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Chapter 1

Nonlinear analysis tools for proving
existence of weak solutions of
cross-diffusion problems
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4 Nonlinear analysis tools for cross-diffusion problems

Our aim is proving the existence of weak solutions of evolution cross-diffusion problems of
the Shigesada-Kawasaki-Teramoto (SKT) type, that is, cross-diffusion problems which admit a
suitable entropy estimate.

To do this, we first analyze a linear heat equation in Section 1, and a nonlinear reaction-
diffusion problem in Section 2, under the following rules:

• the maximum principle can not be applied, and

• the starting point to construct a solution is the Lax-Milgram’s lemma.

The first rule is motivated by the fact that, in general, cross-diffusion problems do not enjoy the
property of comparison of solutions, while the second is chosen because it involves approximating
techniques which are also useful for computational porpouses.

The problems are set as deduced from standard population dynamics models, although the tech-
niques we employ are easily applicable to other type of evolution reaction-convection-diffusion
problems.

Along the way, we recall well known results of functional analysis that provide us with power-
ful tools to tackle these problems.

The contents of this review concerning to cross-diffusion problems has been partially extracted
from the following articles:

1. G. Galiano, M. L. Garzón, A. Jüngel, Semi-discretization in time and numerical conver-
gence of solutions of a nonlinear cross-diffusion population model, Numerische Mathematik
93 (2003) 655-673.

2. L. Chen, A. Jüngel, Analysis of a multidimensional parabolic population model with strong
cross-diffusion, SIAM J. Mathematical Analysis, 36 (2004) 301-322.

3. G. Galiano, V. Selgas, On a cross-diffusion segregation problem arising from a model of
interacting particles, Nonlinear Analysis: Real World Applications 18 (2014) 34-49.
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1 A linear population model

In this section we start showing a proof of existence of weak solutions of an evolution problem
with linear diffusion and linear reaction terms.

The problem is the following. Given a fixed T > 0 and a bounded set Ω ⊂ RN , find (a non-
negative) u : (0,T )×Ω→ R such that

∂tu−∆u = u in QT = (0,T )×Ω, (1.1)

∇u ·n = 0 on ΓT = ∂(0,T )×Ω, (1.2)

u(·,0) = u0 ≥ 0 in Ω. (1.3)

In terms of population dynamics, we are supposing that

• The population diffuses randomly.

• The newborns are proportional to the existent population, and there is no growth limit. The
corresponding kinetics (∂tu = u) implies exponential growth.

The first ingredient for constructing a solution of (1.1)-(1.3) is an energy estimate which point
us to a possible notion of weak solution. Suppose that the problem has a smooth solution, u.
Multiplying (1.1) by u, integrating in Qt , with t ∈ (0,T ), and then integrating by parts in Ω, we
get the energy identity

1
2

∫
Ω

u(t)2 +
∫

Qt

|∇u|2 = 1
2

∫
Ω

u2
0 +

∫
Qt

u2. (1.4)

Lemma 1 (Gronwall’s lemma) Let T > 0, a ∈ L∞(0,T ), and λ ∈ L1(0,T ), with λ ≥ 0 in (0,T ).
Suppose that, for b ∈C([0,T ]) increasing,

a(t)≤ b(t)+
∫ t

0
λ(s)a(s)ds a.e. in (0,T ),

Let Λ(t) =
∫ t

0 λ(s)ds. Then
a(t)≤ eΛ(t)b(t) a.e. in (0,T ).

Using Gronwall’s lemma in (1.4), we deduce∫
Ω

u(t)2 ≤ e2t
∫

Ω

u2
0, which implies

∫
QT

u2 ≤ Te2T
∫

Ω

u2
0.

Therefore, we get from (1.4)

‖u‖L∞(L2)+‖∇u‖L2 ≤C, (1.5)

and hence, ‖u‖L2(H1) ≤C. Here we have introduced the notation Lp(X) for Lp(0,T ;X(Ω)). Thus,
we may expect u and ∇u to be L2(QT ) functions. However, since

∂tu =−div(∇u)+u ∈ L2(0,T ;(H1(Ω))′),



6 Nonlinear analysis tools for cross-diffusion problems

we can not expect, in principle, to have ∂tu defined as an Lp(QT ) function. Therefore, we start
considering it in a distributional sense and set a generic definition of weak solution as∫ T

0
〈∂tu,ϕ〉+

∫
QT

∇u ·∇ϕ =
∫

QT

uϕ, for all ϕ ∈V, (1.6)

with 〈·, ·〉 denoting a duality product, and V a space of test functions, both to be explicited later.

1.1 Formal arguments

Our method of proof consists on defining a sequence of approximating problems, let us say (Pn),
where n denotes the approximating parameter, and such that (Pn)→ (P) as n→ ∞ in some sense,
being (P) the original problem (1.1)-(1.3).

Suppose that estimate (1.5) is also satisfied by the sequence of solutions, un, to approximated
problems (Pn) of the form∫ T

0
〈∂tun,ϕ〉+

∫
QT

∇un ·∇ϕ =
∫

QT

unϕ, for all ϕ ∈V. (1.7)

That is, suppose that ‖un‖L∞(L2)+‖un‖L2(H1) ≤C. Then, there exists a subsequence of un (that we
do not relabel) and a function u ∈ L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) such that

un ⇀ u weakly*-weakly in L∞(0,T ;L2(Ω)), (1.8)

∇un ⇀ ∇u weakly in L2(QT ). (1.9)

Then, we already get from this convergences that, for all ϕ ∈V ⊂ L2(0,T ;H1(Ω)),∫
QT

∇un ·∇ϕ→
∫

QT

∇u ·∇ϕ,∫
QT

unϕ→
∫

QT

uϕ.

We also need to establish the convergence of the time derivative. The idea is to use the definition
of norm.

Definition 1 Let V be a normed space, and ψ : V → R be a linear functional. Then the norm of
ψ on the dual space V ′ of V is defined by

‖ψ‖V ′ = sup
x∈V

〈ψ,x〉V ′×V

‖x‖V
.

We now fix the space of test functions as V = L2(0,T ;H1(Ω)), and write, using (1.7) and Hölder’s
inequality, ∫ T

0
〈∂tun,ϕ〉 ≤

∫
QT

|∇un||∇ϕ|+
∫

QT

|un||ϕ|

≤ ‖∇un‖L2‖∇ϕ‖L2 +‖un‖L2‖ϕ‖L2 ≤C‖ϕ‖L2(H1), (1.10)
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where 〈·, ·〉 denotes the duality product in (H1(Ω))′×H1(Ω). Thus ‖∂tun‖L2((H1)′) ≤ C, so we
again get the existence of a subsequence of ∂tun (not relabeled) and of an element z∈L2(0,T ;(H1(Ω))′)
such that

∂tun ⇀ z weakly in L2(0,T ;(H1(Ω))′). (1.11)

Let us now identify z as ∂tu. We consider the space C∞
c (0,T ;H1(Ω)), which is dense in L2(0,T ;H1(Ω)).

Then, for ψ ∈C∞
c (0,T ;H1(Ω)), we have∫ T

0
〈∂tun,ψ〉 →

∫ T

0
〈z,ψ〉,

as well as, using the weak convergence (1.8),∫ T

0
〈∂tun,ψ〉=−

∫ T

0
〈un,∂tψ〉=−

∫ T

0

∫
Ω

un∂tψ→−
∫ T

0

∫
Ω

u∂tψ =
∫ T

0
〈∂tu,ψ〉,

and, by the density and the uniqueness of the limit, we deduce∫ T

0
〈z,ϕ〉=

∫ T

0
〈∂tu,ϕ〉,

for all ϕ ∈ L2(0,T ;H1(Ω)). That is, z = ∂tu.

Therefore, taking into account the convergences (1.8), (1.9) and (1.11), and the above identifi-
cation, we can pass to the limit in (1.7) to obtain a weak solution of (1.6).

There only rests to give a sense in which the initial data should be satisfied. We have, for
ψ ∈C∞(QT )∫ T

0
〈∂t(u−u0),ψ〉=−

∫
QT

(u−u0)∂tψ+
∫

Ω

(u(T )−u0)ψ(T )−
∫

Ω

(u(0)−u0)ψ(0).

Therefore, choosing ψ ∈ L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) such that ψ(T ) = 0 (see Remark 1.1),
we find that the initial condition is satisfied in the sense∫ T

0
〈∂tu,ψ〉+

∫
QT

(u−u0)∂tψ = 0. (1.12)

Theorem 1.1 (Sobolev’s embedding theorem) Let Ω ⊂ RN be bounded and of class C1, and
1 ≤ p ≤ ∞. The following injections are continuous:

• W 1,p(Ω)⊂ Lp∗(Ω), with p∗ = N p/(N− p), if p < N,

• W 1,p(Ω)⊂ Lq(Ω), for all 1≤ q < ∞, if p = N,

• W 1,p(Ω)⊂C(Ω̄), if p > N.

Remark 1.1 Sobolev’s embedding theorem states that the injection H1(0,T ;L2(Ω))⊂C([0,T ];L2(Ω))
is continuous. That is , ψ : [0,T ]→ L2(Ω), is continuous, and hence it makes sense to set ψ(T ) = 0
in Ω.
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Remark 1.2 If the solution of (1.6) is more regular, say ∂tu ∈ L2(QT ), then integrating by parts
in (1.12) we get

0 =
∫

QT

∂tuψ+
∫

QT

(u−u0)∂tψ =−
∫

Ω

u(0)ψ(0)−
∫

QT

u0∂tψ =
∫

Ω

(u0−u(0))ψ(0).

Since this identity holds for all ψ(0) ∈ L2(Ω), we deduce u(0) = u0 a.e. in Ω.

1.2 Time discretization

We introduce the following time discretization of problem (1.1)-(1.3). Let K ∈ N, τ = T/K, and
consider the decomposition (0,T ] = ∪K

k=0(tk−1, tk], with tk = kτ. Then, in each time slice, we
consider the following problem: Given uk−1 ∈ L2(Ω), find uk : Ω→ R such that

1
τ

∫
Ω

(uk−uk−1)ϕ+
∫

Ω

∇uk ·∇ϕ =
∫

Ω

uk
ϕ for all ϕ ∈ H1(Ω). (1.13)

Lemma 2 (Lax-Milgram) Let H be a Hilbert space and assume that A : H×H→ R is a contin-
uous coercive bilinear form. Then, given any F ∈ H ′, there exists a unique element u ∈ H such
that A(u,ϕ) = 〈F,ϕ〉 for all ϕ ∈ H.

We take H = H1(Ω), and define F = 1
τ
uk−1 ∈ L2(Ω)⊂ (H1(Ω))′, and

A(u,ϕ) =
∫

Ω

∇u ·∇ϕ+
1
τ

∫
Ω

uϕ.

The bilinear form A is clearly continuous and coercive in H1(Ω). Then, Lax-Milgram’s lemma
provide us with a weak solution, uk ∈ H1(Ω) of (1.13). We can use ϕ = uk as test function in
(1.13) to get

(1− τ)
∫

Ω

|uk|2 + τ

∫
Ω

|∇uk|2 =
∫

Ω

uk−1uk.

Using Youngs’ inequality, we get(1
2
− τ
)∫

Ω

|uk|2 + τ

∫
Ω

|∇uk|2 ≤ 1
2

∫
Ω

|uk−1|2. (1.14)

Taking1 τ < 1/4, and using the bound (1− r)−1 ≤ exp(r(1− r)−1) for all r ∈ [0,1) (Exercise 1),
from the inequality

(1−2τ)
∫

Ω

|uk|2 ≤
∫

Ω

|uk−1|2, (1.15)

we get, ∫
Ω

|uk|2 ≤ e4T
∫

Ω

|u0|2 ≤C. (1.16)

1Since we are interested in the limit τ→ 0, this restriction is irrelevant.
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Here, C is a constant which may change of value, but which is independent of k. Summing (1.14)
for k = 1, . . . ,K, we obtain

1
2

∫
Ω

|uK |2 + τ

K

∑
k=1

∫
Ω

|∇uk|2 ≤ 1
2

∫
Ω

|u0|2 + τ

K

∑
k=1

∫
Ω

|uk|2.

and thus, using (1.16) and Kτ = T ,

τ

K

∑
k=1

∫
Ω

|∇uk|2 ≤ 1
2

∫
Ω

|u0|2 +TC ≤C. (1.17)

Gathering (1.16) and (1.17) yields

max
k=1,...,K

∫
Ω

|uk|2 + τ

K

∑
k=1

∫
Ω

|∇uk|2 ≤C. (1.18)

1.3 Back to the evolution problem

Consider the piecewise constant and piecewise linear interpolators in time,

u(τ)(t,x) = uk(x), ũ(τ)(t,x) = uk(x)+
tk− t

τ
(uk−1(x)−uk(x)),

for (t,x) ∈ (tk−1, tk]×Ω, for k = 1, . . . ,K. Then (1.18) implies

max
t∈(0,T )

∫
Ω

|u(τ)|2 +
∫

QT

|∇u(τ)|2 ≤C, (1.19)

and taking into account that tk− t < τ, we also deduce

max
t∈(0,T )

∫
Ω

|ũ(τ)|2 +
∫

QT

|∇ũ(τ)|2 ≤C. (1.20)

Replacing u(τ) and ũ(τ) in the weak formulation (1.13) we get∫
QT

∂t ũ(τ)ϕ+
∫

QT

∇u(τ) ·∇ϕ =
∫

QT

u(τ)ϕ for all ϕ ∈ L2(0,T ;H1(Ω)). (1.21)

From this identity and (1.19), we obtain, like in (1.10),

‖∂t ũ(τ)‖L2((H1)′) ≤C. (1.22)

Therefore, from (1.19), (1.20), and (1.22) we deduce the existence of u,z ∈ L2(0,T ;H1(Ω)) and
subsequences of u(τ) and ũ(τ) (not relabeled) such that

u(τ) ⇀ u weakly in L2(0,T ;H1(Ω)),

u(τ) ⇀ u weakly*-weakly in L∞(0,T ;L2(Ω))),

ũ(τ) ⇀ z weakly in L2(0,T ;H1(Ω)),

ũ(τ) ⇀ z weakly*-weakly in L∞(0,T ;L2(Ω))),

∂t ũ(τ) ⇀ ∂tz weakly in L2(0,T ;((H1(Ω))′).
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Finally, let us obtain the identification z = u. Since, for t ∈ (tk−1, tk],

|ũ(τ)(t,x)−u(τ)(t,x)|= |(tk− t)
uk−1(x)−uk(x)

τ
| ≤ τ|∂t ũ(τ)(t,x)|,

we deduce from (1.22)

‖ũ(τ)−u(τ)‖L2((H1)′) ≤ τ‖∂t ũ(τ)‖L2((H1)′)→ 0 as τ→ 0,

and hence z = u. Therefore, we may pass to the limit τ→ 0 in (1.21) to deduce the existence of a
weak solution of (1.1)-(1.3) in the sense of (1.6), with V = L2(0,T ;H1(Ω)).

Finally, we show lower and upper bounds of the solution. We use the Stampacchia truncature
method, also useful for some systems of equations, although not for the cross-diffusion systems
we have on mind.

We will show formal calculations, which are justified under enough regularity of the solutions.
These computations can be done rigorously using similar arguments for the time discrete problem
(1.13) (Exercise 3).

Assume that ∂tu ∈ L2(QT ). Let T (u) = min{u− z,0}, with z = me−λt , for some λ to be de-
termined, and for m ∈ R such that u0 ≥ m a.e. in Ω. Using T (u) as a test function in the weak
formulation of problem (1.1)-(1.3), we obtain∫

QT

T (u)∂tu+
∫

QT

∇u ·∇T (u) =
∫

QT

uT (u).

Then, since ∇u ·∇T (u)≥ 0,∫
QT

T (u)∂t(u− z)−λ

∫
QT

zT (u)≤
∫

QT

(u− z)T (u)+
∫

QT

z|T (u)|.

Since zT (u)≤ 0, we find that

1
2

∫
QT

∂tT (u)2 +(λ−1)
∫

QT

z|T (u)| ≤
∫

QT

T (u)2.

Therefore, taking λ≥ 1, and using Gronwall’s lemma we obtain∫
Ω

T (u(t, ·))2 ≤ e2t
∫

Ω

T (u0)
2 = 0,

yielding u(t, ·)≥ me−λt a.e. in Ω.

For the upper bound we use as test funtion T (u) = max{Z−u,0}, with Z = Meλt , for some λ

to be determined, and for M ∈ R such that u0 ≤M a.e. in Ω. We obtain, since ∇u ·∇T (u)≥ 0,∫
QT

T (u)∂t(u− z)+λ

∫
QT

zT (u)≤
∫

QT

(u− z)T (u)+
∫

QT

T (u).

Now, zT (u)≥ 0, so taking λ > 1 we find

1
2

∫
QT

∂tT (u)2 ≤
∫

QT

T (u)2,

and Gronwall’s lemma yields u(t, ·)≤Me−λt a.e. in Ω.
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Theorem 1.2 Let Ω ⊂ RN be a bounded set with Lipschitz continuous boundary, and let T > 0.
Suppose that u0 ∈ L2(Ω), and that there exist constants m,M ∈ R such that

m≤ u0 ≤M a.e. in Ω.

Then, problem (1.23)-(1.25) has a weak solution u ∈ L2(0,T ;H1(Ω))∩H1(0,T ;(H1(Ω))′), in the
sense that for all ϕ ∈ L2(0,T ;H1(Ω)),∫ T

0
< ∂tu,ϕ >+

∫
QT

∇u ·∇ϕ =
∫

QT

uϕ,

with < ·, ·> denoting the duality product between H1(Ω) and its dual (H1(Ω))′. In addition, for
t ∈ (0,T ), u satisfies

meλt ≤ u(t, ·)≥Meλt a.e. in Ω,

and the initial data is satisfied in the sense∫ T

0
< ∂tu,ψ >+

∫
QT

(u−u0)∂tψ = 0,

for all ψ ∈ L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) such that ψ(T ) = 0 a.e. in Ω.
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2 A nonlinear population model

In this section we introduce nonlinearities in the diffusion and reaction terms of the partial differ-
ential equation (1.1).

The problem is the following. Given a fixed T > 0 and a bounded set Ω ⊂ RN , find (a non-
negative) u : (0,T )×Ω→ R such that

∂tu−div(u∇u) = f (u) in QT , (1.23)

u∇u ·n = 0 on ΓT , (1.24)

u(·,0) = u0 ≥ 0 in Ω, (1.25)

where f (u) = u(α−βu) is a logistic reaction term (α,β ≥ 0). In terms of population dynamics,
we are supposing that

• The population diffuses to avoid overcrowding (maxima of u).

• The newborns are proportional to the existent population, but there is a growth limit given
in terms of the so-called carrying capacity of the habitat. The corresponding kinetics (∂tu =
f (u)) has a stable equilibrium at u = α/β.

The generic form of weak solution we shall deal with is∫
QT

〈∂tu,ϕ〉+
∫

QT

u∇u ·∇ϕ =
∫

QT

f (u)ϕ, for all ϕ ∈V, (1.26)

with V to be explicited later.

2.1 Formal arguments

For problem (1.23)-(1.25), we have the following formal estimates:

• Using ϕ = ln(u) in (1.26) we get, for F(s) = s(ln(s)−1)+1≥ 0,∫
Ω

F(u(T ))+
∫

QT

|∇u|2 =
∫

Ω

F(u0)+
∫

QT

f (u) ln(u). (1.27)

The term E(t) =
∫

Ω
F(u(t)) is called the entropy of the system, since it is related to the

physical entropy defined in thermodynamics. Observe that this identity only makes sense if
u > 0.

• Using ϕ = 1 in (1.26) we get (if u≥ 0)∫
Ω

u(T )≤
∫

Ω

u0 +α

∫
QT

u,

and then Gronwall’s lemma implies∫
Ω

u(T )≤ eαT
∫

Ω

u0 ≤C.
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Suppose that the right hand side of (1.27) may be controled in terms of the left hand side. We then
deduce

max
t∈(0,T )

∫
Ω

F(u(t))+‖u‖L∞(L1)+‖∇u‖L2 ≤C, (1.28)

and therefore, ‖u‖L2(H1) ≤C (we shall see later why).

Now, suppose that estimate (1.28) is also satisfied by the sequence of solutions, un, to approxi-
mated problems (Pn) of the form∫

QT

∂tun ϕ+
∫

QT

ψn(un)∇un ·∇ϕ =
∫

QT

f (un)ϕ, for all ϕ ∈V,

with ψn→ id. That is, suppose that ‖un‖L2(H1) ≤C. Then, there exists u ∈ L2(0,T ;H1(Ω)) such
that

∇un ⇀ ∇u weakly in L2(QT ).

The gradient estimate is the first ingredient to prove the (relative) strong compactness of the se-
quence un in some Lp space, which provides strong convergence in Lp, and a.e. convergence in
QT . Both of these convergences are necessary to pass to the limit in the nonlinear terms. Clearly,
the limit (if it does exist) is a candidate to solution of (1.23)-(1.24).

The second ingredient to prove the compactness is an estimate for the time derivative.

Lemma 3 (Simon, Aubin-Lions) Let X, B, and Y be Banach spaces with X ⊂ B ⊂ Y such that

• X is compactly embedded in B.

• B is continuously embedded in Y .

Suppose that the sequence un satisfies:

• un is bounded in Lq(0,T ;X)∩L1
loc(0,T ;X), for 1 < q≤ ∞.

• ∂tun is bounded in L1
loc(0,T ;Y ).

Then, for all p < q, there exists a subsequence of un (not relabeled) and an element u∈ Lp(0,T ;B)
such that

un→ u strongly in Lp(0,T ;B) and a.e. in QT .

A usual situation is that of taking X = H1(Ω), and B = L2(Ω). Indeed,

Theorem 1.3 (Rellich-Kondrachov) Let Ω⊂RN be bounded and of class C1, and 1 ≤ p ≤ ∞.
The following injections are compact:
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• W 1,p(Ω)⊂ Lq(Ω), for all 1≤ q < p∗, with p∗ = N p/(N− p), if p < N,

• W 1,p(Ω)⊂ Lq(Ω), for all p≤ q < ∞, if p = N,

• W 1,p(Ω)⊂C(Ω̄), if p > N.

Then we get that

∂tun bounded in L1(0,T ;Y ) =⇒ un→ u strongly in L2(QT ) and a.e. in QT .

Summarizing, if the right hand side of (1.27) may be absorbed by the letf hand side, and the time
derivative estimate is available, we have

∇un ⇀ ∇u weakly in L2(QT ),

∂tun ⇀ ∂tu weakly in L1(0,T ;Y ),

un→ u strongly in L2(QT ) and a.e. in QT .

Observe that with these kind of estimates (and others), we have to justify the following limits in
the weak formulation ∫

QT

〈∂tun,ϕ〉 →
∫

QT

〈∂tu,ϕ〉,∫
QT

ψn(un)∇un ·∇ϕ→
∫

QT

u∇u ·∇ϕ,∫
QT

(αun−βu2
n)ϕ =

∫
QT

f (un)ϕ→
∫

QT

f (u)ϕ.

2.2 Time discretization

Like in the linear case, we introduce the following time discretization of problem (1.23)-(1.25).
Consider a Banach space, V , defined on Ω, to be fixed later. Let K ∈ N, τ = T/K, and consider
the decomposition (0,T ] = ∪K

k=0(tk−1, tk], with tk = kτ.

First (non-successful) attempt. In each time slice, we consider the following nonlinear problem:
Given uk−1 ∈V , find uk : Ω→ R such that

1
τ
(uk−uk−1)−div(uk

∇uk) = f (uk) in Ω, (1.29)

uk
∇uk ·n = 0 on ∂Ω. (1.30)

We, further, linearize problem (1.29)-(1.30) in order to apply Lax-Milgram’s lemma (Lemma 2):
Given uk−1, v ∈V , find uk : Ω→ R such that

1
τ
(uk−uk−1)−div(v∇uk) = f (v) in Ω,

v∇uk ·n = 0 on ∂Ω.
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Like in the linear case, we would like to take H = H1(Ω), and define

A(u,ϕ) =
∫

Ω

v∇u ·∇ϕ+
1
τ

∫
Ω

uϕ.

However, A(u,ϕ) is not coercive in H1(Ω) since v might vanish. Moreover, since our proof is
based in using ln(u) as a test function, we also need to avoid the singularity arising when u = 0.
We adopt the following approximation.

Approximation of the linear problem

Let ε > 0. The regularized problem reads as follows: Given uk−1
ε , v∈V , find uk

ε : Ω→R such that

1
τ
(uk

ε−uk−1
ε )−div(aε(v)∇uk

ε)) = fε(v) in Ω, (1.31)

aε(v)∇uk
ε ·n = 0 on ∂Ω, (1.32)

with fε(s) = αs−βaε(s)2. Here, aε, must be an approximation to the identity function, to which
we shall impose ε−1 ≥ aε(s)≥ ε for all s ∈ R. In weak form, we write:

1
τ

∫
Ω

(uk
ε−uk−1

ε )ϕ+
∫

Ω

aε(v)∇uk
ε ·∇ϕ =

∫
Ω

fε(v)ϕ, for all ϕ ∈ H1(Ω). (1.33)

Now we can take H = H1(Ω), V = L2(Ω) in the Lax-Milgram’s lemma, and define

Aε(u,ϕ) =
∫

Ω

aε(v)∇u ·∇ϕ+
1
τ

∫
Ω

uϕ, F = fε(v)+
1
τ

uk−1
ε ∈ L2(Ω)⊂ (H1(Ω))′.

The bilinear form Aε is clearly continuous and coercive in H1(Ω), and therefore there exists a
weak solution, uk

ε ∈ H1(Ω), of (1.31)-(1.32).

At this point, we go back to the formulation of the nonlinear time-discrete problem and add the
perturbation introduced in the linear problem. That is, we replace problem (1.29)-(1.30) by the
following: Given uk−1

ε ∈ L2(Ω), find uk : Ω→ R such that

1
τ
(uk

ε−uk−1
ε )−div(aε(uk

ε)∇uk
ε)) = fε(uk

ε) in Ω, (1.34)

aε(uk
ε)∇uk

ε ·n = 0 on ∂Ω, (1.35)

or, in weak form,

1
τ

∫
Ω

(uk
ε−uk−1

ε )ϕ+
∫

Ω

aε(uk
ε)∇uk

ε ·∇ϕ =
∫

Ω

fε(uk
ε)ϕ, for all ϕ ∈ H1(Ω). (1.36)

Now, observe that we have the following inconvenient: Assuming that we may use ϕ = F ′(uk
ε) =

ln(uk
ε) as test function, we obtain in the diffusion term∫

Ω

aε(uk
ε)F

′′(uk
ε)|∇uk

ε|2 =
∫

Ω

aε(uk
ε)

uk
ε

|∇uk
ε|2,

instead of the original formal identity∫
Ω

uF ′′(u)|∇u|2 =
∫

Ω

|∇u|2.

Thus, we also need to approximate F by a suitable sequence Fε which allows us to obtain an L2

estimate of ∇uε.
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The definition of aε and Fε

For ε > 0, we want to produce approximations:

• aε such that aε(s)→ s as ε→ 0, with ε−1 ≥ aε(s)≥ ε for all s ∈ R.

• Fε non-negative and smooth such that Fε(s)→ F(s) = s(ln(s)−1)+1, as ε→ 0,

• aε(s)F ′′ε (s) = 1 for all s ∈ R.

Let aε : R→ [ε,ε−1] be given by the truncature function

aε(s) :=


ε if s≤ ε,

s if ε≤ s≤ ε−1,

ε−1 if ε−1 ≤ s.

Using the third condition, we set F ′′ε (s) = 1/aε(s). Integrating and adjusting the integration con-
stants for continuity, we get Fε ∈C2,1(R,R+) given by

Fε(s) :=



s2− ε2

2ε
+ s(lnε−1)+1 if s≤ ε,

s(lns−1)+1 if ε≤ s≤ ε−1,

ε(s2− ε−2)

2
+ s(lnε−1−1)+1 if ε−1 ≤ s,

with

F ′ε(s) :=


s
ε
+ lnε−1 if s≤ ε,

lns if ε≤ s≤ ε−1,

εs+ lnε−1−1 if ε−1 ≤ s.
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Figure 1.1: The convex function Fε and its derivatives.
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Fixed point method to couple the nonlinearities

Theorem 1.4 (Leray-Schauder fixed point theorem) Let V be a Banach space and let S : V ×
[0,1]→V be a continuous and compact map such that

• S(v,0) = 0 for all v ∈V .

• For each pair (v,σ) ∈ V × [0,1] satisfying v = S(v,σ), there exists a positive constant C,
such that ‖v‖V ≤C.

Then there exist a fixed point, w ∈V , of the map S(v,1), i.e. w = S(w,1).

To solve the nonlinear time-discrete problem (1.34)-(1.35) we define the operator S : L2(Ω)×
[0,1]→ L2(Ω) such that, for uk−1

ε ∈ L2(Ω) given, applies (v,σ) ∈ L2(Ω)× [0,1] into the solution
uk,σ

ε , of the following linear problem (mind σ at the right hand side). Find uk,σ
ε : Ω→ R such that

1
τ

uk,σ
ε −div(aε(v)∇uk,σ

ε )) = σ
(

fε(v)+
1
τ

uk−1
ε

)
in Ω, (1.37)

aε(v)∇uk,σ
ε ·n = 0 on ∂Ω. (1.38)

A straightforward application of Lax-Milgram’s lemma, mimicking that of Subsection 2.2, shows
that there exists a unique solution uk,σ

ε ∈ H1(Ω) of problem (1.37)-(1.38). Thus, S is well defined.

To apply the Leray-Schauder’s theorem, we have to check the following:

1. Continuity: Let vn ∈ L2(Ω), σn ∈ [0,1] be given sequences, with vn→ v strongly in L2(Ω),
and σn→ σ. Let us denote by uk

ε,n to the solution of the linear problem (1.37)-(1.38) corre-
sponding to (vn,σn), that is S(vn,σn). We must check that uk

ε,n→ uk,σ
ε strongly in L2(Ω), as

n→ ∞.

2. Compactness: Since we start with v ∈ L2(Ω) and finish in S(v,σ) = uk,σ
ε ∈ H1(Ω), and by

Theorem 1.3 the embedding H1(Ω)⊂ L2(Ω) is compact, we deduce that S is compact.

3. S(v,0) = 0, which is inmmediate, after using ϕ = uk,σ
ε ∈ H1(Ω) as test function in the weak

formulation of (1.37)-(1.38).

4. If v = S(v,σ)(= uk,σ
ε ) for (v,σ) ∈ L2(Ω)× [0,1] then ‖uk,σ

ε ‖L2 ≤C.

We start proving the continuity. Using ϕ = uk
ε,n ∈ H1(Ω) as test function in the weak formulation

of (1.37)-(1.38) (with (v,σ) replaced by (vn,σn), and uk,σ
ε replaced by uk

ε,n) we get

1
τ

∫
Ω

|uk
ε,n|2 +

∫
Ω

aε(vn)|∇uk
ε,n|2 = σn

∫
Ω

fε(vn)uk
ε,n +

σn

τ

∫
Ω

uk−1
ε uk

ε,n.

Since aε(s)≥ ε for all s ∈ R, we have∫
Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤ τασn

∫
Ω

vnuk
ε,n− τβσn

∫
Ω

aε(vn)
2uk

ε,n +σn

∫
Ω

uk−1
ε uk

ε,n.
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Using Young’s inequality in the form ab≤ γa2 + b2

γ
, and σn ≤ 1, we get,

1
4

∫
Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤ 4τ

2
α

2
∫

Ω

v2
n +4τ

2
β

2
∫

Ω

|aε(vn)|4 +4
∫

Ω

|uk−1
ε |2.

Thus, since vn, uk−1
ε ∈ L2(Ω), and aε(s)≤ ε−1, we obtain∫

Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤C(1+ τ

2
ε
−4), (1.39)

implying that ‖uk
ε,n‖H1(Ω) is bounded. Then, using Theorem 1.3, the compact embedding L2(Ω)⊂

H1(Ω), implies the existence of z ∈ H1(Ω) such that, up to a subsequence (not relabeled),

uk
ε,n ⇀ z weakly in H1(Ω),

uk
ε,n→ z strongly in L2(Ω), and a.e. in Ω. (1.40)

Finally, the continuity will be proven if we identify z as S(v,σ)(= uk,σ
ε ). We take the limit n→ ∞

in the weak formulation of problem (1.37)-(1.38), that is, in the identity

1
τ

∫
Ω

uk
ε,nϕ+

∫
Ω

aε(vn)∇uk
ε,n ·∇ϕ = σn

∫
Ω

fε(vn)ϕ+
σn

τ

∫
Ω

uk−1
ε ϕ. (1.41)

By assumption, vn → v strongly in L2(Ω). Since aε is Lipschitz continuous (uniform constant
equal to one), we have

‖aε(vn)−aε(v)‖L2 ≤ ‖vn− v‖L2 ,

and thus aε(vn)→ aε(v) strongly in L2(Ω) and a.e. in Ω, as n→ ∞.

Theorem 1.5 (Dominated convergence theorem) Let fn be a sequence of functions of L1(Ω) sat-
isfying

• fn(x)→ f (x) a.e. in Ω,

• there is a function g ∈ Lp(Ω), with 1≤ p < ∞, such that, for all n, | fn(x)| ≤ g(x) a.e. in Ω.

Then f ∈ Lp(Ω) and fn→ f strongly in Lp(Ω).

Being aε(vn)≤ ε−1 for all n, we may use the dominated convergence theorem to deduce

aε(vn)→ aε(v) strongly in Lp(Ω), for all p < ∞.

Thus,

aε(vn)∇uk
ε,n ⇀ aε(v)∇z weakly in Lq(Ω), for q =

2p
p+2

< 2, and 2 < p < ∞.

Since ∇ϕ ∈ L2(Ω), the above convergence is not enough to pass to the limit in the diffusion term
of (1.41). However, having the bound

‖aε(vn)∇uk
ε,n‖L2 ≤ ‖aε(vn)‖L∞‖∇uk

ε,n‖L2 ≤C,
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we deduce that, in fact, up to a subsequence,

aε(vn)∇uk
ε,n ⇀ aε(v)∇z weakly in L2(Ω). (1.42)

Finally, fε is also Lipschitz continuous (constant equal to α+ 2βε−1), and a similar argument to
that used for the sequence aε(vn) shows that

fε(vn)→ fε(v) strongly in L2(Ω). (1.43)

Thus, gathering (1.40), (1.42), and (1.43), we get from (1.41), as n→ ∞,

1
τ

∫
Ω

zϕ+
∫

Ω

aε(v)∇z ·∇ϕ = σ

∫
Ω

fε(v)ϕ+
σ

τ

∫
Ω

uk−1
ε ϕ,

so z is a weak solution of (1.37)-(1.38) corresponding to v. Moreover, the limit z is unique because
the solution of the limit problem may be obtained by Lax-Milgram’s lemma. Therefore, we deduce
that the whole sequence converges, this is, z = S(v,σ).

Finally, we prove point 4, this is, the uniform bound of the fixed points of S. Assume v = uk,σ
ε

and let us prove that ‖uk,σ
ε ‖L2 ≤C, for all σ ∈ [0,1]. In this case, uk,σ

ε satisfies

1
τ

uk,σ
ε −div(aε(u

k,σ
ε )∇uk,σ

ε )) = σ
(

fε(u
k,σ
ε )+

1
τ

uk−1
ε

)
in Ω, (1.44)

aε(u
k,σ
ε )∇uk,σ

ε ·n = 0 on ∂Ω. (1.45)

Using ϕ = uk,σ
ε ∈ H1(Ω) as test function in the weak formulation of (1.44)-(1.45), we obtain, like

we did before for uk
ε,n, an estimate similar to (1.39)∫
Ω

|uk,σ
ε |2 + τε

∫
Ω

|∇uk,σ
ε |2 ≤C(1+ τ

2
ε
−4

σ
2)≤C(1+ τ

2
ε
−4),

implying that ‖uk,σ
ε ‖H1(Ω) is bounded uniformly with respect to σ.

Therefore, we deduce the existence of a fixed point of S(v,1), which we denote by uk
ε, and that

satisfies the nonlinear time-discrete problem (1.36).

Further estimates for the nonlinear time-dicrete problem

Until now, we have shown the existence of a weak solution uk
ε to the nonlinear time-discrete

problem

1
τ

∫
Ω

(uk
ε−uk−1

ε )ϕ+
∫

Ω

aε(uk
ε)∇uk

ε ·∇ϕ =
∫

Ω

fε(uk
ε)ϕ, for all ϕ ∈ H1(Ω).

Now, we shall deduce some uniform estimates with respect to ε. Taking ϕ = F ′ε(u
k
ε) and recalling

that F ′′ε = 1/aε, we get

1
τ

∫
Ω

(uk
ε−uk−1

ε )F ′ε(u
k
ε)+

∫
Ω

|∇uk
ε|2 =

∫
Ω

fε(uk
ε)F

′
ε(u

k
ε). (1.46)

For the first term of the left hand side, we use the convexity estimate (Exercise 2)

(s− t)F ′ε(s)≥ Fε(s)−Fε(t), for all s, t ∈ R. (1.47)
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For the term at the right hand side, we use (Exercise 2)

Fε(s)≥
ε

2
s2−2 for all s≥ 0, Fε(s)≥

s2

2ε
for all s≤ 0, (1.48)

max{aε(s),sF ′ε(s)} ≤ 2Fε(s)+1 for all s ∈ R, (1.49)

aε(s)F ′ε(s)≥ s−1 for all s ∈ R, (1.50)

Fε(aε(s))≤ Fε(s) for all s ∈ R. (1.51)

From (1.49), (1.50), and (1.51), and noting that2 [1− s]+ ≤ 1+[s]−, we deduce

fε(s)F ′ε(s) = αsF ′ε(s)−βaε(s)2F ′ε(s)≤ α(2Fε(s)+1)+βaε(s)[1− s]+
≤ (α+β)(2Fε(s)+1)+βaε(s)[s]−

≤ (α+β)(2Fε(s)+1)+
β

2ε
([s]−)2 +

βε

2
aε(s)2

≤ (α+β)(2Fε(s)+1)+βFε(s)+β(2+Fε(aε(s)))

≤ (α+β)(2Fε(s)+1)+βFε(s)+β(2+Fε(s))

= (2α+4β)Fε(s)+α+3β. (1.52)

Using (1.47) and (1.52) in (1.46), we obtain∫
Ω

Fε(uk
ε)+ τ

∫
Ω

|∇uk
ε|2 ≤Cτ+

∫
Ω

Fε(uk−1
ε )+2τ(α+β)

∫
Ω

Fε(uk
ε),

and thus,

(1−ωτ)
∫

Ω

Fε(uk
ε)+ τ

∫
Ω

|∇uk
ε|2 ≤Cτ+

∫
Ω

Fε(uk−1
ε ), (1.53)

with ω = 2(α+β). Here, we impose τ < ω−1.

Estimate of the entropy. From (1.53) and reasoning as in (1.15)-(1.16), we get

max
k=1,...,K

∫
Ω

Fε(uk
ε)≤ eωT/(1−ωτ)

(
CT +

∫
Ω

Fε(u0)
)
≤C. (1.54)

Estimate of the gradient. Summing (1.53) in k and recalling that Kτ = T , we get

∫
Ω

Fε(uk
ε)+ τ

K

∑
k=1

∫
Ω

|∇uk
ε|2 ≤CτK +

∫
Ω

Fε(u0)+ωτ

K

∑
k=1

∫
Ω

Fε(uk
ε)

≤CT +
∫

Ω

Fε(u0)+ωT max
k=1,...,K

∫
Ω

Fε(uk
ε),

and thus, by (1.54),

τ

K

∑
k=1

∫
Ω

|∇uk
ε|2 ≤C.

2We define [s]+ = max{0,s}, and [s]− =−min{0,s} ≥ 0. Thus, s = [s]+− [s]−.
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Other estimates. From (1.48), we have

1
2ε

∫
Ω

|[uk
ε]−|2 ≤

∫
Ω

Fε([uk
ε]−) =

∫
uk

ε≤0
Fε(uk

ε)

≤
∫

uk
ε≤0

Fε(uk
ε)+

∫
uk

ε≥0
Fε(uk

ε) =
∫

Ω

Fε(uk
ε)≤C.

Thus, from (1.54), we obtain the following bound for the extenct of negativity of uk
ε:

max
k=1,...,K

∫
Ω

|[uk
ε]−|2 ≤Cε. (1.55)

Using the test function ϕ = 1 in the weak formulation (1.36) we get

(1−ατ)
∫

Ω

uk
ε ≤

∫
Ω

uk−1
ε , implying (Gronwall’s lemma) max

k=1,...,K

∫
Ω

uk
ε ≤C.

Using this estimate and Young’s inequality, we obtain∫
Ω

|uk
ε|=

∫
Ω

([uk
ε]++[uk

ε]−) =
∫

Ω

uk
ε +2

∫
Ω

[uk
ε]− ≤C

(
1+

∫
Ω

|[uk
ε]−|2

)
,

and then, from (1.55)

max
k=1,...,K

∫
Ω

|uk
ε| ≤C.

Summarizing, we have obtained the bound

max
k=1,...,K

(∫
Ω

Fε(uk
ε)+

∫
Ω

|uk
ε|+

1
ε

∫
Ω

([uk
ε]−)

2
)
+ τ

K

∑
k=1

∫
Ω

|∇uk
ε|2 ≤C. (1.56)

2.3 Back to the evolution problem

Consider the piecewise constant and piecewise linear interpolators in time,

u(τ)ε (t,x) = uk
ε(x), ũ(τ)ε (t,x) = uk

ε(x)+
tk− t

τ
(uk−1

ε (x)−uk
ε(x)),

for (t,x) ∈ (tk−1, tk]×Ω, for k = 1, . . . ,K, with tk = kτ and τ = T/K. Replacing these functions in
(1.41), we obtain the identity∫ T

0
∂t ũ

(τ)
ε ϕ+

∫
QT

aε(u
(τ)
ε )∇u(τ)ε ·∇ϕ =

∫
QT

fε(u
(τ)
ε )ϕ, (1.57)

for all ϕ ∈ V , where V is to be chosen such that V ⊂ L2(0,T ;H1(Ω)). For passing to the limits
τ→ 0 and ε→ 0 in the identity (1.57) we need:

1. For the time derivative: weak convergence of ∂t ũ
(τ)
ε in some large space (of distributions).

2. For the diffusive term: strong convergence of aε(u
(τ)
ε ), and weak convergence of ∇u(τ)ε .

Since the latter will be in L2(QT ), we need to investigate the larger space in which aε(u
(τ)
ε )

converges strongly to fix the space of test functions.

3. For the reaction term fε: strong convergence of u(τ)ε in some Lp(QT ).

4. We also need to check that the limits of u(τ)ε and ũ(τ)ε are the same function.
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Uniform estimates in ε and τ

The estimates deduced in the sequences of time-independent problems give us, directly, the fol-
lowing uniform estimates for u(τ)ε . From (1.56) we get

max
t∈(0,T )

(∫
Ω

Fε(u
(τ)
ε (t))+

∫
Ω

|u(τ)ε (t)|+ 1
ε

∫
Ω

([u(τ)ε (t)]−)2
)
+

∫
QT

|∇u(τ)ε |2 ≤C. (1.58)

Theorem 1.6 (Poincaré-Wirtinger’s inequality) Let Ω be a connected open set of class C1 and
let 1≤ p≤ ∞. Then, for all u ∈W 1,p(Ω), there exists a constant C such that

‖u−uΩ‖Lp ≤C‖∇u‖Lp , where uΩ =
1
|Ω|

∫
Ω

u.

From (1.58) and the Poincaré-Wirtinger’s inequality we easliy get (Exercise 4)

‖u(τ)ε ‖2
L2 ≤

1
|Ω|
‖u(τ)ε ‖2

L1 +C‖∇u(τ)ε ‖2
L2 ≤C, (1.59)

and thus

‖u(τ)ε ‖L2(H1) ≤C. (1.60)

We also have, for στu(τ)ε (t) = uk−1
ε if t ∈ (tk−1, tk],

‖ũ(τ)ε ‖L2 ≤ 2‖u(τ)ε ‖L2 +‖στu(τ)ε ‖L2 ≤C, (1.61)

‖ũ(τ)ε ‖L2(H1) ≤ 2‖u(τ)ε ‖L2(H1)+‖στu(τ)ε ‖L2(H1) ≤C. (1.62)

Time derivative estimate

Like in the linear case, we obtain this estimate using the definition of norm, see Definition 1. We
have, using (1.57),∫ T

0
〈∂t ũ

(τ)
ε ,ϕ〉 ≤

∫
QT

|aε(u
(τ)
ε )||∇u(τ)ε ||∇ϕ|+

∫
QT

| fε(u
(τ)
ε )||ϕ|

≤ ‖aε(u
(τ)
ε )‖L∞‖∇u(τ)ε ‖L2‖∇ϕ‖L2 +α‖u(τ)ε ‖L2‖ϕ‖L2

+β‖aε(u
(τ)
ε )‖2

L∞‖ϕ‖L1 , (1.63)

where 〈·, ·〉 denotes the duality product in (H1(Ω))′×H1(Ω). Then, we take L2(0,T ;H1(Ω)) as
the (provisional) space of test funtions. Therefore, noting the uniform estimates (1.58), (1.59), and
that ε≤ aε(s)≤ ε−1, we find∫ T

0
〈∂t ũ

(τ)
ε ,ϕ〉 ≤Cε

−1‖∇ϕ‖L2 +
(
C+ ε

−2)‖ϕ‖L2 ≤Cε
−2‖ϕ‖L2(H1),

and thus,

‖∂t ũ
(τ)
ε ‖L2((H1)′) ≤Cε

−2. (1.64)
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2.4 The limit τ→ 0

From the bounds (1.58), (1.60), (1.61), (1.62) and (1.64) we deduce the existence of uε,zε ∈
L2(0,T ;H1(Ω)) and of subsequences of u(τ)ε and ũ(τ)ε (not relabeled) such that, as τ→ 0,

u(τ)ε ⇀ uε weakly in L2(0,T ;H1(Ω)), (1.65)

u(τ)ε ⇀ uε weakly in L2(QT ),

ũ(τ)ε ⇀ zε weakly in L2(0,T ;H1(Ω)), (1.66)

ũ(τ)ε ⇀ zε weakly in L2(QT ),

∂t ũ
(τ)
ε ⇀ ∂tzε weakly in L2(0,T ;(H1(Ω))′). (1.67)

The identification z = u

Since, for t ∈ (tk−1, tk],

|ũ(τ)ε (t,x)−u(τ)ε (t,x)|= |(tk+1− t)
uk−1

ε (x)−uk
ε(x)

τ
| ≤ τ|∂t ũ

(τ)
ε (t,x)|,

we deduce from (1.67)

‖ũ(τ)ε −u(τ)ε ‖L2((H1)′) ≤ τ‖∂t ũ
(τ)
ε ‖L2((H1)′)→ 0 as τ→ 0, (1.68)

and hence zε = uε.

Compactness and strong convergences

Once we obtained a time derivative uniform estimate, we use the compactness Aubin-Lions lemma,
Lemma 3, to get strong convergence. We get the existence of a subsequence (not relabeled) such
that

ũ(τ)ε → uε strongly in L2(QT ), and a.e. in QT . (1.69)

Lemma 4 Let (H,‖ · ‖H) be a Hilbert space and let V ⊂ H be a proper linear subspace dense in
H. Assume that (V,‖ · ‖V ) is a Banach space and, under the identification H = H ′, consider the
triplet V ⊂ H ⊂V ′. Then

〈 f ,v〉V ′×V = ( f ,v)H , for all f ∈ H,v ∈V.

In particular, for all v ∈V ,
‖v‖2

H = 〈v,v〉V ′×V ≤ ‖v‖V ′‖v‖V .

Setting V = L2(0,T ;H1(Ω)), H = L2(QT ), and noticing that u(τ)ε − ũ(τ)ε ∈ L2(0,T ;H1(Ω)), we also
deduce strong convergence for u(τ)ε using Lemma 4. Indeed,

‖u(τ)ε −uε‖L2 ≤ ‖u(τ)ε − ũ(τ)ε ‖L2 +‖ũ(τ)ε −uε‖L2

≤ ‖u(τ)ε − ũ(τ)ε ‖
1/2
L2((H1)′)

‖u(τ)ε − ũ(τ)ε ‖
1/2
L2(H1)

+‖ũ(τ)ε −uε‖L2 , (1.70)
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and since ‖u(τ)ε − ũ(τ)ε ‖L2(H1) ≤ ‖u
(τ)
ε ‖L2(H1)+‖ũ

(τ)
ε ‖L2(H1) ≤C, we get from (1.70),

‖u(τ)ε −uε‖L2 ≤C‖u(τ)ε − ũ(τ)ε ‖
1/2
L2((H1)′)

+‖ũ(τ)ε −u‖L2 → 0 as τ→ 0,

in view of (1.68) and (1.69). Thus,

u(τ)ε → uε strongly in L2(QT ) and a.e. in QT . (1.71)

Convergence

We have to pass to the limit τ→ 0 in the expression∫ T

0
〈∂t ũ

(τ)
ε ,ϕ〉+

∫
QT

aε(u
(τ)
ε )∇u(τ)ε ·∇ϕ =

∫
QT

fε(u
(τ)
ε )ϕ, for all ϕ ∈ L2(0,T ;H1(Ω)). (1.72)

The time derivative term, recalling zε = uε, passes to the limit without any additional reasoning.
The linear part of the reaction term, also passes to the limit, thanks to, e.g., the strong convergence
(1.71).

For the convergence of the sequence aε(u
(τ)
ε ) we use the dominated convergence theorem. By

(1.71) and the continuity of aε we deduce that aε(u
(τ)
ε )→ aε(uε) a.e. in QT as τ→ 0. Observing

that ‖aε(u
(τ)
ε )‖L∞ ≤ ε−1, we deduce aε(uε) ∈ Lp(QT ) and, as τ→ 0,

aε(u
(τ)
ε )→ aε(uε) strongly in Lp(QT ) for any 1≤ p < ∞. (1.73)

Then, by Hölder’s inequality,∫
QT

∣∣aε(u
(τ)
ε )2−aε(uε)

2∣∣2 = ∫
QT

∣∣aε(u
(τ)
ε )−aε(uε)

∣∣2∣∣aε(u
(τ)
ε )+aε(uε)

∣∣2
≤ ‖aε(u

(τ)
ε )−aε(uε)‖2

L4‖aε(u
(τ)
ε )+aε(uε)‖2

L4 ,

and therefore, (1.73) leads to

aε(u
(τ)
ε )2→ aε(uε)

2 strongly in L2(QT ).

For the diffusion term, we have that (1.73) and ∇u(τ)ε ⇀ ∇uε weakly in L2(QT ), imply

aε(u
(τ)
ε )∇u(τ)ε ⇀ uε∇uε weakly in Lq(QT ) for any q < 2.

However, we also have

‖aε(u
(τ)
ε )∇u(τ)ε ‖L2 ≤ ‖aε(u

(τ)
ε )‖L∞‖∇u(τ)ε ‖L2 ≤Cε

−1,

implying

aε(u
(τ)
ε )∇u(τ)ε ⇀ uε∇uε weakly in L2(QT ).

Therefore, we may pass to the limit in (1.72) to obtain that uε ∈L2(0,T ;H1(Ω))∩H1(0,T ;(H1(Ω))′)
satisfies∫ T

0
〈∂tuε,ϕ〉+

∫
QT

aε(uε)∇uε ·∇ϕ =
∫

QT

fε(uε)ϕ, for all ϕ ∈ L2(0,T ;H1(Ω)). (1.74)
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2.5 The limit ε→ 0

Since the uniform boundedness of aε is lost in the limit ε→ 0, we can not expect

lim
ε→0

∫
QT

aε(u
(τ)
ε )∇u(τ)ε ·∇ϕ

to be well defined for test functions ϕ ∈ L2(0,T ;H1(Ω)). Thus, first we have to investigate in
which Lp space may aε(u

(τ)
ε ) converge strongly, and then seek for a correct space of test functions

in which this limit may be performed.

In addition, observe that the time derivative bounds we obtained are dependent of the regularity
of the other terms (through the argument for the duality 〈∂t ũ,ϕ〉, see (1.63)). Thus, if the other
terms are less regular, the time derivative will be less regular too, and we shall therefore need to
impose more regularity of ϕ in both the space and the time variables.

Uniform estimates in ε and weak convergences

Taking the limit τ→ 0 in (1.58), (1.60) we get

max
t∈(0,T )

(∫
Ω

Fε(uε(t))+
∫

Ω

|uε(t)|+
1
ε

∫
Ω

([uε(t)]−)2
)
+

∫
QT

|∇uε|2 ≤C. (1.75)

and then

‖uε‖L2(H1) ≤C. (1.76)

Theorem 1.7 (Gagliardo-Niremberg’s interpolation inequality) Let Ω⊂RN be a regular open
bounded set, and let u ∈ Lq(Ω)∩W m,r(Ω), with 1≤ p,q≤∞, and m ∈N. Then u ∈W j,p(Ω), and

‖D ju‖Lp ≤C‖Dmu‖θ
Lr‖u‖1−θ

Lq ,

where
1
p
=

j
N
+
(1

r
− m

N

)
θ+

1−θ

q
, and

j
m
≤ θ≤ 1.

Using Gagliardo-Nirenberg inequality with p = (2N+2)/N, θ = 2N(p−1)/(p(N+2)), and thus
θp = 2, yields (Exercise 5)

‖uε‖Lp ≤
(∫ T

0
‖uε‖

(1−θ)p
L1(Ω)

‖uε‖θp
H1(Ω)

)1/p
≤ ‖uε‖1−θ

L∞(L1)
‖uε‖θ

L2(H1) ≤C. (1.77)

For the time derivative estimate, let r′ = r/(r− 1) to be determined, and write, using (1.74) and
p > 2, ∫ T

0
〈∂tuε,ϕ〉 ≤

∫
QT

|aε(uε)||∇uε||∇ϕ|+
∫

QT

| fε(uε)||ϕ|

≤ ‖aε(uε)‖Lp‖∇uε‖L2‖∇ϕ‖Lr′ +α‖uε‖Lp‖ϕ‖Lp′

+β‖aε(uε)‖2
Lp‖ϕ‖L(p/2)′ ,
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where 〈·, ·〉 denotes the duality product in (W 1,r′(Ω))′×W 1,r′(Ω). Here, r′ is such that

1 =
1
p
+

1
2
+

1
r′

=⇒ r′ = 2(N +1).

Then, we take Lr′(0,T ;W 1,r′(Ω)) as the new (smaller, more regular) space of test funtions. In
addition, notice that r′ ≥ max{p′,(p/2)′}, and thus the norms of the reaction term are also well
defined (Exercise 7). Therefore, noting that aε(s)≤ ε+ s, we find∫ T

0
〈∂tuε,ϕ〉 ≤ (C+‖uε‖Lp)‖∇uε‖L2‖∇ϕ‖Lr′ +

(
C+‖uε‖Lp +‖uε‖2

Lp

)
‖ϕ‖Lr′

≤C‖ϕ‖Lr′ (W 1,r′ ),

and thus, for r = (2N +2)/(2N +1),

‖∂tuε‖Lr((W 1,r′ )′) ≤C. (1.78)

Finally, from (1.75) we also deduce

‖[uε]−‖L∞(L2) ≤C
√

ε. (1.79)

From the bounds (1.76), (1.77), (1.78), and (1.79) we deduce the existence of u,z∈L2(0,T ;H1(Ω))
and of subsequences of uε (not relabeled) such that

uε ⇀ u weakly in L2(0,T ;H1(Ω)),

uε ⇀ u weakly in Lp(QT ),

∂tuε ⇀ ∂tu weakly in Lr(0,T ;(W 1,r′(Ω))′), (1.80)

[uε]−⇀ 0 weakly*-weakly in L∞(0,T ;L2(Ω))

Compactness and strong convergences

We again use the compactness Aubin-Lions lemma, Lemma 3, to get the existence of a subse-
quence (not relabeled) such that

uε→ u strongly in Lγ(0,T ;L2(Ω)), for any γ < 2, and a.e. in QT .

Lemma 5 Let Ω⊂RN be an open set, and let fn be a sequence in Lp(Ω)∩Lγ(Ω), with p > γ, and
f ∈ Lγ(Ω). Assume that

fn→ f strongly in Lγ(Ω) and ‖ fn‖Lp ≤C.

Then f ∈ Lq(Ω) and fn→ f strongly in Lq(Ω) for all γ≤ q < p.

Thus, using the bound ‖uε‖Lp ≤C, see (1.77), we get

uε→ u strongly in Lq(QT ), for any3
γ≤ q < p. (1.81)
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Observe that, in particular, we may choose 2≤ q < p = (2N +2)/N. This convergence together
with (1.79) further implies, using ‖[uε]−‖Lp ≤ ‖uε‖Lp ,

[uε]−→ 0 strongly in Lq(QT ) and a.e. in QT , that is u≥ 0 a.e. in QT . (1.82)

Finally, for the convergence of the sequence aε(uε), let us write

‖u−aε(uε)‖Lq ≤ ‖u− ãε(u)‖Lq +‖ãε(u)− ãε(uε)‖Lq +‖ãε(uε)−aε(uε)‖Lq ,

where

ãε(s) :=

s if s≤ ε−1,

ε−1 if s≥ ε−1.

Theorem 1.8 (Monotone convergence theorem) Let Ω⊂RN be an open set, and let fn ∈ L1(Ω)
be a sequence of functions satisfying

1. f1 ≤ f2 ≤ ·· · a.e. in Ω,

2. supn
∫

Ω
fn < ∞.

Then there exists f ∈ L1(Ω) such that fn→ f strongly in L1(Ω) and a.e. in Ω.

Since ãε(s) is monotone increasing, ãε(s)≤ s for all s ∈R, and u ∈ L1(QT ) by (1.81), we have,
first, that ãε(u)→ a(u) strongly in L1(QT ) (by the monotone convergence theorem), and then,
using the uniform bound (1.77), we deduce ‖u− ãε(u)‖Lq → 0 as ε→ 0.

Since ãε is Lipschitz continuous (with Lipschitz constant equal to one), we get

|ãε(u)− ãε(uε)| ≤ |u−uε|

and then (1.81) implies ‖ãε(u)− ãε(uε)‖Lq → 0 as ε→ 0.

Finally,

|ãε(uε)−aε(uε)|= |uε− ε|1uε≤ε = (ε−uε)10≤uε≤ε +(|uε|+ ε)1uε<0.

The first term of the right hand side is bounded by ε|QT |, while the second is equal to [uε]−+
ε1uε<0. Thus ∫

QT

|ãε(uε)−aε(uε)|q ≤C
(

ε
q +

∫
QT

|[uε]−|q
)
→ 0

as ε→ 0, in view of (1.82). Therefore

aε(uε)→ u strongly in Lq(QT ). (1.83)

3In fact, we may take 1≤ q < p, since QT is bounded.
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Convergence

We have to pass to the limit in the expression∫ T

0
〈∂tuε,ϕ〉+

∫
QT

aε(uε)∇uε ·∇ϕ =
∫

QT

fε(uε)ϕ, for all ϕ ∈ Lr′(0,T ;W 1,r′(Ω)).

The time derivative term passes to the limit without any additional reasoning, due to (1.80). For
the reaction term, we directly have ∫

QT

uεϕ→
∫

QT

uϕ,

since uε → u strongly in, e.g., L2(QT ), by (1.81). Using (1.83), we deduce that aε(uε)
2 → u2

strongly in Lq/2(QT ). Indeed, Hölder’s inequality implies∫
QT

∣∣aε(uε)
2−u2∣∣q/2 ≤

(∫
QT

∣∣aε(uε)−u
∣∣q)1/2(∫

QT

∣∣aε(uε)+u
∣∣q)1/2

≤ ‖aε(uε)−u‖q/2
Lq ‖aε(uε)+u‖q/2

Lq → 0,

as ε→ 0, in view of (1.83). Thus, ∫
QT

aε(uε)
2
ϕ→

∫
QT

u2
ϕ,

since

2
q
+

1
r′
≤ 1 if we choose q≥ 4(N +1)

2N +1
,

which is possible due to (1.81). For the diffusion term, we have that since aε(uε)→ u strongly in
Lq(QT ) and ∇uε ⇀ ∇u weakly in L2(QT ), the product

aε(uε)∇uε ⇀ u∇u weakly in Lγ(QT ),

with γ = 2q/(2+q), which is smaller than r. However, we also have

‖aε(uε)∇uε‖Lr′ ≤ ‖aε(uε)‖Lp‖∇uε‖L2 ≤C,

implying

aε(uε)∇uε ⇀ u∇u weakly in Lr(QT ).

Finally, observe that due to the convergence of [uε]−→ 0 in Lq(QT ), see (1.82), we deduce u≥ 0
a.e. in QT . In fact, we may use a similar argument to that employed at the end of Section 1 to
get upper and lower bounds for u in terms of the initial data (Exercise 6). However, as already
mentioned, this technique will not work for the cross-diffusion system.
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Theorem 1.9 Let Ω ⊂ RN be a bounded set with Lipschitz continuous boundary, and let T > 0.
Suppose that u0 ∈ L2(Ω). Then, problem (1.23)-(1.25) has a weak solution u satisfying u ≥ 0 in
QT and

u ∈ L2(0,T ;H1(Ω))∩Lp(QT )∩W 1,r(0,T ;(W 1,r′(Ω))′),

where p = 2(N + 1)/N, r = 2(N + 1)/(2N + 1), and r′ = 2(N + 1), in the sense that for all ϕ ∈
Lr′(0,T ;W 1,r′(Ω)), ∫ T

0
< ∂tu,ϕ >+

∫
QT

u∇u ·∇ϕ =
∫

QT

f (u)ϕ,

with < ·, · > denoting the duality product between W 1,r′(Ω) and its dual (W 1,r′(Ω))′, being the
initial data satisfied in the sense∫ T

0
< ∂tu,ψ >+

∫
QT

(u−u0)∂tψ = 0,

for all ψ ∈ Lr′(0,T ;W 1,r′(Ω))∩H1(0,T ;L2(Ω)) such that ψ(T ) = 0 a.e. in Ω.
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3 A cross-diffusion population model

In this section we finally deal with cross-diffusion systems of equations. The problem is the
following. Given a fixed T > 0 and a bounded set Ω ⊂ RN , find (non-negative) functions u1,u2 :
(0,T )×Ω→ R such that, using the notation u = (u1,u2),

∂tu1−divJ1(u) = f1(u) in QT , (1.84)

∂tu2−divJ2(u) = f2(u) in QT , (1.85)

J1(u) ·n = J2(u) ·n = 0 on ΓT , (1.86)

u(·,0) = u0 in Ω. (1.87)

Here, the reaction terms are of the competitive Lotka-Volterra type

fi(u) = ui
(
αi− (βi1u1 +βi2u2)

)
, for i = 1,2, (1.88)

with αi,βi j ≥ 0, for i, j = 1,2. We shall deal with diffusion terms given by the flows of the
Bousenberg-Travis (BT) model

Ji(u) = ai0∇ui +ui(ai1∇u1 +ai2∇u2)−biui∇Φ, for i = 1,2,

with ai j ≥ 0, bi ≥ 0, for i, j = 1,2, being Φ the environmental potential. The numbers aii are called
self-diffusion coefficients, while a12 and a21 are refered to as to the cross-diffusion coefficients. Let
us remark here that the Shigesada-Kawasaki-Teramoto (SKT) model, for which

JSKT
i (u) = ∇

(
ui(ai0 +ai1u1 +ai2u2)

)
−biui∇Φ, for i = 1,2,

may be treated in a similarly way to what we shall follow for the BT model, see Subsection 3.8.

In terms of population dynamics, we are supposing that

• The populations diffuses partly randomly, and partly to avoid overcrowding caused by both
populations.

• The populations are drifted to the minima of the environmental potential Φ, representing the
best environmental locations.

• The newborns are proportional to the existent population, but there is a growth limit given in
terms of the intra- and inter-specific competence between populations. The corresponding
kinetics (∂tui = fi(u)) has stable equilibria at( α1

β11
,0
)
,
(
0,

α2

β22

)
,
( α1β22−α2β12

β11β22−β12β21
,

α2β11−α1β21

β11β22−β12β21

)
,

depending on the relationship between the coefficients. However, due to the cross-diffusion,
these equilibria are not always the steady state solutions of problem (1.84)-(1.87).

Introducing the rescaling4 U1 = a21u1 and U2 = a12u2, the new cross-diffusion coefficients are the
unity, while the other coefficients remain with the same sign. Thus, from now on, we shall use the
flows

Ji(u) = ai0∇ui +ui(ai∇ui +∇u j)−biui∇Φ, for i, j = 1,2, with j 6= i. (1.89)

We shall follow the line of the proof of existence of weak solutions developed in Section 2 for an
scalar equation, to prove the corresponding result for the problem (1.84)-(1.87) with reaction and
convection-diffusion terms given by (1.88) and (1.89), respectively.

4Here, we assume a12 6= 0 and a21 6= 0. Otherwise, the system is triangular (instead of full), and the problem is
simpler.
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3.1 Formal estimates

For problem (1.84)-(1.87), we have the following formal estimates:

• Multiplying (1.84) by ln(u1), (1.85) by ln(u2), integrating and adding the resulting identities,
we get, for F(s) = s(ln(s)−1)+1≥ 0,

2

∑
i=1

∫
Ω

F(ui(T ))+
2

∑
i=1

∫
QT

a0i

ui
|∇ui|2 +

∫
QT

(
a1|∇u1|2 +a2|∇u2|2 +2∇u1 ·∇u2

)
=

2

∑
i=1

∫
Ω

F(ui0)+
2

∑
i=1

∫
QT

fi(u) ln(ui)+
2

∑
i=1

∫
QT

∇Φ ·∇ui.

We have 1
ui
|∇ui|2 = 4|∇√ui|2, and, if5 a1a2 > 1,

a1|∇u1|2 +a2|∇u2|2 +2∇u1 ·∇u2 ≥ a0(|∇u1|2 + |∇u2|2),

for some a0 > 0. Thus, if the right hand side may be controled by the left hand side, we get

2

∑
i=1

∫
Ω

F(ui(T ))+
∫

QT

(|∇u1|2 + |∇u2|2)≤C.

• Integrating the equations (1.84) and (1.85), and using the boundary conditions, we get (if
ui ≥ 0) ∫

Ω

(u1(T )+u2(T ))≤
∫

Ω

(u10 +u20)+ α̃

∫
QT

(u1 +u2),

with α̃ = max{α1,α2}, and then Gronwall’s lemma implies∫
Ω

(u1(T )+u2(T ))≤ eα̃T
∫

Ω

(u10 +u20)≤C.

We then deduce from these two estimates that ‖ui‖L2(H1) ≤C, like in the scalar case.

3.2 Symmetrization

Since the treatment of the linear diffusion and convection terms is straightforward, we shall assume
in what follows ai0 = 0 and Φ = 0. See Subsection 3.8 for the details of how to handle these terms.

Equations (1.84)-(1.85) may be written as

∂tu−div(a(u)∇u) = f(u), (1.90)

with f = ( f1, f2), and a(u) is the non-symmetric matrix given by

a(u) =
(

a1u1 u1
u2 a2u2

)
.

5Before rescaling, the condition is det(A)> 0.
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In (1.90) and in what follows, we use the notation

div(a(u)∇u) =
(

div(a1u1∇u1 +u1∇u2)
div(u2∇u1 +a2u2∇u2)

)
.

Following the line of the previous sections, we first discretize the problem in time,

1
τ
(uk−uk−1)−div(a(uk)∇uk) = f(uk),

and then (approximate) and linearize to use Lax-Milgram’s lemma

1
τ
(uk−uk−1)−div(a(v)∇uk) = f(v).

Since a is non-symmetric, the corresponding bilinear form

A(u,u) =
∫

Ω

(
a1v1|∇u1|2 +a2v2|∇u2|2 +(v1 + v2)∇u1 ·∇u2

)
,

is not, in general, coercive since the condition for this form to be coercive is that the matrix(
a1v1

1
2(v1 + v2)

1
2(v1 + v2) a2v2

)
is positive definite, that is, 4a1a2v1v2 > (v1 + v2)

2, which is not true in general.

The problem with this approach is that the entropy estimate of the nonlinear problem is not
inherited by the linear approximation, as it happened for the scalar problem. This is a common
issue when approximating nonlinear systems.

Fortunately, the existence of an entropy estimate is usually accompanied by a change of un-
knowns which symmetrizes the problem. In our case, defining wi = F ′(ui) = ln(ui), we get that w
satisifies

∂t

(
ew1

ew2

)
−div(b(w)∇w) = f(ew1 ,ew2), (1.91)

being b(w) the symmetric matrix

b(w) =

(
a1e2w1 ew1+w2

ew1+w2 a2e2w2

)
.

Thus, our strategy will be to solve the problem in terms of the unknown w and the equation
(1.91), and then to justify the equivalence with a solution of (1.90). Observe that this is not
straightforward. For instance, since

∇ui = ∇ewi = ewi∇wi,

if we obtain, as expected from equation (1.91), ∇wi ∈ L2, this regularity does not inmmediately
translates to ∇ui, unless wi ∈ L∞, which is not expected, in general, from a system like (1.91).
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3.3 Solving a time discrete approximated symmetric problem

The formal calculations of the previous section may be also done in terms of the approximation to
the logarithm given by F ′ε . Since F ′ε is increasing in R, its inverse is well defined. We introduce
the notation

gε = (F ′ε)
−1, satisfying g′ε = aε ◦gε. (1.92)

Then, for σ ∈ [0,1], we set the problem: Given wk−1
ε ∈ L2(Ω)2, with Fε(gε(wk−1

i,ε )) ∈ L1(Ω), find
wk

ε : Ω→ R2 such that

σ

τ
(gε(wk

i,ε)−gε(wk−1
i,ε ))−divGε

i (w
k
ε)+ εwk

i,ε = σhε
i (w

k
ε) in Ω, (1.93)

Gε
i (w

k
ε) ·n = 0 on ∂Ω, (1.94)

with, for i, j = 1,2 and i 6= j,

Gε
i (w) = g′ε(wi)(aig′ε(wi)∇wi +g′ε(w j)∇w j),

hε
i (w) = αigε(wi)−g′ε(wi)

(
βi1g′ε(w1)+βi2g′ε(w2)

)
.

Lax-Milgram. Let us consider the operators A : H1(Ω)2×H1(Ω)2→R and F : L2(Ω)2×L2(Ω)2→
R defined by, for v ∈ L2(Ω)2 and σ ∈ [0,1],

A(w,ϕ) =
2

∑
i=1

(∫
Ω

εwiϕi +
2

∑
i, j=1

j 6=i

∫
Ω

g′ε(vi)
(
aig′ε(vi)∇wi +g′ε(v j)∇w j

)
·∇ϕi

)
, (1.95)

F(ϕ) = σ

2

∑
i=1

(∫
Ω

(
αigε(vi)−g′ε(vi)

(
βi1g′ε(v1)+βi2g′ε(v2)

))
ϕi−

1
τ

∫
Ω

(gε(vi)−gε(wk−1
i,ε ))ϕi

)
.

(1.96)

with ϕ = (ϕ1,ϕ2) ∈ H1(Ω)2. We have, using a1a2 > 1,

A(w,w)≥
2

∑
i=1

(
ε

∫
Ω

w2
i +a0c(ε)

∫
Ω

|∇wi|2
)
,

with c(ε) = mins∈R(g′ε(s))
2 > ε2, in view of (1.92). Thus, A is coercive. Both A and F are

clearly continuous. Then, Lax-Milgram’s lemma ensures the existence of a unique weak solution,
wk

ε,σ ∈ H1(Ω)2, of

σ

τ
(gε(vi)−gε(wk−1

i,ε ))−divGε
i (w

k
ε,σ,v)+ εwk

i,ε,σ = σhε
i (w

k
ε,σ,v) in Ω,

Gε
i (w

k
ε,σ,v) ·n = 0 on ∂Ω,

with (abusing on the notation by splitting the arguments)

Gε
i (w,v) = g′ε(vi)

(
aig′ε(vi)∇wi +g′ε(v j)∇w j

)
,

hε
i (w,v) = αigε(vi)−g′ε(vi)

(
βi1g′ε(v1)+βi2g′ε(v2)

)
.

Fixed point. Define the map S : L2(Ω)2× [0,1]→ L2(Ω)2 given by S(v,σ) = wk
ε,σ. To apply the

Leray-Schauder’s theorem, we have to check the following:
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1. Continuity and compactness of S. The arguments are similar to the case of a scalar equation,
see Subsection 2.2.

2. S(v,0) = 0, which is inmmediate.

3. If v = S(v,σ) for (v,σ) ∈ L2(Ω)2× [0,1] then ‖v‖L2 ≤C.

Let us prove the last point. Thus, we assume that v=wk
ε,σ, and we have to show an uniform bound,

with respect to σ ∈ [0,1], of ‖wk
ε,σ‖L2 . For clarity in the notation, we replace wk

ε,σ by w, and wk−1
ε

by w̃ in what follows. We have that, by assumption, w solves

σ

τ
(gε(wi)−gε(w̃i))−divGε

i (w)+ εwi = σhε
i (w) in Ω,

Gε
i (w) ·n = 0 on ∂Ω.

Using ϕ = wi as a test function, for i = 1,2, and summing the resulting identities, we get, similarly
to the deduction of the coercivity of A,

2

∑
i=1

(
σ

∫
Ω

(gε(wi)−gε(w̃i))wi + τε

∫
Ω

w2
i + τa0c(ε)

∫
Ω

|∇wi|2
)
≤ τσ

2

∑
i=1

∫
Ω

hε
i (w)wi. (1.97)

The convexity of Fε implies Fε(x)−Fε(y) ≤ F ′ε(x)(x− y). Choosing x = gε(wi) and y = gε(w̃i),
and noticing that gε is the inverse of F ′ε , we deduce∫

Ω

(gε(wi)−gε(w̃i))wi ≥
∫

Ω

(Fε(gε(wi))−Fε(gε(w̃i))).

For the right hand side term, we claim that, for i = 1,2,

f ε
i (s1,s2)F ′ε(si)≤C(1+Fε(s1)+Fε(s2)) for all s1,s2 ∈ R, (1.98)

with f ε
i (s1,s2)) = αisi−aε(si)

(
βi1aε(s1)+βi2aε(s2)

)
. Taking si = gε(wi), from (1.98) we infer

2

∑
i=1

∫
Ω

hε
i (w)wi ≤C

2

∑
i=1

∫
Ω

(1+Fε(gε(wi))).

Therefore, we obtain from (1.97), under the assumption τ < 1/C,

2

∑
i=1

(
σ(1−Cτ)

∫
Ω

Fε(gε(wi))+ τε

∫
Ω

w2
i + τa0c(ε)

∫
Ω

|∇wi|2
)

≤Cστ+σ

2

∑
i=1

∫
Ω

∫
Ω

Fε(gε(w̃i)). (1.99)

Since, by assumption, Fε(gε(wk−1
i,ε )) ∈ L1(Ω), we deduced the required uniform estimate with

respect to σ for wk
ε,σ.

We finally prove our claim (1.98) using the properties (1.48)-(1.51). We have

f ε
i (s1,s2)F ′ε(si) = αisiF ′ε(si)−

(
βiiaε(si)+βi jaε(s j)

)
aε(si)F ′ε(si)

≤ αi(2Fε(si)+1)+
(
βiiaε(si)+βi jaε(s j)

)
[1− si]+

≤ (αi +βii)(2Fε(si)+1)+βi j(2Fε(s j)+1)+βiiaε(si)[si]−+βi jaε(s j)[si]−, (1.100)
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and since

βiiaε(si)[si]−+βi jaε(s j)[si]− ≤
1
2ε

(βii +βi j)([si]−)
2 +

ε

2
(βiiaε(si)

2 +βi jaε(s j)
2)

≤ (βii +βi j)Fε(si)+βii(2+Fε(aε(si)))+βi j(2+Fε(aε(s j)))

≤ (βii +βi j)Fε(si)+βii(2+Fε(si))+βi j(2+Fε(s j))

= (2βii +βi j)Fε(si)+βi jFε(s j)+2(βii +βi j),

we deduce (1.98) from (1.100):

f ε
i (s1,s2)F ′ε(si)≤C+(2αi +4βii +βi j)Fε(si)+3βi jFε(s j).

Therefore, a fixed point of the operator S(v,1) does exist, which is a solution wk
ε ∈ H1(Ω)2 of

problem (1.93)-(1.94), with σ = 1.

3.4 Back to the original unknowns

We define uk
i,ε = gε(wk

i,ε) and notice that uk
i,ε ∈ H1(Ω), since

∇uk
i,ε = g′ε(w

k
i,ε)∇wk

i,ε = aε(gε(wk
i,ε))∇wk

i,ε,

and ε ≤ aε ≤ ε−1. Introducing this change of unknowns in (1.93)-(1.94), with σ = 1, we see that
uk

ε satisfies, for given uk−1
ε ∈ L2(Ω)2 with Fε(uk−1

i,ε ) ∈ L1(Ω),

1
τ
(uk

i,ε−uk−1
i,ε )−divJε

i (u
k
ε)+ εF ′ε(u

k
i,ε) = f ε

i (u
k
ε) in Ω, (1.101)

Jε
i (u

k
ε) ·n = 0 on ∂Ω, (1.102)

with, for i, j = 1,2 and i 6= j,

Jε
i (u) = aε(ui)(ai∇ui +∇u j),

f ε
i (u) = αiui−aε(ui)

(
βi1aε(u1)+βi2aε(u2)

)
.

Moreover, using the test function ϕ = F ′ε(u
k
i,ε) in the weak formulation of (1.101)-(1.102) we

obtain, similaly to what we did to deduce (1.99),

2

∑
i=1

(
(1−Cτ)

∫
Ω

Fε(uk
i,ε)+ τε

∫
Ω

|F ′ε(uk
i,ε)|2 + τa0

∫
Ω

|∇uk
i,ε|2
)

≤Cτ+
2

∑
i=1

∫
Ω

∫
Ω

Fε(uk−1
i,ε ). (1.103)

Notice that in this estimate, the gradient bound is independent of ε due to the property aε(s) =
1/F ′′ε (s). Estimate (1.103) is similar to (1.53). From here, it is easy to deduce an estimate for uk

ε

similar to what we found for uk
ε in (1.56), i.e.

2

∑
i=1

max
k=1,...,K

(∫
Ω

Fε(uk
i,ε)+

∫
Ω

|uk
i,ε|+

1
ε

∫
Ω

([uk
i,ε]−)

2 + τε

∫
Ω

|F ′ε(uk
i,ε)|2

)
+

τ

2

∑
i=1

K

∑
k=1

∫
Ω

|∇uk
i,ε|2 ≤C. (1.104)
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3.5 Back to the evolution problem

Like in previous sections, we consider piecewise constant and piecewise linear functions in time.
For (t,x) ∈ (tk−1, tk]×Ω, and for k = 1, . . . ,K, with tk = kτ and τ = T/K, we define

u(τ)i,ε (t,x) = uk
i,ε(x), ũ(τ)i,ε (t,x) = uk

i,ε(x)+
tk− t

τ
(uk−1

i,ε (x)−uk
i,ε(x)).

Replacing these functions in the weak formulation of (1.101)-(1.102), we obtain the identity∫ T

0
∂t ũ

(τ)
i,ε ϕ+

∫
QT

Jε
i (u

(τ)
ε ) ·∇ϕ+ ε

∫
QT

F ′ε(u
(τ)
i,ε )ϕ =

∫
QT

f ε
i (u

(τ)
ε )ϕ, (1.105)

for all ϕ ∈ L2(0,T ;H1(Ω)).

Uniform estimates in ε and τ

From (1.104) we get

max
t∈(0,T )

(∫
Ω

Fε(u
(τ)
i,ε (t))+

∫
Ω

|u(τ)i,ε (t)|+
1
ε

∫
Ω

([u(τ)i,ε (t)]−)
2
)
+ ε

∫
QT

|F ′ε(u
(τ)
i,ε )|

2

+
∫

QT

|∇u(τ)i,ε |
2 ≤C. (1.106)

From (1.106) and the Poincaré-Wirtinger’s inequality we deduce

‖u(τ)i,ε ‖L2(H1) ≤C, ‖ũ(τ)i,ε ‖L2(H1) ≤C. (1.107)

Time derivative estimate

We have, using (1.105) and ϕ ∈ L2(0,T ;H1(Ω)),∫ T

0
〈∂t ũ

(τ)
i,ε ,ϕ〉 ≤ ai

∫
QT

|aε(u
(τ)
i,ε )|

(
|∇u(τ)i,ε |+ |∇u(τ)j,ε|

)
|∇ϕ|+

∫
QT

| f ε
i (u

(τ)
ε )||ϕ|

+ ε

∫
QT

|F ′ε(u
(τ)
i,ε )||ϕ| ≤Cε

−2‖ϕ‖L2(H1),

and thus, from (1.106),

‖∂t ũ
(τ)
i,ε ‖L2((H1)′) ≤Cε

−2. (1.108)

3.6 The limit τ→ 0

From the bounds (1.106), (1.107), and (1.108) we deduce the existence of uε,zε ∈ L2(0,T ;H1(Ω))

and of subsequences of u(τ)
ε and ũ(τ)

ε (not relabeled) such that, as τ→ 0,

u(τ)
ε ⇀ uε weakly in L2(0,T ;H1(Ω))2,

u(τ)
ε ⇀ uε weakly in L2(QT )

2,

ũ(τ)
ε ⇀ zε weakly in L2(0,T ;H1(Ω))2,

ũ(τ)
ε ⇀ zε weakly in L2(QT )

2,

∂t ũ
(τ)
ε ⇀ ∂tzε weakly in L2(0,T ;(H1(Ω))′)2,

the identification zε = uε being deduced like in Subsection 2.4.
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Compactness and strong convergences

We use the compactness Aubin-Lions lemma, Lemma 3, to get strong convergence. We get the
existence of a subsequence (not relabeled) such that

ũ(τ)
ε → uε strongly in L2(QT )

2, and a.e. in QT .

In particular, like in (1.71), we also obtain

u(τ)
ε → uε strongly in L2(QT ), and a.e. in QT .

Convergence

Passing to the limit τ→ 0 is justified like in Subsection 2.4. We obtain that uε ∈ L2(0,T ;H1(Ω))2∩
H1(0,T ;(H1(Ω))′)2 satisfies, for all ϕ ∈ L2(0,T ;H1(Ω)),∫ T

0
〈∂tui,ε,ϕ〉+

∫
QT

Jε
i (uε) ·∇ϕ+ ε

∫
QT

F ′ε(ui,ε)ϕ =
∫

QT

f ε
i (uε)ϕ. (1.109)

3.7 The limit ε→ 0

Uniform estimates in ε and weak convergences

Taking the limit τ→ 0 in (1.106), (1.107) we get

max
t∈(0,T )

(∫
Ω

Fε(uε(t))+
∫

Ω

|uε(t)|+
1
ε

∫
Ω

([uε(t)]−)2
)
+ ε

∫
QT

|F ′ε(ui,ε)|2

+
∫

QT

|∇uε|2 ≤C. (1.110)

and then

‖uε‖L2(H1) ≤C. (1.111)

Using Gagliardo-Nirenberg inequality like in (1.77) yields, for p = (2N +2)/N,

‖uε‖Lp ≤C. (1.112)

For the time derivative estimate, let r = (2N + 2)/(2N + 1), and then r′ = 2(N + 1), and write,
using (1.109) and p > 2,∫ T

0
〈∂tui,ε,ϕ〉 ≤

∫
QT

|aε(ui,ε)|
(
ai|∇ui,ε|+ |∇u j,ε|

)
|∇ϕ|+

∫
QT

| f ε
i (uε)||ϕ|

+ ε

∫
QT

|F ′ε(ui,ε)||ϕ| ≤ ‖aε(ui,ε)‖Lp
(
ai‖∇ui,ε‖L2 +‖∇u j,ε‖L2

)
‖∇ϕ‖Lr′

+αi‖ui,ε‖Lp‖ϕ‖Lp′ +
(
βii‖aε(ui,ε)‖2

Lp +βi j‖aε(ui,ε)‖Lp‖aε(u j,ε)‖Lp
)
‖ϕ‖L(p/2)′

+ ε‖F ′ε(ui,ε)‖L2 ≤C‖ϕ‖Lr′ (W 1,r′ ),

and thus

‖∂tuε‖Lr((W 1,r′ )′) ≤C. (1.113)
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Finally, from (1.106) we also deduce

‖[ui,ε]−‖L∞(L2) ≤C
√

ε, and
√

ε‖F ′ε(ui,ε)‖L2 ≤C. (1.114)

From the bounds (1.110), (1.111), (1.112), (1.113), and (1.114) we deduce the existence of u ∈
L2(0,T ;H1(Ω))2 and of a subsequence of uε (not relabeled) such that

uε ⇀ u weakly in L2(0,T ;H1(Ω))2,

uε ⇀ u weakly in Lp(QT )
2,

∂tuε ⇀ ∂tu weakly in Lr(0,T ;(W 1,r′(Ω))′)2,

[uε]−⇀ 0 weakly*-weakly in L∞(0,T ;L2(Ω))2

Compactness and strong convergences

We again use the compactness Aubin-Lions lemma, Lemma 3, to get the existence of a subse-
quence strongly convergent. Then, like we did in (1.81), (1.82), and (1.83), we get

uε→ u strongly in Lq(QT )
2, for any 1≤ q < p.

[uε]−→ 0 strongly in Lq(QT )
2 and a.e. in QT , that is ui ≥ 0 a.e. in QT ,

aε(ui,ε)→ ui strongly in Lq(QT ).

Observe that, in particular, we may choose 2≤ q < p = (2N +2)/N.

Convergence

We have to pass to the limit in the expression (1.109). Except for the term involving F ′ε(ui,ε), the
passing to the limit of the rest of terms are justified like in Subsection 2.5. For the former, we
have, using (1.114)

ε

∫
QT

F ′ε(ui,ε)ϕ≤ ε‖F ′ε(ui,ε)‖L2‖ϕ‖L2 ≤C
√

ε→ 0.

Theorem 1.10 Let Ω⊂ RN be a bounded set with Lipschitz continuous boundary, and let T > 0.
Suppose that ui0 ∈ L2(Ω) are non-negative, for i = 1,2. Then, problem (1.84)-(1.87) with, for
i, j = 1,2 and i 6= j,

Ji(u1,u2) = ui(ai∇ui +∇u j), with ai > 0, a1a2 > 1,

fi(u1,u2) = ui
(
αi− (βi1u1 +βi2u2)

)
,

has a weak solution (u1,u2) satisfying ui ≥ 0 in QT and

ui ∈ L2(0,T ;H1(Ω))∩Lp(QT )∩W 1,r(0,T ;(W 1,r′(Ω))′),

where p = 2(N + 1)/N, r = 2(N + 1)/(2N + 1), and r′ = 2(N + 1), in the sense that for all ϕ ∈
Lr′(0,T ;W 1,r′(Ω)), and i = 1,2,∫ T

0
< ∂tui,ϕ >+

∫
QT

Ji(u1,u2) ·∇ϕ =
∫

QT

fi(u1,u2)ϕ,
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with 〈·, ·〉 denoting the duality product between W 1,r′(Ω) and its dual (W 1,r′(Ω))′. The initial data
is satisfied in the sense ∫ T

0
< ∂tui,ψ >+

∫
QT

(ui−ui0)∂tψ = 0,

for all ψ ∈ Lr′(0,T ;W 1,r′(Ω))∩H1(0,T ;L2(Ω)) such that ψ(T ) = 0 a.e. in Ω.

3.8 Generalizations and final remarks

Linear diffusion. The addition of a linear diffusion term in the flows Ji may be treated as follows:

• Lax-Milgram. The coercivity and continuity of the bilinear form A, defined in (1.95), is not
altered when adding the terms ai0

∫
Ω

g′ε(vi)∇wi ·∇ϕ, for which we have ai0
∫

Ω
g′ε(vi)|∇wi|2≥

0.

• Bound in the fixed point. We have ai0
∫

Ω
g′ε(wi)|∇wi|2≥ 0, so the bound (1.99) is not altered.

• Original unknowns. When using ϕ = F ′ε(u
k
i,ε) to get the energy estimate (1.103), the corre-

sponding energy term is well defined, since

ετai0

∫
Ω

|∇uk
i,ε|2 ≤ τai0

∫
Ω

F ′′ε (u
k
i,ε)|∇uk

i,ε|2 ≤ ε
−1

τai0

∫
Ω

|∇uk
i,ε|2.

• The limit τ→ 0. We add to the left hand side of estimate (1.106), the following term

ai0

∫
QT

1

aε(u
(τ)
i,ε )
|∇u(τ)i,ε |

2.

Due to the weak convergence of ∇u(τ)i,ε in L2(QT ), we get in the weak formulation (1.105),

ai0

∫
QT

∇u(τ)i,ε ·∇ϕ→ ai0

∫
QT

∇ui,ε ·∇ϕ.

• The limit ε→ 0. We add to the left hand side of estimate (1.110), the term

4ai0

∫
QT

1
|a′ε(ui,ε)|2

|∇
√

aε(ui,ε)|2.

Again, the weak convergence of ∇ui,ε in L2(QT ) gives in the weak formulation (1.109),

ai0

∫
QT

∇ui,ε ·∇ϕ→ ai0

∫
QT

∇ui ·∇ϕ,

and, in fact, the above energy also passes to the limit (and remains bounded)∫
QT

1
|a′ε(ui,ε)|2

|∇
√

aε(ui,ε)|2→
∫

QT

|∇
√

ui|2.
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Linear convection. The addition of a linear convective term, e.g. q = ∇Φ ∈ L2(QT ), in the flows
Ji may be treated as follows:

• Time discretization. We introduce the time discretization qk(x) = q(t,x) for t ∈ (tk−1, tk].

• Lax-Milgram. We add the terms
∫

Ω
aε(vi)qk ·∇ϕ to the linear form F defined in (1.96). The

continuity is not altered.

• Bound in the fixed point. We have∫
Ω

aε(wi)qk ·∇wi ≤ ε
−1‖qk‖L2‖∇wi‖L2 ≤ γ‖∇wi‖2

L2 +
4

γε2 ‖q
k‖2

L2 ,

so the bound (1.99) is not altered if we take γ small enough.

• Original unknowns. When using ϕ=F ′ε(u
k
i,ε), the corresponding term in (1.103) is controled

by the gradient: ∫
Ω

qk ·∇uk
i,ε ≤ 2a0

∫
Ω

|qk|2 + a0

2

∫
Ω

|∇uk
i,ε|2.

• The limit τ→ 0. We clearly have q(τ)→ q strongly in L2(QT ). Thus,∫
QT

aε(u
(τ)
i,ε )q

(τ) ·∇ϕ→
∫

QT

aε(ui,ε)q ·∇ϕ,

due to the strong convergence aε(u
(τ)
i,ε )→ aε(ui,ε) in L2(QT ).

• The limit ε→ 0. The strong convergence aε(ui,ε)→ ui in L2(QT ) implies∫
QT

aε(ui,ε)q ·∇ϕ→
∫

QT

uiq ·∇ϕ.

Non-constant coefficients. All the constant coefficients appearing in the problem may be gener-
alized to be L∞(QT ) functions.

The SKT model. The SKT model, i.e., the problem (1.84)-(1.87) with flows given by

JSKT
i (u) = ∇

(
ui(ai0 +aiu1 +u2)

)
−biui∇Φ

may be treated in a similar way. In particular, the formal estimate obtained by multiplying both
equations by lnui, integrating by parts, and adding the resulting identities, give for the nonlinear
diffusion term

2

∑
i=1

∫
QT

(
ai|∇ui|2 +2|∇

√
u1u2|2

)
,

and thus, the L2(0,T ;H1(Ω)) estimates of u1 and u2 remain valid.

Systems of m equations. The proof of existence of solutions u = (u1, . . . ,um) for systems of m
equations

∂tui−divJi(u) = fi(u), i = 1, . . . ,m,
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with flows of the BT type,

Ji(u) = ai0∇ui +ui

m

∑
j=1

ai j∇u j−biui∇Φ, for i = 1,2,

with ai0 ≥ 0, ai j,bi ∈ R, and competitive Lotka-Volterra terms

fi(u) = ui
(
αi−

m

∑
j=1

βi ju j
)
, for i = 1, . . . ,m,

with αi,βi j ≥ 0, for i, j = 1, . . . ,m is straightforward under the condition

wT aw≥ a0‖w‖2, for some a0 > 0, and for all w ∈ Rm, (1.115)

where a is the matrix of diffusion coefficients, a = (ai j). Defining the symmetric matrix as

as
i j =

{
aii if i = j,
ai j +a ji

2
if i 6= j,

we may check that (1.115) is satisfied if as is positive definite. Observe that, for m = 2, this
condition is equivalent to

4a11a22 > (a12 +a21)
2. (1.116)

However, under the rescaling of the unknowns Ui = a jiui, for i = 1,2, i 6= j we obtained the new
matrix

ã =

(
a1 1
1 a2

)
,

with ai = aii/a ji, for which the condition simplifies to a1a2 > 1, that is, det(a) > 0, which is
weaker than (1.116).

Since the rescaling introduced for m = 2 has not a clear extension to m > 2, the following ques-
tion arises: may we replace the condition of as being positive definite by the condition det(a)> 0
to get the existence of weak solutions?

A similar situation happens for the SKT problem, being both at the moment, open problems.
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4 Exercises

1. Prove the estimate

(1− r)−1 ≤ exp(r(1− r)−1) for all r ∈ [0,1).

2. Prove the following estimates involving the functions aε and Fε defined in Subsection 2.2

(a) (s− t)F ′ε(s)≥ Fε(s)−Fε(t)+
ε

2
(s− t)2, for all s, t ∈ R.

(b) Fε(s)≥
ε

2
s2−2 for all s≥ 0.

(c) Fε(s)≥
s2

2ε
for all s≤ 0.

(d) max{aε(s),sF ′ε(s)} ≤ 2Fε(s)+1 for all s ∈ R.

(e) aε(s)F ′ε(s)≥ s−1 for all s ∈ R.

(f) Fε(aε(s))≤ Fε(s) for all s ∈ R.

(g) [1− s]+ ≤ 1− [s]− for all s ∈ R.

3. Adapt the ideas we employed at the end of Section 1 to show lower and upper bounds of the
solution, u, of the linear problem (1.1)-(1.3) to prove that the solution of the time discrete
problem (1.13) has similar bounds. Prove then that they also hold in the limit τ→ 0.

4. Using (1.58) and the Poincaré-Wirtinger’s inequality (Theorem 1.6), deduce

‖u(τ)ε ‖2
L2 ≤

1
Ω
‖u(τ)ε ‖2

L1 +C‖∇u(τ)ε ‖2
L2 ≤C.

5. Use the Gagliardo-Nirenberg inequality (Theorem 1.7) to prove estimate (1.77)

6. Use a similar argument to that employed at the end of Section 1 to get upper and lower
bounds for the solution, u, of the nonlinear problem (1.23)-(1.25), in terms of the initial
data.

7. Check that for r = (2N +2)/(2N +1), and p > 2 we have r′ ≥max{p′,(p/2)′}. Show that
the integrals ∫

Ω

uv,
∫

Ω

u2v, for u ∈ Lp(Ω), v ∈ Lr′(Ω),

are well defined.
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In this work we study the phenomena of pattern formation for the competitive Lotka-Volterra
model under two types of diffusive terms: linear self-diffusion, and nonlinear cross-diffusion of
the Shigesada-Kawasaki-Teramoto type.

We first analyze the conditions for linear stability of the linear diffusion system for a generic
reaction term. Then, the application of these results to the Lotka-Volterra case shows that the
system is linearly stable.

Then, we pass to analyze the model with cross-diffusion. After deducing the conditions on lin-
ear stability, we show how cross-diffusion destabilizes the uniform equilibrium and is responsible
for the initiation of spatial patterns.

Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape
and the amplitude of the pattern. For the amplitude, in the supercritical and case, we derive the
cubic Stuart-Landau equation.

This work has been extracted from:

• G. Gambino, M.C. Lombardo, M. Sammartino, Turing instability and traveling fronts for a non-
linear reaction-diffusion system with cross-diffusion, Mathematics and Computers in Simulation
82(6) (2012) 1112-1132.

Generically, bifurcation consists on a qualitative change in the behavior of the equilibrium
solutions of a system. It occurs due to a change in the value of a bifurcation parameter, resulting
in the emergence of a new steady state or a change in the stability of the steady states.

The stability of the uniform steady states is associated to the distribution of the eigenvalues of
the corresponding linearized system. If the steady state is initially stable, the eigenvalues have both
negative real part. At the bifurcation, at least one eigenvalue crosses the imaginary axis. If one
considers a two-dimensional system of the form (2.1)-(2.4), then there exist two roots of the char-
acteristic polynomial with real (negative) coefficients, and two different scenarios of bifurcation
can occur: Turing bifurcation, in which one eigenvalue crosses the origin, or Hopf bifurcation,
where a pair of imaginary eigenvalues crosses the real axis and it results in a limit cycle with
oscillations.

Here, we will analyze the occurence of Turing bifurcation.

1 Linear self-diffusion problem

We start considering the linear diffusion nonlinear reaction system

∂tu1−d1∆u1 = γ f1(u1,u2) in QT = (0,T )×Ω, (2.1)

∂tu2−d2∆u2 = γ f2(u1,u2) in QT , (2.2)

∇u1 ·n = ∇u2 ·n = 0 on ΓT = ∂(0,T )×Ω, (2.3)

u1(·,0) = u10, u2(·,0) = u20 in Ω. (2.4)

Here, (u1,u2) are concentrations or densities of some specie, e.g. of populations. The parameter γ

regulates the relative strength of the kinetic terms, or, alternatively, it gives the size of the spatial
domain and the time scale, i.e.

√
γ is proportional to the linear dimension of the domain or, in the

case of a 2D spatial domain, it is proportional to its area. The reaction terms, ( f1, f2) are supposed
to be nonlinear, e.g. competitive Lotka-Volterra terms.
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We write (2.1)-(2.2) in vector form as

∂tu−d∆u = γf(u), (2.5)

with u = (u1,u2), f = ( f1, f2), and d the diagonal matrix with diagonal (d1,d2). Non-trivial homo-
geneous stationary state ũ = (ũ1, ũ2) are constant positive solutions of

f(ũ) = 0.

1.1 Linearization

Linearization around ũ gives the following system for w = u− ũ,

∂tw−d∆w = γDf(ũ)w, (2.6)

where Df =
(
∂i f j(u)

)
is the Jacobian matrix of f:

Df(u) =
(

∂1 f1(u) ∂2 f1(u)
∂1 f2(u) ∂2 f2(u)

)
.

System (2.6) is linear with constant coefficients. Then, given the boundary conditions (2.3), we
look for a particular solution of the form

w = exp(λkt + ikx)uk, (2.7)

where uk is a constant vector, λk represents the linear growth rate and k is the wavenumber of the
perturbation. Upon substitution of (2.7) into (2.6), one gets the following eigenvalue problem

Akw = λkw, with Ak = γDf(ũ)− k2d.

For each wavenumber, k, there exists an eigenvalue problem which in general admits two linearly
independent eigenvectors u jk, j = 1,2. If λ jk are the corresponding eigenvalues, then the particular
solution associated to the wavenumber k is of the form(

c1ku1keλ1kt + c2ku2keλ2kt)eikx, (2.8)

where the coefficients c jk are complex constants which depend on the initial data.

Then, the general solution can be expressed by the sum of particular solutions of the form (2.8)

w(t,x) = ∑
k

(
c1ku1keλ1kt + c2ku2keλ2kt)eikx. (2.9)

Observe that the characteristic polynomial associated to the eigenvalue problem (2.6) is given by

λ
2
k− tr(Ak)λk +det(Ak) = 0,

where

tr(Ak) = γ(∂1 f1(ũ)+∂2 f2(ũ))− k2(d1 +d2), (2.10)

det(Ak) = d1d2k4− γ(d2∂1 f1(ũ)+d1∂2 f2(ũ))k2 + γ
2 det(Df(ũ)),

having the roots

λk =
1
2

(
tr(Ak)±

√
tr(Ak)−4det(Ak)

)
.
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1.2 Conditions for linear instability

Since we are interested in diffusion-driven instability, we suppose that when spatial variations are
neglected (k = 0), the steady state is linearly stable, that is Re(λ j0)< 0 for j = 1,2. This implies

tr(A0) = tr(Df(ũ))< 0, det(A0) = det(Df(ũ))> 0. (2.11)

Returning to spatial-dependent problem, we look for the situation in which the variation of some
system parameters (diffusion coefficients) changes the sign of some Re(λk), for k 6= 0, implying
that the uniform steady state becomes linearly unstable.

First, we observe that from (2.11) and (2.10) we obtain tr(Ak)< 0. Thus the only way to have
Re(λk)> 0 for some k 6= 0 is that det(Ak) becomes negative. Since det(Ak), as a function of k2, is
a convex parabola, we analyze the point of minimum

k2
c = γ

d2∂1 f1(ũ)+d1∂2 f2(ũ)
2d1d2

, (2.12)

and the corresponding minimum value

h(k2
c) = γ

2
[

det(Df(ũ))−
(
d2∂1 f1(ũ)+d1∂2 f2(ũ)

)2

4d1d2

]
.

For fixed values of the kinetic parameters, we obtain that h(k2
c) = 0 (bifurcation) if dc is a positive

root of (
∂1 f1(ũ)

)2d2
c +2

(
2∂2 f1(ũ)∂1 f2(ũ)−∂1 f1(ũ)∂2 f2(ũ)

)
dc +

(
∂2 f2(ũ)

)2
= 0, (2.13)

where dc is the critical diffusion ratio. If such dc does exist, then the corresponding critical
wavenumber is obtained from (2.12) replacing d1,d2 by the critical diffusion coefficients dc

1,d
c
2,

satisfying dc
2/dc

1 = dc.

Observe that for a diffusion ratio d∗ > dc, there exists a range of unstable wavenumbers con-
tained in the interval [k2

1,k
2
2], where k1,k2 are such that det(Ak1) = det(Ak2) = 0. Moreover, since

the eigenvalue problem is defined in a finite domain, the wavenumbers are discrete and within
a well defined range, thus there will be only a finite number of possible unstable wavenumbers
contained in [k2

1,k
2
2].

Within this range of possible unstable wavenumbers, Re(λk) is positive and assumes its max-
imum value for k2

c . Therefore, there exists a fastest growing mode in the solution (2.9), and the
dominant contributions as t increases are given by the modes for which Reλk > 0, i.e. for large t
the perturbation solution can be expressed in the following form

w(t,x)≈
k2

∑
k=k1

ukeλkteikx.

Summarizing, the Turing instability analysis allows to derive the conditions on the system param-
eters under which a reaction-diffusion system can exhibit Turing patterns, that is a homogeneous
steady state becomes unstable in response to infinitesimal disturbances. Furthermore, the domi-
nant unstable mode wavelength, i.e. the length scale 1/kc, and the range of unstable wavenumbers
can be determined.
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1.3 Linear stability of the competitive Lotka-Volterra system

Let us consider the reaction terms

fi(u) = αiui− (βi1u1 +βi2u2)ui,

with αi,βi j ≥ 0, for i, j = 1,2. We then have a unique non-trivial co-existence equilibrium

ũ =
( β22α1−β12α2

β11β22−β12β21
,

β11α2−β21α1

β11β22−β12β21

)
, (2.14)

with ũi > 0, for which

Df(u) =
(
−β11ũ1 −β12ũ1
−β21ũ2 −β22ũ2

)
. (2.15)

The equilibrium ũ is stable for the dynamical system if the eigenvalues, µi, of Df(u) are negative.
The characteristic equation is

µ2− tr(Df(u))+det(Df(u)) = 0.

Thus, for stability of the dynamical system, the following conditions are required

tr(Df(u))< 0, and det(Df(u))> 0 (for negative real part),

tr(Df(u))2−4det(Df(u))≥ 0 (for null imaginary part).

It is easy to see that the second condition is equivalent to

(β11ũ1−β22ũ2)
2 +4β12β21ũ1ũ2 ≥ 0.

Thus, both conditions are satisfied if we assume βi j ≥ 0, for i, j = 1,2, and

tr(B)> 0, and det(B)> 0, with B = (βi j). (2.16)

Returning to the spatial-dependent problem and writing (2.13) as ad2
c +bdc + c = 0, the solutions

are given by dc = 1
2(−b±

√
b2−4ac). For any of the solutions to be real and positive, it is

necessary that

b2−4ac > 0 and b < 0.

After some computations, we see that

b2−4ac > 0 ⇐⇒ β12β21 > β11β22,

b < 0 ⇐⇒ β11β22 > 2β12β21,

which are incompatible. In fact, the first condition is det(B) < 0, which contradicts the stability
assumption (2.16) for the dynamical system. Thus, in the case of linear self-diffusion, det(Ak)> 0
for all k, and therefore, Re(λk) is never positive. In conclusion, ũ is linearly stable for any choice
of the diffusion coefficients.
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2 Cross-diffusion problem

Since the Lotka-Volterra system with linear self-diffusion is stable under perturbations of the co-
existence equilibrium, one may ask if this is still the case for more complex situations. In this
section, we study the case in which cross-diffusion terms of the SKT1 type are considered,

∂tu1−divJ1(u) = γ f1(u1,u2) in QT , (2.17)

∂tu2−divJ2(u) = γ f2(u1,u2) in QT , (2.18)

J1(u) ·n = J2(u) ·n = 0 on ΓT , (2.19)

u1(·,0) = u10, u2(·,0) = u20 in Ω. (2.20)

with flows and reaction terms given by

Ji(u) = ∇
(
ui(d1 +ai1∇u1 +ai2∇u2)

)
fi(u) = αiui− (βi1u1 +βi2u2)ui,

for αi,βi j ≥ 0, i, j = 1,2. The diffusion coefficients di, and A = (ai j) are assumed to be non-
negative, with aii > 0, whereas the inter- and intra-competitive coefficients B = (βi j) are assumed
to satisfy the kinetic stability conditions (2.16).

We consider the co-existence homogeneous stationary state given by (2.14), for which, see
(2.15),

K := Df(ũ) =
(
−β11ũ1 −β12ũ1
−β21ũ2 −β22ũ2

)
.

Linearization around ũ gives the following system for w = u− ũ

∂tw−D∆w = γKw,

with

D =

(
d1 +2a11ũ1 +a12ũ2 a12ũ1

a21ũ2 d2 +a21ũ1 +2a22ũ2

)
. (2.21)

The corresponding eigenvalue problem leads to the characteristic polynomial

λ
2
k− tr(Ak)λk +h(k2) = 0,

with Ak = γK− k2D, and

h(k2) = det(Ak) = det(D)k4 + γqk2 + γ
2 det(K),

being

q =β11ũ1(2a22ũ2 +d2)+β22ũ2(2a11ũ1 +d1)

+a12ũ2(β22ũ2−β21ũ1)+a21ũ1(β11ũ1−β12ũ2). (2.22)

1Shigesada-Kawasaki-Teramoto
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2.1 Conditions for linear instability

Spatial patterns arise in correspondence of those modes k for which Re(λk)> 0. Since we assume
that ũ is stable for the kinetics, one has that tr(K)< 0, and thus tr(Ak)< 0 implying that the only
way to have Re(λk)> 0 for some k 6= 0 is that h(k2) becomes negative. Thus, the condition for the
marginal stability at some k = kc is

min(h(k2
c)) = 0. (2.23)

The minimum of h is attained for

k2
c =−

γq
2det(D)

, (2.24)

which requires q < 0. The first two terms of q are non-negative: it follows that the only potential
destabilizing mechanism is the presence of the cross-diffusion terms.

Election of the bifurcation parameter

The conditions on the positiveness and stability of the equilibrium point ũ imply that only one of
the two following inequalities can be satisfied

β22ũ2−β21ũ1 < 0 or β11ũ1−β12ũ2 < 0.

Indeed, using the explicit definitiion of ũ given in (2.14), we get, for s = β11β22 +β12β21,

β22ũ2−β21ũ1 =
1

det(B)
(α2s−2α1β21β22),

β11ũ1−β12ũ2 =
1

det(B)
(α1s−2α2β11β12).

Assuming that both are negative, we deduce

α2

α1
<

2β21β22

s
and

α2

α1
>

s
2β11β12

,

implying s2 < 4β11β12β21β22, which is not possible.

Therefore when a12 has a destabilizing effect then a21 acts as a stabilizer and vice versa. In
what follows we shall choose the case β22ũ2−β21ũ1 < 0 without loss of generality and

b := a12 as the bifurcation parameter.

Critical value of the bifurcation parameter

Since the graph of h(k2) depends on b, from (2.23) one gets the bifurcation value of b and the
corresponding value of k2

c , if they do exist. Consider the non-negative quantities

m1 = ũ2(β21ũ1−β22ũ2),

m2 = β11ũ1(2a22ũ2 +d2)+β22ũ2(2a11ũ1 +d1)+a21ũ1(β11ũ1−β12ũ2),
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so that q =−m1b+m2. Using (2.24), we see that the minimum value of h(k2) is

min(h(k2
c)) = γ

2
(

det(K)− (−m1b+m2)
2

4det(D)

)
. (2.25)

Let ξ ∈ R, to be determined, and set b = m2/m1 +ξ. Introducing this expression in (2.25), we get
the marginal stability condition

m2
1

4det(K)
ξ

2−det(D) = 0. (2.26)

Replacing a12 ≡ b = m2/m1 +ξ in (2.21), we find

det(D) = ũ2(d2 +2a22ũ2)ξ+
(m2

m1
ũ2(d2 +2a22ũ2)+(d1 +2a11ũ1)(d2 +a21ũ1 +2a22ũ2)

)
.

Therefore, the second order polynomial (2.26) admits a positive root, which we denote by ξ+,
giving the critical value for the bifurcation parameter b,

bc =
m2

m1
+ξ

+. (2.27)

Observe that, under the election of the positive root ξ+, the condition q < 0 is guaranteed.

Thus, for b > bc the system has a finite k pattern-forming stationary instability. The unstable
wavenumbers stay in between the roots of h(k2), denoted by k2

1 and k2
2. It is straightforward to

check that these roots are proportional to γ. Hence, to have the possibility of the pattern formation,
γ must be big enough so that at least one of the modes allowed by the boundary conditions falls
within the interval [k2

1,k
2
2].

2.2 Amplitude equations and weakly nonlinear analysis

The linear stability theory represents a useful first step in understanding pattern formation, but it
gives only a rough indication of the patterns we should expect. Through the linear analysis we
determine both the conditions on the system parameters for the onset of instability to infinitesimal
disturbances and the length scale of the pattern formation, 1/kc.

Moreover the linear analysis displays the important physical processes and shows how the
diffusion is the key mechanism for pattern formation.

Nevertheless, the exponentially growing solutions obtained via the linear theory are physically
meaningless. To predict the amplitude and the form of the pattern close to the threshold the
nonlinear terms must be included into the analysis. We shall perform a weakly nonlinear analysis
based on the method of multiple scales.

Nonlinear expansion

In the Turing bifurcation, close to the bifurcation the eigenvalues are negative. Thus, the linear
instability of the steady state must be preceded by the presence of a null eigenvalue for the lin-
earized operator. In particular, this implies that the pattern evolves on a slow temporal scale, like
eλt , with λ≈ 0. Thus, new scaled coordinates are considered, and treated as separate variables.
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Firstly, we fix a small control parameter ε, representing the dimensionless distance from the
critical threshold. Here we choose ε2 = (b−bc)/bc. Secondly, the solution of the original system
(2.5) is written as a weakly nonlinear expansion in terms of ε2.

Considering a random perturbation, w, around the steady state, we can recast the original sys-
tem (2.17)-(2.18) in the form

∂tw = Lbw+N bw, (2.28)

where Lb = γK+Db∆, and N b is the nonlinear operator containing the second order terms, which
we decompose as

N b =
1
2

QK(w,w)+
1
2

∆Q b
D(w,w),

with the bilinear forms

QK(x,y) = γ

(
−2β11x1y1−β12(x1y2 + x2y1)
−2β22x2y2−β21(x1y2 + x2y1)

)
,

Q b
D(x,y) =

(
2a11x1y1 +b(x1y2 + x2y1)

2a22x2y2 +a21(x1y2 + x2y1)

)
.

The idea is to expand the perturbation w in terms of the control parameter ε, so that the leading
term of the expansion is the product of a slowly varying amplitude, A, and a basic pattern with
wavenumber kc, to derive an equation describing the evolution of the amplitude. We expand b, w,
and the time variable as

b = bc + εb1 + ε
2b2 + ε

3b3 +O(ε4),

w = εw1 + ε
2w2 + ε

3w3 +O(ε4),

∂t = ε∂T1 + ε
2
∂T2 + ε

3
∂T3 +O(ε4).

Then, we decompose the diffusion matrix, Db, as

Db =

(
d1 +2a11ũ1 +bũ2 bũ1

a21ũ2 d2 +a21ũ1 +2a22ũ2

)
= Dbc

+
3

∑
j=1

ε
j
(

b jũ2 b jũ1
0 0

)
+O(ε4),

so that Lb = γK +Db∆ takes the form

Lb = Lbc
+

3

∑
j=1

ε
j
(

b jũ2 b jũ1
0 0

)
∆+O(ε4), with Lbc

= γK +Dbc
∆.

For the quadratic terms, we have

QK(w,w) = ε
2QK(w1,w1)+2ε

3QK(w1,w2)+O(ε4),

Q b
D(w,w) = ε

2Q bc

D (w1,w1)+2ε
3
(

Qbc

D (w1,w2)+(b1w1
1w2

1,0)
t
)
+O(ε4).

Finally, considering the time derivative expansion, we get

∂tw = ε
2
∂T1w1 + ε

3(∂T1w2 +∂T2w1)+O(ε4).
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Introducing these expansions in (2.28), and equating in terms of the order of ε, leads to

O(ε) : Lbc
w1 = 0, (2.29)

O(ε2) : Lbc
w2 = ∂T1w1−

1
2
(
QK(w1,w1)+∆Q bc

D (w1,w1)
)

−b1

(
ũ2 ũ1
0 0

)
∆w1 =: F, (2.30)

O(ε3) : Lbc
w3 = ∂T1w2 +∂T2w1−QK(w1,w2)−∆Q bc

D (w1,w2)−b1∆

(
w1

1w2
1

0

)
−
(

ũ2 ũ1
0 0

)
(b1∆w2 +b2∆w1) =: G. (2.31)

Studying the orders of the expansion

Order ε: The solution of the linear problem (2.29) in (0,2π/kc) satisfying the Neumann boundary
conditions is given by

w1 = A(T1,T2)ρcos(kcx), with ρ ∈ ker(γK− k2
cDbc

),

where A is the amplitude of the pattern and it is still arbitrary at this level. The vector ρ is defined
up to a multiplicative constant, and we shall make the normalization in the following way

ρ = (1,M)t , with M =
−γK21 +Dbc

21k2
c

γK22−Dbc

22k2
c
, (2.32)

where Ki j,Dbc

i j are the i, j-entries of the matrices K and Dbc
.

Order ε2: Observing that

QK(w1,w1) = A(T1,T2)
2QK(ρ,ρ)cos2(kcx)

Q bc

D (w1,w1) = A(T1,T2)
2Q bc

D (ρ,ρ)cos2(kcx),

and using standard trigonometric identities, we find that (mind the Laplacian operator)

1
2
(
QK(w1,w1)+∆Q bc

D (w1,w1)
)
=

1
4

A(T1,T2)
2
(

QK(ρ,ρ)+
(
QK(ρ,ρ)−4k2

cQ bc

D (ρ,ρ)
)

cos(2kcx)
)

=
1
4

A(T1,T2)
2

∑
j=0,2

M j(ρ,ρ)cos( jkcx),

with

M j = QK− j2k2
cQ bc

D . (2.33)

Therefore, F given in (2.30) may be expressed as

F =−1
4

A(T1,T2)
2

∑
j=0,2

M j(ρ,ρ)cos( jkcx)+
(

∂T1A1ρ+b1k2
cA1(ũ2 + ũ1M,0)t

)
cos(kcx).
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By the Fredholm alternative, (2.30) admits a solution if and only if 〈F,ψ〉= 0, where 〈·, ·〉 denotes
the scalar product in L2(0,2π/kc), and the normalized vector ψ ∈ ker((Lbc

)∗) is given by

ψ = (1,M∗)t cos(kcx), with M∗ =
−γK12 +Dbc

12k2
c

γK22−Dbc

22k2
c
. (2.34)

The compatibility condition reads

0 = 〈F,ψ〉=− 1
4

A2
∑

j=0,2
M j(ρ,ρ)(1,M∗)t

∫ 2π

kc

0
cos( jkcx)cos(kcx)dx

+
(

∂T1Aρ+b1k2
cA(ũ2 + ũ1M,0)t

)
(1,M∗)t

∫ 2π

kc

0
cos2(kcx)dx.

The first integrand at the right hand side vanishes, so we obtain

∂T1A(T1,T2) = χA(T1,T2), with χ =−b1kc(ũ2 + ũ1M)

1+MM∗
,

which does not give any indication on the asymptotic behavior of the pattern amplitude. There-
fore, to suppress the secular terms appearing in F, one imposes T1 = 0 and b1 = 0, and then the
compatibility condition is automatically satisfied. With this choice, we have that F reduces to

F =−1
4

A(T2)
2

∑
j=0,2

M j(ρ,ρ)cos( jkcx), (2.35)

and the solution to (2.30) is then explicitly computed in terms of the parameters of the full system.
Writing

w2 = A(T2)
2

∑
j=0,2

w2 j cos( jkcx),

we get

Lbc
w2 = (γK +Dbc

∆)w2 = A(T2)
2

∑
j=0,2

(
γK− ( jkc)

2Dbc)
w2 j cos( jkcx),

and then for w2 to satisfy Lbcw2 = F, with F given by (2.35), the vectors w2 j must satisfy the
following linear systems

L jw2 j =−
1
4

M j(ρ,ρ), for j = 0,2, (2.36)

with L j = γK− j2k2
cDbc

.

Order ε3: Since T1 = b1 = 0, we have that G given in problem (2.31) reduces to

G = ∂T2w1−QK(w1,w2)−∆Q bc

D (w1,w2)−
(

ũ2 ũ1
0 0

)
b2∆w1, (2.37)

where we recall

w1 = A(T2)ρcos(kcx),

w2 = A(T2)
2(w20 +w22 cos(2kcx)).
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We easily see that the first and the last terms of (2.37) may be expressed as

∂T2w1 = ρcos(kcx)∂T2A(T2), (2.38)

−
(

ũ2 ũ1
0 0

)
b2∆w1 = A(T2)k2

c cos(kcx)b2(ũ2 + ũ1M,0)t . (2.39)

Using that QK and Q bc

D are bilinear, and the trigonometric identity 2cos(x)cos(y) = cos(x+ y)+
cos(x− y), we get

QK(w1,w2) = A(T2)
2QK(w1,w20)+A(T2)

2 cos(2kcx)QK(w1,w22)

= A(T2)
3 cos(kcx)QK(ρ,w20)+A(T2)

3 cos(2kcx)cos(kcx)QK(ρ,w22)

= A(T2)
3
(

cos(kcx)
(
QK(ρ,w20)+

1
2

QK(ρ,w22)
)
+

1
2

cos(3kcx)QK(ρ,w22)
)
,

and similarly

∆Q bc

D (w1,w2) = A(T2)
3
(
− k2

c cos(kcx)
(
Q bc

D (ρ,w20)+
1
2

Q bc

D (ρ,w22)
)
− 9

2
k2

c cos(3kcx)Q bc

D (ρ,w22)
)
.

Recalling the definition of M , see (2.33), we get

QK(w1,w2)+∆Q bc

D (w1,w2) =A(T2)
3
(

cos(kcx)
(
M1(ρ,w20)+

1
2

M1(ρ,w22)
)

+
1
2

cos(3kcx)M3(ρ,w22)
)
. (2.40)

Thus, from (2.37), and gathering (2.38), (2.39) and (2.40), we obtain

G =
(

ρ∂T2A+G(1)
1 A+G(3)

1 A3
)

cos(kcx)+G3A3 cos(3kcx),

with

G(1)
1 = (ũ2 + ũ1M)k2

cb2(1,0)t ,

G(3)
1 =−

(
M1(ρ,w20)+

1
2

M1(ρ,w22)
)
,

G3 =−
1
2

M3(ρ,w22).

The solvability condition for problem (2.31) is 〈G,ψ〉= 0, with ψ given by (2.34). This condition
leads to

〈ρcos(kcx),ψ〉∂T2A+ 〈G(1)
1 cos(kcx),ψ〉A+ 〈G(3)

1 cos(kcx),ψ〉A3 = 0.

Thus, recalling the definition of ψ in (2.34), and for η = (1,M∗)t ,

σ =
G(1)

1 ·η
ρ ·η

, L =
G(1)

3 ·η
ρ ·η

, (2.41)

we write the resulting Stuart-Landau equation as

∂T2A = σA−LA3. (2.42)

Since the growth rate coefficient σ is always positive, the dynamics of the Stuart-Landau equa-
tion (2.42) can be divided into two qualitatively different cases depending on the sign of the Landau
constant L: the supercritical case, when L is positive, and the subcritical case, when L is negative.
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2.3 The supercritical case

If the coefficients σ and L, appearing into (2.42), are both positive, then there exists the stable
equilibrium solution A∞ =

√
σ/L, which represents the asymptotic value of the amplitude A.

Therefore, we are now able to predict the amplitude and the form of the pattern. According to the
weakly nonlinear theory the asymptotic (in time) behavior of the solution w= εw1+ε2w2+O(ε3),
is given by

w̃ = ερ

√
σ

L
cos(kcx)+ ε

2 σ

L

(
w20 +w22 cos(2kcx)

)
+O(ε3).

In the above expression ρ is given in (2.32), while the w2 j are the solutions of the systems (2.36).
Clearly, in general, the above solution is not compatible with the Neumann boundary conditions,
that require kc to be integer or semi-integer. We therefore define k̄c as the first integer or semi-
integer to become unstable when b passes the critical value bc, and take as the weakly nonlinear
approximation the following expression

w̃ = ερ

√
σ

L
cos(k̄cx)+ ε

2 σ

L

(
w20 +w22 cos(2k̄cx)

)
+O(ε3). (2.43)

What to compute

We want to compute

w̃ = ερ

√
σ

L
cos(kcx)+ ε

2 σ

L

(
w20 +w22 cos(2kcx)

)
+O(ε3).

1. We start determining the equilibrium solution ũ given by (2.14).

2. bc: Then, we compute the critical bifurcation value, bc, given by 2.27. This is done by
computing the positive root of the polynomial (2.26), whose coefficients only depend on the
other diffusion coefficients, B = (βi j), and ũ.

3. We then evaluate q ≡ q(b) given by (2.22), and D ≡ Db, given by (2.21) at a12 ≡ b = bc.
From this and (2.24), we obtain kc. Then, we define k̄c as the first integer or semi-integer to
become unstable when b passes the critical value bc.
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4. We determine ρ from (2.32), which only depends on γ, K, Dbc
, and kc.

5. We determine w20 and w22 by solving the linear algebraic systems (2.36), that is

γKw20 =−
1
4

QK(ρ,ρ),

(γK−4k2
c)w22 =−

1
4

QK(ρ,ρ)+ k2
cQ bc

D (ρ,ρ).

6. We determine σ from (2.41),

σ =
G(1)

1 ·η
ρ ·η

.

Here, η = (1,M∗), with M∗ given in (2.34), and G(1)
1 = (ũ2+ ũ1M)k2

cb2(1,0)t . Observe that,
using the expansion of b and the definition of ε, we have

b = bc +
b−bc

bc b2 +O(ε3),

implying b2 = bc +O(ε).

7. We determine L from (2.41). Here,

G(3)
1 =−

(
M1(ρ,w20)+

1
2

M1(ρ,w22)
)
,

with

M1(ρ,ζ) = QK(ρ,ζ)− k2
cQ bc

D (ρ,ζ).
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