Given the values
$$ \begin{array}{|c|ccccc|} \hline t & 1 & 2 & 3 & 4 & 5\\ \hline Q & 0.47 & 0.27 & 0.20 & 0.15 & 0.12 \\ \hline \end{array} $$fit, using the least squares criterion, the curve
$$Q\left(t\right)=\frac{Q_{0}}{1+Q_{0}Kt}$$We linearize the function to approximate. If we take into account that
$$ Q=\frac{Q_{0}}{1+Q_{0}K\,t} \quad \Longrightarrow \quad \frac{1}{Q}=\frac{1+Q_{0}K\,t}{Q_{0}} \quad \Longrightarrow \quad \frac{1}{Q}=\frac{1}{Q_0}+K\,t $$And if we call
$$ y_k = \frac{1}{Q_k}, \quad x_k =t_k, \quad a_0 = \frac{1}{Q_0}, \quad a_1=K $$we have
$$ \frac{1}{Q_k}=\frac{1}{Q_0}+K\,t_k \quad \Longrightarrow \quad y_k = a_0 + a_1\, x_k $$The problem is now to fit a least squares regression line
$$ P_1(x) = a_0 + a_1\, x $$to the transformed data $(x_k,y_k),\quad k = 1,\ldots,5$ with the system
We compute the elements of these matrices
And
$$ \begin{array}{rcrcc} 5\,a_{0} & + & 15\,a_{1} & = & 25.83\\ 15\,a_{0} & + & 55\,a_{1} & = & 92.87 \end{array} $$And the solution is $a_0 = 0.5540 \quad a_1=1.5474$. As
$$ a_0 =\frac{1}{Q_0}, \quad a_1=K \quad \Longrightarrow Q_0 =\frac{1}{a_0}\approx 1.8 \quad K = a_1\approx 1.5 $$The approximate curve is
$$Q\left(t\right)=\frac{1.8}{1+1.8\times 1.5\,t},$$