We want to decompose the coefficient matrix $A$ into the product of a lower triangular matrix $L$ by an upper triangular matrix $U$
$$A=LU$$Not all matrices have an $LU$ decomposition. If $A$ is invertible, then it admits an $LU$ factorization if and only if all its leading principal minors are nonzero.
$LU$ decomposition is not unique. For instance:
We will use Doolittle method and the elements of the diagonal of $L$ will be fixed as ones. In this case:
We consider the system of linear equations $A\mathbf{x}=\mathbf{b}$ where the matrix $A$ admits the $LU$ decomposition to solve the system,
Consider the system $A\mathbf{x}=\mathbf{b}$ with
$$ A=\left(\begin{array}{crc} 1 & 1 & 3\\ 3 & 0 & 1\\ 1 & -2 & 1 \end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c} -2\\ -1\\ -3 \end{array}\right) $$Find $\mathbf{x}$ using $LU$ decomposition.
The steps are
In the first step, we make zeros under the element $a_{11}$ by adding the first row multiplied by a real.
$$ \begin{array}{c} r_{1}\\ r_{2}\\ r_{3} \end{array} \left(\begin{array}{rrr} \mathbf{1} & 1 & 3\\ 3 & 0 & 1\\ 1 & -2 & 1 \end{array}\right) \quad \begin{array}{lclcrr} r_{1} & \rightarrow & r_{1} & & & \\ r_{2} & \rightarrow & r_{2} & - & \color{red}{\fbox{3/1}} & r_{1}\\ r_{3} & \rightarrow & r_{3} & - & \color{blue}{\fbox{1/1}} & r_{1} \end{array} $$The factors, which appear in boxes, are the elements of the $L$ matrix. We insert them into the array, instead of the zeros we have made to save space. The transformed matrix is
$$ \left(\begin{array}{rrr} 1 & 1 & 3\\ \color{red}{\fbox{3}} & \mathbf{-3}& -8\\ \color{blue}{\fbox{1}} & -3 & -2 \end{array}\right)\quad\begin{array}{lclcrr} r_{1} & \rightarrow & r_{1}\\ r_{2} & \rightarrow & r_{2}\\ r_{3} & \rightarrow & r_{3} & - & \color{ForestGreen}{\fbox{$(-3)/(-3)$}} & r_{2} \end{array} $$We repeat the process creating zeros below $a'_{22}$ and we arrive at a matrix that simultaneously stores $L$ and $U$.
$$ \left(\begin{array}{rrr} 1 & 1 & 3\\ \color{red}{\fbox{3}} & -3 & -8\\ \color{blue}{\fbox{1}} & \color{ForestGreen}{\fbox{1}} & 6 \end{array}\right) $$And the matrices $L$ and $U$ are:
$$ L=\left(\begin{array}{rrr} 1 & 0 & 0\\ \color{red}{\fbox{3}} & 1 & 0\\ \color{blue}{\fbox{1}} & \color{lime}{\color{ForestGreen}{\fbox{1}}} & 1 \end{array}\right)\quad U=\left(\begin{array}{rrr} 1 & 1 & 3\\ 0 & -3 & -8\\ 0 & 0 & 6 \end{array}\right) \qquad \mathbf{b}=\left(\begin{array}{c} -2\\ -1\\ -3 \end{array}\right) $$From the first equation $$ y_1 = -2$$ From the second $$ y_2 = -1 -3 y_1 = -1-3(-2) = 5$$ And from the third $$ y_3 = -3-y_1-y_2=-3-(-2)-5=-6$$ That is $$ y_1 = -2 \quad y_2 = 5 \quad y_3 = -6$$
From the third equation $$ x_3 = -1$$ From the second one $$ x_2 = \frac{5 +8 x_3}{-3} = \frac{5 +8 (-1)}{-3} = 1$$ From the first one $$ x_1 = -2-x_2-3x_3=-2-1-3(-1)=0$$ And the solution is $$ \fbox{$x_1 = 0 \quad x_2 = 1 \quad x_3 = -1$}$$
$LU$ decomposition method is essentially the Gauss Elimination method. The $U$ matrix is the same upper triangular matrix that we obtain from Gauss. What are the differences?
So, if we do the same as with Gauss, why do we not work directly with the augmented matrix? Why do it in two steps?
The $LU$ decomposition method makes sense (compared to Gauss elimination) if we have a series of systems that we have to solve sequentially and where the solution of one determines the independent term of the next $\mathbf{b}$. For example
$$ 1.\quad A\mathbf{x}_1=\mathbf{x}_0,\quad A\mathbf{x}_2=\mathbf{x}_1, \quad A\mathbf{x}_3=\mathbf{x}_2,\dots\\ 2.\quad L\mathbf{y}_1=\mathbf{x}_0,\quad L\mathbf{y}_2=\mathbf{x}_1, \quad L\mathbf{y}_3=\mathbf{x}_2,\dots\\ 3.\quad U\mathbf{x}_1=\mathbf{y}_1,\quad U\mathbf{x}_2=\mathbf{y}_2, \quad U\mathbf{x}_3=\mathbf{y}_y,\dots\\ $$In this case, with Gauss Elimination we would have to perform it once for each system, changing the $\mathbf{b}$, while with the $LU$ method we would do step 1 only once and repeat steps 2 and 3 for each system.
The sequence of row operations used to transform the matrix $A$ into an equivalent upper triangular matrix is
$r_2\longleftarrow r_2-(3)r_1$ $$ \left( \begin{array}{rrr} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 1 & -2 & 1 \\ \end{array} \right) $$ $ r_3\longleftarrow r_3-(1)r_1 $ $$ \left( \begin{array}{ccc} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 0 & -3 & -2 \\ \end{array} \right) $$ $ r_3\longleftarrow r_3-(1)r_2 $ $$ \left( \begin{array}{rrr} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 0 & 0 & 6 \\ \end{array} \right) $$
These transformations are achieved left-multiplying $A$ by the elementary matrices
$$ r_2\longleftarrow r_2-(3)r_1 $$.
$$ \left( \begin{array}{rrr} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & -2 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 1 & -2 & 1 \\ \end{array} \right) $$.
$$ r_3\longleftarrow r_3-(1)r_1 $$.
$$ \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{ccc} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{ccc} 1 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & -2 & 1 \\ \end{array} \right) = \left( \begin{array}{ccc} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 0 & -3 & -2 \\ \end{array} \right) $$.
$$ r_3\longleftarrow r_3-(1)r_2 $$.
$$ \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & -2 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 0 & 0 & 6 \\ \end{array} \right) $$Each elementary matrix $G_1$, $G_2$ y $G_3$ corresponds with a row operation
$$G_3G_2G_1A=U$$and therefore
$$A=(G_3G_2G_1)^{-1}U=G_1^{-1}G_2^{-1}G_3^{-1}U$$If we call $L$ to the following product
$$L=G_1^{-1}G_2^{-1}G_3^{-1}$$${\color{white}.}$ $$A=\text{LU}$$
where $L$ is a lower triangular matrix. Let us calculate this $L$ matrix
$$ G_1^{-1}= \left( \begin{array}{rrr} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right)^{-1} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$.
$$ G_2^{-1}= \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ \end{array} \right)^{-1} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array} \right) $$.
$$ G_3^{-1}=\left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ \end{array} \right)^{-1} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ \end{array} \right) $$And then
$$ G_1^{-1}G_2^{-1}= \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array} \right) $$.
$$ G_1^{-1}G_2^{-1}G_3^{-1}= \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array} \right) $$And we have already decomposed $A$ as $LU$
$$ A =\left( \begin{array}{ccc} 1 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & -2 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 1 & 3 \\ 0 & -3 & -8 \\ 0 & 0 & 6 \\ \end{array} \right) = LU $$