (f1(t), ..., fn(t)) are continuous. (ii) F and f have partial first
derivatives with respect to continuous t and x. They may not have a continuous derivative
in u. (iii) The control variable, u(t), may not be continuous, it only needs to be piecewise
continuous. (iv) The state variable, x(t), is continuous, but its derivative only needs to
be piecewise continuous (x(t) admits corner points). And (v) B has continuous partial
first derivatives. The set of admissible controls, U , is often compact and convex. The
Hamiltonian is defined as:

H(x(t),u(t), λ(t), t) = F (x(t),u(t), t) + λ(t)f(x(t),u(t), t) (10)

where λ(t) = (λ1(t), . . . , λn(t)) is the costate vector. The following theorem [16] establishes
the necessary conditions for optimality for the problem being addressed here:

Theorem 1. Pontryagin’s Minimum Principle (PMP)

Let u∗(t) be the optimal piecewise control path, and x∗(t), the optimal associated state
path, defined in the interval [0, tf ]. There is a continuous function, λ∗(t), which has piece-
wise continuous first derivatives, such that for each t ∈ [0, tf ], the following conditions are
verified, for each i = 1, ..., n:

(i) λ̇∗
i (t) = −∂H(x∗(t),u∗(t), λ∗(t), t)

∂xi
; λ∗

i (t
∗
f ) =

∂B[t∗f ,x
∗(t∗f )]

∂xi
(ii) H(x∗(t),u∗(t), λ∗(t), t) ≤ H(x∗(t),u(t), λ∗(t), t); u(t) ∈ U(t)

(iii) ẋ∗i (t) = fi(x
∗(t),u∗(t), t); x∗i (0) = xi0

(iv) H(x∗(t∗f ),u
∗(t∗f ), λ

∗(t∗f ), t
∗
f ) +

∂B[t∗f ,x
∗(t∗f )]

∂tf
= 0

(11)

c⃝CMMSE ISBN: 978-84-617-2230-3



L. Bayón, J.A. Otero, P.M. Suárez and C. Tasis

The solution may not be interior so that minimizing the Hamiltonian does not necessarily
imply ∂H/∂u = 0. If the dynamic function, f , and the integrand, F , have no explicit time-
dependence, the problem is said to be autonomous. In this case, Ht ≡ 0, which implies that
the Hamiltonian is constant throughout said solution:

H(x∗(t),u∗(t), λ∗(t)) = const. (12)

When the control u appears linearly in F (x(t),u(t), t) and in f(x(t),u(t), t), then:

H(x(t),u(t), λ(t), t) = ν(x(t), λ(t), t)− µ(x(t), λ(t), t)u (13)

As we shall eventually see, in our specific case the optimality condition (ii) leads to the
minimization of a linear function of n variables of the following type:

min
u∈U

H = min
u∈U

{
−

n∑
i=1

µiui

}
(14)

where the functions µi = −∂H/∂ui are called the switching functions. Minimizing H with
respect to ui leads to:

u∗i (t) =


uimax if ∂H/∂ui < 0
using if ∂H/∂ui = 0
uimin if ∂H/∂ui > 0

(15)

If ui switches between its upper and lower limits only at isolated points in time, then the
optimal control is said to be a bang-bang type control. Those times are called the switching
times. If ∂H/∂ui = 0 for every t in some open subinterval, then the original problem is
called a singular control problem and the corresponding trajectory, a singular arc using.

3 Statement of the Problem and Optimal Solution

We are going to focus on unbranched metabolic pathways with MM kinetics as described
below. Consider the following unbranched metabolic pathway composed of n irreversible
reactions converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (16)

where x1(t) is the substrate concentration at time t, p(t) the concentration of the final
product at time t, xi(t) (i = 2, . . . , n) the concentration of each intermediate compound at
time t, and ui(t) (i = 1, . . . , n) the concentration at time t of the enzyme catalyzing the
i-th reaction. For the sake of simplicity, we use normalized quantities: the ui are divided
by the maximum total enzyme concentration, and the xi and p are divided by x1(0). Using
(2) we get:

vi(xi(t), ui(t)) =
kixi(t)

Kmi + xi(t)
ui(t) (17)
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where vi is the rate of the i-th reaction (i = 1, . . . , n), and the dynamical model for the
pathway shown in (16) is given by conservation of mass:

ẋi(t) = vi−1(xi−1(t), ui−1(t))− vi(xi(t), ui(t)); (i = 1, . . . , n) (18)

So, the reactions in (16) can then be modeled by the set of differential equations:

ẋ1 = − k1x1
Km1 + x1

u1 x1(0) = 1

ẋ2 =
k1x1

Km1 + x1
u1 −

k2x2
Km2 + x2

u2 x2(0) = 0

· · ·

ẋn =
kn−1xn−1

Kmn−1 + xn−1
un−1 −

knxn
Kmn + xn

un xn(0) = 0

(19)

with xi(t) ≥ 0. Due to normalization, we have x1(0) = 1, and:

x1(t) + x2(t) + . . .+ xn(t) + p(t) = 1, ∀t ≥ 0 (20)

Our goal is to convert transform x1 into product p as fast as possible. Thus, we shall
minimize the operation time, which is defined in terms of the concentration of the final
product, p(tf ), with tf as the final time. In the case of an exhaustible initial substrate, x1,
from (20), and imposing p(tf ) = Cf (0 < Cf < 1), we obtain:

x1(tf ) + x2(tf ) + . . .+ xn(tf ) = 1− Cf (21)

So that the optimization problem may thus be defined as the following control problem
(Pr):

(Pr): τCf
= min

u1,...un

∫ tf

0
dt = min

u1,...un

tf

subject to: (19), (21), and:

U(t) = {u ∈ Rn | u1 ≥ 0, . . . un ≥ 0; u1 + . . .+ un ≤ 1}

(22)

Using PMP, we get the following solution to (Pr):

Theorem 2. Optimal Solution

The optimal i-enzyme profile is of bang-bang type and satisfies:

u∗i (t) =

{
1 for t ∈ [ti−1, ti)
0 for t /∈ [ti−1, ti)

; i = 1, . . . , n (23)

where {t0, t1, t2, ..., tn} are the switching times, with t0 = 0 and tn = tf . If we denote by
xji(t) the optimal j-th metabolite concentration in the i-th interval [ti−1, ti], i = 1, . . . , n,
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with x10(t0) = 1, then the optimal solution is:

xj1(t) for j

Km1W

(
x10(t0)
Km1

e
x10(t0)
Km1 e

− k1
Km1

(t−t0)
)

1

x10(t0)− x11(t) 2

0 3, . . . , n

(24)

xji(t) for j

xjj(tj) 1, . . . , i− 1

KmiW

(
xii−1(ti−1)

Kmi
e

xii−1(ti−1)

Kmi e
− ki

Kmi
(t−ti−1)

)
i

xii−1(ti−1)− xii(t) i+ 1

0 i+ 2, . . . , n

(25)

xjn(t) for j

xjn(tj) 1, . . . , n− 1

KmnW

(
xnn−1(tn−1)

Kmn
e

xnn−1(tn−1)

Kmn e−
kn

Kmn
(t−tn−1)

)
n

(26)

4 Conclusions

We have presented in this paper for the first time the quasi-analytical solution of an n-
step linear unbranched pathway with Michaelis-Menten kinetics. As objective function we
minimize the operation time, defined by specifying the final concentration of the product.
Traditionally, kinetics with non-linear equations, like Michaelis-Menten, have only been
solved approximately. The closed-form formulae of Theorem 2 allow finding the solution
for problems of arbitrary dimension, with the only already stated limitation of solving the
nonlinear system. With the proposed iterative method of progressively finding the solution
for increasing values of n, we have verified that the solution of the system poses no special
difficulty from the numerical point of view. The reason is that on each step n, the starting
seeds for unknowns 1, . . . , n − 1 can be estimated to high precision taking those of the
previous step and the value of the new unknown can also be easily estimated. All the
issues related to convergence of numerical processes, frequent in other methods, are thus
prevented.
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