Given the values
$$ \begin{array}{|c|c|c|c|c|c|} \hline t & 2 & 4 & 6 & 8 & 10\\ \hline \hline Q & 18 & 90 & 260 & 510 & 990\\ \hline \end{array} $$fit the potential function $Q\left(t\right)=r\,t^{s},$ finding $r$ and $s$ values with least squares criterion.
We linearize the function to approximate. If we take into account that
$$ \ln(AB)=\ln(A)+\ln(B) \quad \ln(A^B)=B\ln(A) $$then
$$ Q = r\,t^s \quad \Longrightarrow \quad \ln Q = \ln(r\,t^s) \quad \Longrightarrow $$$$\Longrightarrow \quad \ln Q = \ln r +\ln(t^s) \quad \Longrightarrow \quad \ln Q = \ln r +s\,\ln t $$And if we call
$$ y_k = \ln Q_k, \quad x_k =\ln t_k, \quad a_0 = \ln r , \quad a_1=s $$we have
$$ \ln Q_k \approx \ln r +s\,\ln t_k \quad \Longrightarrow \quad y_k \approx a_0 + a_1\, x_k $$The problem is now to fit a least squares regression line
$$ P_1(x) = a_0 + a_1\, x $$to the transformed data $(x_k,y_k),\quad k = 1,\ldots,5$ with the system
We compute the elements of these matrices
and
$$ \begin{array}{rcrcc} 5\,a_{0} & + & 8.253\,a_{1} & = & 26.08\\ 8.253\,a_{0} & + & 15.24\,a_{1} & = & 47.05 \end{array} $$And the solution is $a_0 = 1.312 \quad a_1=2.475$.
As
$$ a_0 =\ln r, \quad a_1=s \quad \Longrightarrow r = e^{a_0}\approx 3.1, \quad s = a_1 \approx 2.5 $$The approximate curve is
$$ Q(t)=3.1\,t^{\,2.5} $$