Course Webpage

Gaussian rule with 3 nodes:

  1. Compute $$\int_{0}^{3}e^{-\frac{x^{2}}{2}}dx$$ using the 3 nodes gaussian rule $$\int_{-1}^{1}f(x)\:dx\approx\frac{5}{9}\,f\left(-\sqrt{\dfrac{3}{5}}\right)+\frac{8}{9}\,f\left(0\right)+\frac{5}{9}\,f\left(\sqrt{\dfrac{3}{5}}\right)$$
  2. What is the degree of precision of the formula?

Gauss-Legendre formulas

In the quadrature formula

$$ \int_{a}^{b}f(x)dx\approx \omega_{0}f(x_{0})+\omega_{1}f(x_{1})+\cdots +\omega_{N}f(x_{N}) $$

Is it possible to find the weights $\omega_i$ and the nodes $x_i$ so that the degree of precision of the formula is as high as possible? Yes, but then the nodes will not be equally spaced and these formulas are called Gauss-Legendre formulas. The nodes for the interval $[-1,1]$ will be the zeros of the Legendre polynomials

Once we have the nodes, the way to deduce the corresponding quadrature formula could be the same as using equispaced nodes: if $P_{N}$ is the polynomial that interpolates $f$ in the Legendre nodes $x_{0},x_{1},...,x_{N} \in \left[ -1,1\right]$ and

$$ \int_{-1}^{1}f(x)\,dx\approx \int_{-1}^{1}P_N(x)\,dx=\omega_{0}\,f(x_{0})+\omega_{1}\,f(x_{1})+\cdots +\omega_{n}\,f(x_{N}) $$

This formula can be easily adapted for another interval $[a,b].$

For $[-1,1]$ the weights and the nodes are

$$ \begin{array}{|c|r|r|} \hline n & w_i & x_i \\ \hline 1 & 2.000000 & 0.000000 \\ 2 & 1.000000 & \pm 0.577350 \\ 3 & 0.555556 & \pm 0.774597 \\ & 0.888889 & 0.000000 \\ 4 & 0.347855 & \pm 0.861136 \\ & 0.652145 & \pm 0.339981 \\ 5 & 0.236927 & \pm 0.906180 \\ & 0.478629 & \pm 0.538469 \\ & 0.568889 & 0.000000 \\ \hline \end{array} $$

Thus, for instance

Gaussian rule with one node

$$ \int_{-1}^{1}f(x)\,dx\approx 2\;f(0) $$

Gaussian rule with 2 nodes

$$ \int_{-1}^{1}f(x)\,dx\approx f(-0.5774)+f(0.5774) $$

Gaussian rule with 3 nodes

$$ \int_{-1}^{1}f(x)\,dx\approx 0.5556\;f(-0.7746)+0.8889\;f(0)+ 0.5556\;f(0.7746) $$

And so on.

This can be generalized for any interval $[a,b]$ swapping $x_i$ with $y_i$ following

$$y_i=\frac{b-a}{2}x_i+\frac{a+b}{2}$$

And the quadrature formula is now

$$ \int_{a}^{b}f(x)dx\approx\frac{b-a}{2}\left( \omega_{0}\;f(y_{0})+\omega_{1}\;f(y_{1})+\cdots +\omega_{n}\;f(y_{n})\right) $$

Compute the integral

Compute $$\int_{0}^{3}e^{-\frac{x^{2}}{2}}dx$$ using the gaussian rule of 3 nodes:

$$\int_{-1}^{1}f(x)\:dx\approx\frac{5}{9}\,f\left(-\sqrt{\dfrac{3}{5}}\right)+\frac{8}{9}\,f\left(0\right)+\frac{5}{9}\,f\left(\sqrt{\dfrac{3}{5}}\right)$$

We want to change variable that takes us from the interval $[0,3]$ to the interval where the formula is defined, that is, $[-1,1]$.

If we perform a linear change of variable

$$x = m\,t +n,$$

that if $x = 0$, then $t = -1$ then

$$0 = -m+n.$$

And if $x = 3$, then $t = 1$ then

$$3 = m+n.$$

Adding these two equations

$$3 = 2n \quad \fbox{$n = \dfrac{3}{2}$}$$

We multiply the first equation by $-1$

$$0 = m-n \quad 3 = m+n$$

And we add the equations again

$$3 = 2m \quad \fbox{$m = \dfrac{3}{2}$}$$

Thus, the solution of the linear system is

$$m = \frac{3}{2}\quad n = \frac{3}{2}$$

And the change of variable is

$$x=\frac{3}{2}\,t+\frac{3}{2}\qquad dx=\frac{3}{2}dt.$$

As our formula was

$$\int_{-1}^{1}f(x)\:dx\approx\frac{5}{9}\,f\left(-\sqrt{\dfrac{3}{5}}\right)+\frac{8}{9}\,f\left(0\right)+\frac{5}{9}\,f\left(\sqrt{\dfrac{3}{5}}\right)$$

And since the variable change forced the interval $[0,3]$ to transform into the interval $[-1,1]$

$$\int_0^3 f(x)\,dx = \int_{-1}^1 f\left(\frac{3}{2}t+\frac{3}{2}\right)\frac{3}{2}dt= \frac{3}{2}\int_{-1}^1 f\left(\frac{3}{2}t+\frac{3}{2}\right)dt\approx$$

. $$\approx\frac{3}{2}\left[\frac{5}{9}\,f\left(-\frac{3}{2}\sqrt{\dfrac{3}{5}}+\frac{3}{2}\right)+\frac{8}{9}\,f\left(\frac{3}{2}\right)+\frac{5}{9}\,f\left(\frac{3}{2}\sqrt{\dfrac{3}{5}}+\frac{3}{2}\right)\right]= $$

. $$ =\frac{3}{2}\left[\frac{5}{9}\,f(0.3381)+\frac{8}{9}\,f(1.5)+\frac{5}{9}\,f(2.6619)\right]=$$

and taking into account that $f(x)=e^{-\frac{x^{2}}{2}}$ . $$=\frac{3}{2}\left[\frac{5}{9}\,(0.9444)+\frac{8}{9}\,(0.3246)+\frac{5}{9}\,(0.02893)\right]=1.24402 $$

In fact

  • Ie = 1.24993044474155
  • Ia = 1.24401686205204
  • Error = 0.00591358268951

Degree of precision of the formula

The nodes of Gaussian formulas are chosen in such a way the precision of the formula is maximized.

In general, a Gauss-Legendre formula of $n$ points will be exact for polynomial functions of degree less than or equal to $2n-1$. Therefore, with one node the precision is $1$, with two nodes the precision is $3$, and with three nodes the precision is $5$.

If we compare the Gaussian formulas with the Newton-Cotes formulas with the same nodes

$$ \begin{array}{|c|r|cc|} \hline \mathrm{Nodes} & \mathrm{Degree\,of\,precision} &\mathrm{Degree\,of\,precision} \\ & \mathrm{Newton-Cotes} &\mathrm{Gauss-Legendre} \\ \hline 1 & \mathrm{Midpoint} \quad 1 & 1\\ 2 & \mathrm{Trapezoid} \quad 1 & 3\\ 3 & \mathrm{Simpson} \quad 3 & 5\\ 4 & \mathrm{Simpson\,3/8} \quad 3 & 7\\ 5 & \mathrm{Boole} \quad 5 & 9\\ \hline \end{array} $$