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Introduction

First ecological model of interacting populations taking into account drifts
caused by the other population seems to be due to Kerner (1959):

Oy —div (a11Vuy + a2Vue) = uy(ar — Brue),
Otlo — div ( —a»nVus + QQQVUQ) = U2(—Oé2 + ﬁ2U1)7

with a;, «;, f; positive.
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Introduction

First ecological model of interacting populations taking into account drifts
caused by the other population seems to be due to Kerner (1959):

Oty — div (311VU1 + 312VU2) = U4 (a1 — 4 U2)7

Otlo — div ( —a»nVus + 322VU2) = U2(—Oé2 + By ),
with a;, «;, f; positive.

Later on, Jorné (1977) produced a linear stabilty analysis of the model
demonstrating that:

“while self-diffusion tends to damp out all spatial variations in the
Lotka-Volterra system, cross-diffusion may give rise to instabilities and to
non-constant stationary solutions.”
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Nonlinear models

First nonlinear cross-diffusion models seem to have been introduced by
@ Shigesada, Kawasaki and Teramoto (1979), and
@ Busenberg and Travis (1983),

from different modeling points of view.
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Nonlinear models

First nonlinear cross-diffusion models seem to have been introduced by
@ Shigesada, Kawasaki and Teramoto (1979), and
@ Busenberg and Travis (1983),

from different modeling points of view.

Shigesada et al. starts from a single continuity equation
oy —divd(u) = u(a — Bu), with J(u) = V((c + au)u) + buvo.

The flow J is composed by three terms:

@ Random dispersal, cVu,
@ Dispersal due to population pressure (avoiding over-crowding), éuVu,

2
@ Drift directed to the minima of the environmental potential, ¢.
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Ecological models with cross-diffusion Introduction: The SKT and BT models

Generalizing the scalar equation to two populations (SKT model)
druy — div (V((c1 + ai1uy + aral)ur) + by u1V<D) = fi(uy, Up),
Otlp — div (V((cg + a1 Ut + azoli)Up) + b2u2Vd>> = f(uy, Up),
with competitive Lotka-Volterra source

fi(ur, Uz) = Ui(ci — (Bir Uy + Bizli2)).

(University of Oviedo) Review on cross-diffusion 6/42



Nonlinear models

Busenberg and Travis generalize the one-population flow J(u) = auVu in
the following way:

Each individual population flow J; is proportional to the gradient of the total
population density, e.g.

Ji(ur, u2) = auiV(ur + up).
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the following way:

Each individual population flow J; is proportional to the gradient of the total
population density, e.g.

Ji(ur, u2) = auiV(ur + up).

More in general, for a potential ¥, they consider

uj
Ji(uy, ) = a VV(us + ).
i(U1, Up) T (U1 + W)
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Nonlinear models

Busenberg and Travis generalize the one-population flow J(u) = auVu in
the following way:

Each individual population flow J; is proportional to the gradient of the total
population density, e.g.

Ji(ur, u2) = auiV(ur + up).

More in general, for a potential ¥, they consider

uj
Ji(uy, ) = a VV(us + ).
i(U1, Up) T (U1 + W)

Math. analisys by Bertsch et al. in a series of papers starting in the 80’s.
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Ecological models with cross-diffusion Introduction: The SKT and BT models

As remarked by Gurtin and Pipkin (1984),

the individual flows J; may depend, instead of in the total population density
ui + Uo, in a general linear combination of both population densities, possibly
different for each population.

These weighted sums are motivated when considering a set of species with

different characteristics, such as size, behavior with respect to overcrowding,
etc.
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Ecological models with cross-diffusion Introduction: The SKT and BT models

As remarked by Gurtin and Pipkin (1984),

the individual flows J; may depend, instead of in the total population density
ui + Uo, in a general linear combination of both population densities, possibly
different for each population.

These weighted sums are motivated when considering a set of species with
different characteristics, such as size, behavior with respect to overcrowding,
etc.

Assuming, in addition, environmental and random effects,

J,'(U1, Ug) = u,-V(a,-1 ui + apls + b,'¢') + ¢;iVu;.

We refer to this model as to the BT model.
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Ecological models with cross-diffusion The BT model deduced from particle systems

The BT model deduced from particle systems

Two populations of particle (i = 1, 2) described by their trajectories (stochastic
processes)

te R, — X/(t) eR",
Ji=1,...,Ni (Ny = N> = nto simplify).
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The BT model deduced from particle systems
The BT model deduced from particle systems

Two populations of particle (i = 1, 2) described by their trajectories (stochastic
processes)

te R, — X/(t) eR",
ji=1,...,N; (Ny = N; = nto simplify).
Lagrangian approach: specify interacting laws — trajectories are solutions of
aXj(t) = /(X (1), X3 (), XF(b), ..., XE(t))dt + o, dW] (),

X/(0) = Xj. Here,

° F/-’ - R?" — R™ describe deterministic interactions.

@ o), € R are intensities of random dispersal (Brownian motions).
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Ecological models with cross-diffusion The BT model deduced from particle systems

Particle state modeled as positive Radon measure

1 ifX/(t)eB

) _ . m

Collective behavior in terms of spatial distribution t (empirical measures):

. 1
up(t) = = Z exi(r) € M(R™),
=

giving spatial relative frequency of /-th population, at time t.
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Ecological models with cross-diffusion The BT model deduced from particle systems

Particle state modeled as positive Radon measure

1 ifX/(t)eB

) _ . m

Collective behavior in terms of spatial distribution t (empirical measures):
, 1O
up(t) = = Z exi(r) € M(R™),
j=1
giving spatial relative frequency of /-th population, at time t.
Lagrangian description:

aX(t) = FLup(t), Ga(OI(X(D)at + oW ().
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The BT model deduced from particle systems
Deterministic interactions
Force exerted on X/(t) due to the interaction with all the other particles:
. 2 aik n .
RIS AGEPAG)E
k=1 =1
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2
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Ecological models with cross-diffusion The BT model deduced from particle systems

Two kinds of deterministic interactions, F' = F/ + FJ,
@ Repulsive:

2
Filup(t), i (01X (1) = =V = = > aw(up(t) * VE)(X[(1)).
k=1

@ Local attraction, independent of scale, derived from a potential

Falup(t), u(DI(X] (1) = bV (X](1)).
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Ecological models with cross-diffusion The BT model deduced from particle systems

Two kinds of deterministic interactions, F' = F/ + FJ,
@ Repulsive:

Filup(), ur (DX (1)) = Za,k 1) = V) (X[ (1)).

@ Local attraction, independent of scale, derived from a potential
Falup(1), us ()](X] (1)) = bIVe(X/(1)).
For the stochastic part, we assume

lim o}, = 0; > 0.
n—oo

In some contexts, a}', stands for the mean free path: average distance covered
by a moving particle between successive collisions.

Therefore, o; = 0 must not be discarded.
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The Euler description

Notation: (i, g) = /g(s) du(s).
Ito’s formula (changing to Eulerian): for any smooth f: R” x R, — R

(uh(0).1.1) = Z,Z (1), 1) = (44(0), 1. 0))

—Zafk/ (Ui(s), (Uk(s) * VC)(IVA(-,9) ) ds

+b,-/0 (ui(5). V0 - V1(-.5)) ds
+/Ot <u{,(s), aﬁf(-, s) + ;(ag)zAf(~,s)> ds
+”"Z/ VH(X/(s), 5) - dW(s).
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Ecological models with cross-diffusion The BT model deduced from particle systems

The last term is the only explicit source of stochasticity, present for any n < co:

Mi(F, 1) = Z/ VH(XI(5). ) - dWi(s)

(University of Oviedo) Review on cross-diffusion 14/42



Ecological models with cross-diffusion The BT model deduced from particle systems

The last term is the only explicit source of stochasticity, present for any n < co:

Mi(f, 1) / VH(XI(5). ) - dWi(s)

Doob’s inequality implies
M.(f,t) -0 asn— occ.
Thus

In the limit n — oo, the Eulerian description becomes deterministic.
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Ecological models with cross-diffusion The BT model deduced from particle systems
.
Finally...

Assume u/,(t) — u’_(t) (deterministic process) represented by a density v;:

lim <u;',(t),f(-, t)> - <u{,c(t), (-, t)> — [ f(x, ui(x, t)dx.

rRmM
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Ecological models with cross-diffusion The BT model deduced from particle systems
.
Finally...

Assume u/,(t) — u’_(t) (deterministic process) represented by a density v;:

lim <u;',(t),f(., t)> - <uf;c(t), (-, t)> — [ f(x, ui(x, t)dx.

n— o0 RM
Then, for n — oo, we obtain
f(x, tyui(x, t)dx = f(x,0)u;i(x,0)dx
RrRM RrRmM
2 t
—Za,-k/ / ui(x, 8)Vuk(x, s) - VF(x, s)dxds
k=1 0 Jrm
t
+b, / / Ui(x, )V(x) - VH(x, s)dxdls
O m

t
+// u;(x,s)(ﬁf(x,s)Jrla,?Af(x,s))dxds.
o Jrm 0s 2
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Ecological models with cross-diffusion The BT model deduced from particle systems
.
Finally...

Which is a weak formulation of the Cauchy BT model:
otu; — div (u,-(a,-1Vu1 + apVup — b,‘V‘D)) —CcAui=0

ui(-,0) = ujp, and ¢; = 02 /2.

The passing to the limit is justified: Capasso et al. (2008), Lachowicz (2011),..
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What about the SKT model?

Two (unsatisfactory) ways of fitting to the particle method:

(University of Oviedo) Review on cross-diffusion 17/42



What about the SKT model?

Two (unsatisfactory) ways of fitting to the particle method:
@ Diffusion coefficient:

1
oj = (Ci+ anur + aplp)*.

But diffusion should decrease with concentration (sense of mean free
path).

(University of Oviedo) Review on cross-diffusion 17/42



What about the SKT model?

Two (unsatisfactory) ways of fitting to the particle method:
@ Diffusion coefficient:

1
oj = (Ci+ anur + aplp)*.

But diffusion should decrease with concentration (sense of mean free
path).
@ Convection:

V(u1(a11 uy + a12u2)) = Uy (2311VU1 + a12Vu2) + aaUsVuy

u:
= U ((2311 + 812?2) Vui + a12Vu2>
1

Not the first flow one thinks of...
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Lattice modeling

R = Li R - o L1

Xj1 Xi Xi+1

Let {x;} denote a mesh of size h of a 1D interval, and consider, for i = 1, 2,

dtUi(Xj) = RL1Ui(x-1) + Ly Ui(x1) = (R} + L) ui(x).- (1)
Dispersal rates, Rf and L/’ may depend on concentrations. Assuming
R = L} = aopi(t1 (%), ta(x;)), o0 >0,

Eq. (1) is a finite differences formula for A(u;pi(u1, uz)), when oo = %
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Ecological models with cross-diffusion What about the SKT model?

Thus, for
@ Constant p's, p; = ¢; = const = linear diffusion ,

ot = CiAu;.

@ Linear p's, pi = ¢; + aj1uy + ajpU> = SKT model

otl; = C,'A(U,'(C,‘ + aiuy + a,-2u2)).

@ BT model can, in general, not be cast in this form, since
u,-(a,-1Vu1 + a/QVU2)

is not conservative.
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Model deduction from differentation and splitting

Species U splits into two species Uy and U, but keeping most of original
behavior (Sanchez-Palencia, 2011).
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Model deduction from differentation and splitting

Species U splits into two species U; and Us, but keeping most of original
behavior (Sanchez-Palencia, 2011).

Thus, if U satisfies
U'(t) = U(t)(a — BU(L)), forte(0,t*), U(0)=Uy>0. (2)
after splitting, (U, Us) satisfies
Ui(t) = Ui(t) (e — B(Us(t) + Ua(1))), forte(t,T),
Ui(t*) = Ujp > 0, with Uso + U = U(t")
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Model deduction from differentation and splitting

Species U splits into two species U; and Us, but keeping most of original
behavior (Sanchez-Palencia, 2011).

Thus, if U satisfies
U'(t) = U(t)(a — BU(L)), forte(0,t*), U(0)=Uy>0. (2)
after splitting, (U, Us) satisfies
Ui(t) = Ui(t) (e — B(Us(t) + Ua(1))), forte(t,T),
Ui(t*) = Uiy > 0, with Ujg + U = U(t")

Under this splitting without differentiation, Uy + Us still satisfies (2) for t > t*.
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Ecological models with cross-diffusion Models ion from splitting and diff

By splitting with differentiation we mean that (U, U») satisfies

Ui(t) = Ui(t) (i — (Bin Ui (1) + BiaUa(1)))

Under this splitting, U; + U> does not satisfy, in general, the original problem
fort > t*.
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Ecological models with cross-diffusion Models ion from splitting and diff

The splitting model in terms of PDEs:
cross-diffusion

We start with one species, satisfying

oru —divd(u) = f(u) in Quo,-y = (0,17) x Q,
J(u)-v=20 on M, = (0,17) x 09,
u(0,-)=up >0 on Q,

with
@ J(u) =uVu+uq,
o f(u) = u(a — pu).

g usually determined as q = — V.
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Ecological models with cross-diffusion Models

from splitting and diff

After splitting,

Oruj — div Ji(ur, U2) = fi(u1, U2)
J,'(U17U2) -v=20
ui(t*,-) = upo

Uto + Uz = u(t™,-).

(University of Oviedo)

in Q([*,T)7
On r(p«J‘),
on Q,
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Ecological models with cross-diffusion Models ion from splitting and diff

After splitting,

Oy — div Jj(ur, p) = fi(ur, o) in Q- 1),
Ji(ug,u2) v =0 on - 1),
U,'(IL*7 ) = Ujo on Q,

Uto + Uz = u(t™,-).

If differentiation only takes place through the LV term,

Ji(ur, ) + bo(ur, ) = J(uy + W)
= (U1 + )V (U1 + ) + (U1 + U2)q

(University of Oviedo)
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Ecological models with cross-diffusion Models ion from splitting and diff

The linear terms differentiate in a natural way, e.g.

(U1 + t2)q = U1Q + U2Q.
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Ecological models with cross-diffusion Models ion from splitting and diff

The linear terms differentiate in a natural way, e.g.

(U1 + t2)q = U1Q + U2Q.

The nonlinear term admits several reasonable decompositions.
@ Leading to (a special case of) the SKT model (G. 2012),

uiVui + biV(uiue), bi>0, bi+b=1.
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Ecological models with cross-diffusion Models ion from splitting and diff

The linear terms differentiate in a natural way, e.g.

(U1 + t2)q = U1Q + U2Q.

The nonlinear term admits several reasonable decompositions.
@ Leading to (a special case of) the SKT model (G. 2012),

uiVui + biV(uiue), bi>0, bi+b=1.

© Leading to BT model (G. and Selgas, 2015)

Ji(ur, u2) = uiV(ur + w2) + uiq,
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State of the art: SKT model

Existence of solutions
Amann (1989) Local in time. Need L* bounds to extend to T = oc.

@ First existence result for full matrix: Yagi (1993)
Under assumption
aiz < 8ar, ax <8ax
i.e. diffusion matrix positive definite.

@ 1D case without restrictions on coefficients: G., Garzén and Jiingel
(2003)

@ Extension to 3D case: Chen and Jiingel (2004)

@ Generalizations: Desvilletes et al. (2014), Jingel (2015), G., Jungel and
Milisic (in progress).
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Ecological models with cross-diffusion State of the art

State of the art: SKT model

@ Pattern formation: Gambino, Lombardo and Sammartino (2012, 2013),
Ruiz-Baier and Tian (2013),...

@ Numerical discretization: G., Garzon and Jiingel (2001, 2003),
Gambino, Lombardo and Sammartino (2009), Andreianov, Bendahmane,
and Ruiz-Baier (2011),...

@ Travelling wave, exact solutions: Zhao (2005), Cherniha (2008)
@ Ecological models: G. and Velasco (2011, 2013),...
@ Steady state...
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Ecological models with cross-diffusion State of the art

State of the art: BT model

Existence of solutions
A series of papers by Bertsch, Gurtin, Hilhorst, Mimura, Peletier, and others
(1984, 1985, 2010, 2013, 2015) — Contact-inhibition problem

G. and Selgas (2014, 2015, 2016) — existence for BT model, numerics

G., Shmarev and Velasco (2015) — Contact-inhibition problem: existence,
nonuniqueness
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Outline

© The BT model

(University of Oviedo) Review on cross-diffusion 28/42



The BT model

For T>0and Q c R7, find u; : Q x (0, T) — R such that, fori = 1,2,

8,u,- —div J,'(U1 s U2) = I(,'(U17 Ug) in QT =0 x (O, T)7
J,‘(U1,U2) -n=20 onlr =00 x (0, T),
ui(+,0) = upo in Q,

with flow and competitive Lotka-Volterra functions given by

J,‘(U1 , Uz) = u,-(a,-1 Vuy + apViue + b,‘(]) + ¢;Vu;,

fi(ur, Uz) = i (i — Birts — BiaUiz).
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Assumptions

@ QCcR"(m=1,2or 3) bounded, 99 Lipschitz continuous.
Q aj, ¢, «j, B > 0and L>(Qr), bj € L°(Qr). Besides, Ja; > 0 such that

4aj1axn — (a2 + an)? > ay a.e.in Qr.

Q g (L2Qr)™
Q up >0, and L>(Q).
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The BT model

Main tool for the analysis is the entropy functional

2
E(t) = Z/ F(ui(-,t)) >0, with F(s)=s(lns—1)+1.
i=1 7%
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The BT model

Main tool for the analysis is the entropy functional
2
E(t) = Z/ F(ui(-,1)) >0, with F(s) =s(lns—1)+1.
i=1 79

Using F’(u;) = Inu; as a test function,

2

E(f)+/ (Z(a,,-|Vu,\2+20,|V\ﬁ,\2)+(a12+a21)Vu1 'VUZ)
JQ iy

2
:E(0)+/Q Z(—b,-q~Vu,-+f,-(u1,u2)Inu,-),

i=1
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The BT model

Main tool for the analysis is the entropy functional
2
E(t) = Z/ F(ui(-,1)) >0, with F(s) =s(lns—1)+1.
i=1 79

Using F’(u;) = Inu; as a test function,

2

E(f)+/ (Z(a,,-|Vu,\2+20,|V\ﬁ,\2)+(a12+a21)Vu1 'VUZ)
JQ iy

2
:E(0)+/Q Z(—b,-q~Vu,-+f,-(u1,u2)Inu,-),

i=1

and, from assumptions,

E(t)+ao/ (VUi 2 + (Vo) < (E(0) + Ci) 6%,

t
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The limit case 4aj1ax = (a2 + az1)?

Parabolic-hyperbolic problem
Solved in (at least) two cases:

@ General initial data, but strong assumptions on coefficients:

Ou; — div (au;V(uy + t2) + bau; + cVu;) = ui(a — B(ur + Uz)),
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The limit case 4aj1ax = (a2 + az1)?

Parabolic-hyperbolic problem
Solved in (at least) two cases:

@ General initial data, but strong assumptions on coefficients:

Ou; — div (au;V(uy + t2) + bau; + cVu;) = ui(a — B(ur + Uz)),

The key is that u = uy + up satisfies a porous medium type PDE. Thus, if
U1p + Uzp > 0in Q then u is smooth.
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The limit case 4aj1ax = (a2 + az1)?

Parabolic-hyperbolic problem
Solved in (at least) two cases:

@ General initial data, but strong assumptions on coefficients:

Ou; — div (au;V(uy + t2) + bau; + cVu;) = ui(a — B(ur + Uz)),

The key is that u = uy + u» satisfies a porous medium type PDE. Thus, if
Uqg + Uog > 0in Q then u is smooth.

An approximation is constructred via nonlinear regularization (SKT type),
adding

agA(u;(w + Ug))

for which u? + 3 still satisfies a PM equation.
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The limit case 4aj1ax = (a2 + az1)?

Parabolic-hyperbolic problem
Solved in (at least) two cases:

@ General initial data, but strong assumptions on coefficients:

Ou; — div (au;V(uy + t2) + bau; + cVu;) = ui(a — B(ur + Uz)),

The key is that u = uy + up satisfies a porous medium type PDE. Thus, if
U1p + Uzp > 0in Q then u is smooth.
An approximation is constructred via nonlinear regularization (SKT type),
adding
)

aEA(u;(w + Uz))
for which u? + 3 still satisfies a PM equation.
u? only converges weakly* in L>, but u° strongly in H'(Q)
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The BT model

@ Contact-inhibition problem. Initial data segregated:

Uto+ Ugo >0 and  supp(uio) N supp(uzp) = 0

Bertsch et al. introduce

Uy
u=u + Uy, r:U’

solving
Ot — Ox(u(0xu)) = Fi(u,r) in Qr,
P) Otr — OxU Oxrr — 00k = F(u,r) in Qr,
BY owu=0r=0 onflr,
u(0,") =up, r(0,:)=rg in Q,

with F; given in terms of f.
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The BT model

Bertsch et al. show existence in 1D and multi-dimensional (more restrictions)
using

@ parabolic regulariztion of the auxiliar problem,

@ characteristics.
Using part of their arguments, we also show existence in 1D with the direct

parabolic regularization.
The key is a BV(£2) bound, maximal regularity expected.
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Example: an explicit solution

H Heaviside and B Barenblatt.

uo(x) = H(x — x0)B(0, x), uxo(x) = H(xo — x)B(0, x).
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Example: an explicit solution

H Heaviside and B Barenblatt.

uo(x) = H(x — x0)B(0, x), uxo(x) = H(xo — x)B(0, x).

The L>(0, T; BV(€)) functions
U1(t, X) = H(X - n(t))B(ta X)) Uz(t, X) = H(T}(t) - X)B(ta X)7
with 7(t) = xo(1 + %)1/3, are a weak solution of

ol — ax(U,'ax(U1 + Ug)) =0
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Heaviside-Barenblatt example

h=0.04, t=0.05 h=0.04, t=0.1 h=0.04, t=0.15

2—02 0 2 =2 0 2
X X

h=0.008, t=0.05 h=0.008, t=0.1 h=0.008, t=0.15
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Invasion example

h=0.008, 1=0 h=0.008, 1=5
05
V 0.5
0.25 A 0.25
S0 1 2 Y a0 12
X X
h=0.008, 1=10 h=0.008, =15
0.75 1
0.75
05
05
0.25 0.25 J
0 0
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SKT versus BT
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The BT model

0.5 05
7U' 7\11
u, Uy
2
\
0.25 K 0.25
\
Oﬂ 0.25 0.5 G0 0.25 05
0.5
T
Yz
0.25 R
O(] 0.25 0.5

Figure : Transient states corresponding to: top left: by =1, b, = 10, top right:
aiyg = aipg = 3, do1 = dop = 1, bottom: ay = 4, aip = 0, ao1 = 3.9, an = 1.
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The BT model
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The BT model
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The BT model

Thank you!
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