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Objective: proving existence of weak solutions of evolution cross-diffusion
problems of the Shigesada-Kawasaki-Teramoto (SKT) type.

Steps:
1 Linear scalar heat equation,
2 Nonlinear scalar reaction-diffusion problem,
3 Cross-diffusion problem.

Rules:
the maximum principle can not be applied, and
the starting point to construct a solution is the Lax-Milgram’s lemma.

The problems are motivated by population dynamics, but the techniques apply
to general evolution reaction-convection-diffusion problems.

Along the way, we recall well known results of functional analysis that provide
us with powerful tools to tackle these problems.
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A linear population model

Problem: Given T > 0 and bounded Ω ⊂ RN , find (a non-negative)
u : (0,T )× Ω→ R such that

∂tu −∆u = u in QT = (0,T )× Ω,

∇u · n = 0 on ΓT = ∂(0,T )× Ω,

u(·,0) = u0 ≥ 0 in Ω.

In terms of population dynamics,
Population diffuses randomly.
Newborns are proportional to the existent population, and no growth limit.
The corresponding kinetics (∂tu = u) implies exponential growth.
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A linear population model

First ingredient: energy estimate→ notion of weak solution.

Suppose u is smooth solution. We get the energy identity

1
2

∫
Ω

u(t)2 +

∫
Qt

|∇u|2 =
1
2

∫
Ω

u2
0 +

∫
Qt

u2.

Lemma (Gronwall’s lemma)

Let T > 0, a ∈ L∞(0,T ), and λ ∈ L1(0,T ), with λ ≥ 0 in (0,T ). Suppose that,
for b ∈ C([0,T ]) increasing,

a(t) ≤ b(t) +

∫ t

0
λ(s)a(s)ds a.e. in (0,T ).

Using Gronwall’s lemma,∫
Ω

u(t)2 ≤ e2t
∫

Ω

u2
0 , which implies

∫
QT

u2 ≤ Te2T
∫

Ω

u2
0 .

(University of Oviedo) Review on cross-diffusion 7 / 99



A linear population model

Therefore,

‖u‖L∞(L2) + ‖∇u‖L2 ≤ C =⇒ ‖u‖L2(H1) ≤ C.

Since

∂tu = −div(∇u) + u ∈ L2(0,T ; (H1(Ω))′),

we don’t expect ∂tu ∈ Lp(QT ).

A generic definition of weak solution∫ T

0
〈∂tu, ϕ〉+

∫
QT

∇u · ∇ϕ =

∫
QT

uϕ, for all ϕ ∈ V ,

with V a space of test functions and 〈·, ·〉 the duality product of V ′ × V .
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A linear population model Formal arguments

Formal arguments
Method of proof: Consider a sequence of approximating problems (Pn) such
that (Pn)→ (P) as n→∞.

Suppose the energy estimate is satisfied by un, slution of∫ T

0
〈∂tun, ϕ〉+

∫
QT

∇un · ∇ϕ =

∫
QT

unϕ, for all ϕ ∈ V , (Pn)

that is

‖un‖L∞(L2) + ‖un‖L2(H1) ≤ C.

Then, there exists a subsequence of un (that we do not relabel) and
u ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)) such that

un ⇀ u weakly*-weakly in L∞(0,T ; L2(Ω)),

∇un ⇀ ∇u weakly in L2(QT ).
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A linear population model Formal arguments

Then, for all ϕ ∈ V ⊂ L2(0,T ; H1(Ω)),∫
QT

∇un · ∇ϕ→
∫

QT

∇u · ∇ϕ,∫
QT

unϕ→
∫

QT

uϕ.

Second ingredient: Estimate for the time derivative.

Definition

Let V be a normed space, and ψ : V → R be a linear functional. Then the
norm of ψ on the dual space V ′ of V is defined by

‖ψ‖V ′ = sup
x∈V

〈ψ, x〉V ′×V

‖x‖V
.
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A linear population model Formal arguments

Fix V = L2(0,T ; H1(Ω)),∫ T

0
〈∂tun, ϕ〉 ≤

∫
QT

|∇un||∇ϕ|+
∫

QT

|un||ϕ|

≤ ‖∇un‖L2‖∇ϕ‖L2 + ‖un‖L2‖ϕ‖L2 ≤ C‖ϕ‖L2(H1).

Thus ‖∂tun‖L2((H1)′) ≤ C, implying

∂tun ⇀ z weakly in L2(0,T ; (H1(Ω))′).
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A linear population model Formal arguments

Identification z = ∂tu:

For ψ ∈ C∞c (0,T ; H1(Ω)), dense in L2(0,T ; H1(Ω)),∫ T

0
〈∂tun, ψ〉 →

∫ T

0
〈z, ψ〉,

Using the weak convergence in e.g. L2(QT )∫ T

0
〈∂tun, ψ〉 = −

∫ T

0
〈un, ∂tψ〉 = −

∫ T

0

∫
Ω

un∂tψ → −
∫ T

0

∫
Ω

u∂tψ =

∫ T

0
〈∂tu, ψ〉,

and, density plus uniqueness of the limit∫ T

0
〈z, ϕ〉 =

∫ T

0
〈∂tu, ϕ〉,

for all ϕ ∈ L2(0,T ; H1(Ω)). That is, z = ∂tu.

Therefore, un solution of (Pn) converges to u solution of (P).
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A linear population model Formal arguments

Sense of initial data.

For ψ ∈ C∞(QT )∫ T

0
〈∂t (u − u0), ψ〉 = −

∫
QT

(u − u0)∂tψ +

∫
Ω

(u(T )− u0)ψ(T )−∫
Ω

(u(0)− u0)ψ(0).

Choosing ψ ∈ L2(0,T ; H1(Ω)) ∩ H1(0,T ; L2(Ω)), with ψ(T ) = 0 the initial
condition is satisfied in the sense∫ T

0
〈∂tu, ψ〉+

∫
QT

(u − u0)∂tψ = 0.
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A linear population model Formal arguments

Theorem (Sobolev’s embedding theorem)

Let Ω ⊂ RN be bounded and of class C1, and 1 ≤ p ≤ ∞. The following
injections are continuous:

W 1,p(Ω) ⊂ Lp∗(Ω), with p∗ = Np/(N − p), if p < N,
W 1,p(Ω) ⊂ Lq(Ω), for all 1 ≤ q <∞, if p = N,
W 1,p(Ω) ⊂ C(Ω̄), if p > N.

Thus, the injection H1(0,T ; L2(Ω)) ⊂ C([0,T ]; L2(Ω)) is continuous, so it
makes sense to set ψ(T ) = 0 in Ω.

If the solution is more regular, say ∂tu ∈ L2(QT ), then

0 =

∫
QT

∂tuψ +

∫
QT

(u − u0)∂tψ = −
∫

Ω

u(0)ψ(0)−
∫

QT

u0∂tψ =

∫
Ω

(u0 − u(0))ψ(0)

for all ψ(0) ∈ L2(Ω), implying u(0) = u0 a.e. in Ω.
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A linear population model Time discretization

Time discretization

We start here the rigorous proof. Take

K ∈ N, τ = T/K , tk = kτ, (0,T ] = ∪K
k=0(tk−1, tk ].

Problem: Given uk−1 ∈ L2(Ω), find uk : Ω→ R such that

1
τ

∫
Ω

(uk − uk−1)ϕ+

∫
Ω

∇uk · ∇ϕ =

∫
Ω

ukϕ for all ϕ ∈ H1(Ω).

Lemma (Lax-Milgram)

Let H be a Hilbert space and assume that A : H × H → R is a continuous
coercive bilinear form. Then, given any F ∈ H ′, there exists a unique element
u ∈ H such that A(u, ϕ) = 〈F , ϕ〉 for all ϕ ∈ H.
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A linear population model Time discretization

Set H = H1(Ω), and

A(u, ϕ) =

∫
Ω

∇u · ∇ϕ+
1
τ

∫
Ω

uϕ, F =
1
τ

uk−1 ∈ L2(Ω) ⊂ (H1(Ω))′

A is clearly continuous and coercive in H1(Ω). Then, (Lax-Milgram) there
exists a weak solution, uk ∈ H1(Ω) of the time discrete problem.

Uniform estimates.
Use ϕ = uk as test function

(1− τ)

∫
Ω

|uk |2 + τ

∫
Ω

|∇uk |2 =

∫
Ω

uk−1uk .

Youngs’ inequality gives(1
2
− τ
) ∫

Ω

|uk |2 + τ

∫
Ω

|∇uk |2 ≤ 1
2

∫
Ω

|uk−1|2.

Taking τ < 1/2, and using (1− r)−1 ≤ exp(r(1− r)−1) for all r ∈ [0,1),∫
Ω

|uk |2 ≤ e4T
∫

Ω

|u0|2 ≤ C.
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A linear population model Time discretization

Summing for k = 1, . . . ,K , we obtain

1
2

∫
Ω

|uK |2 + τ

K∑
k=1

∫
Ω

|∇uk |2 ≤ 1
2

∫
Ω

|u0|2 + τ

K∑
k=1

∫
Ω

|uk |2,

and thus, using K τ = T ,

τ

K∑
k=1

∫
Ω

|∇uk |2 ≤ 1
2

∫
Ω

|u0|2 + TC ≤ C.

Therefore

max
k=1,...,K

∫
Ω

|uk |2 + τ

K∑
k=1

∫
Ω

|∇uk |2 ≤ C.
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A linear population model Back to the evolution problem

Back to the evolution problem
Introduce piecewise constant and linear interpolators in time,

u(τ)(t , x) = uk (x), ũ(τ)(t , x) = uk (x) +
tk − t
τ

(uk−1(x)− uk (x)),

for (t , x) ∈ (tk−1, tk ]× Ω, for k = 1, . . . ,K . Then

max
t∈(0,T )

∫
Ω

|u(τ)|2 +

∫
QT

|∇u(τ)|2 ≤ C,

and since tk − t < τ , we also deduce

max
t∈(0,T )

∫
Ω

|ũ(τ)|2 +

∫
QT

|∇ũ(τ)|2 ≤ C.

Replacing u(τ) and ũ(τ) in the weak formulation we get∫
QT

∂t ũ(τ)ϕ+

∫
QT

∇u(τ) · ∇ϕ =

∫
QT

u(τ)ϕ for all ϕ ∈ L2(0,T ; H1(Ω)).
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A linear population model Back to the evolution problem

From this identity and the above estimates, we obtain, like in the formal
computation,

‖∂t ũ(τ)‖L2((H1)′) ≤ C.

Therefore, we deduce the existence of u, z ∈ L2(0,T ; H1(Ω)) and
subsequences of u(τ) and ũ(τ) such that

u(τ) ⇀ u weakly in L2(0,T ; H1(Ω)),

u(τ) ⇀ u weakly*-weakly in L∞(0,T ; L2(Ω))),

ũ(τ) ⇀ z weakly in L2(0,T ; H1(Ω)),

ũ(τ) ⇀ z weakly*-weakly in L∞(0,T ; L2(Ω))),

∂t ũ(τ) ⇀ ∂tz weakly in L2(0,T ; ((H1(Ω))′).
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A linear population model Back to the evolution problem

Identification z = u.

For t ∈ (tk−1, tk ],

|ũ(τ)(t , x)− u(τ)(t , x)| = |(tk − t)
uk−1(x)− uk (x)

τ
| ≤ τ |∂t ũ(τ)(t , x)|,

we deduce

‖ũ(τ) − u(τ)‖L2((H1)′) ≤ τ‖∂t ũ(τ)‖L2((H1)′) → 0 as τ → 0,

and hence z = u.

Therefore, we may pass to the limit τ → 0, obtaining
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A linear population model Back to the evolution problem

Theorem

Let Ω ⊂ RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that u0 ∈ L2(Ω). Then, there exists
u ∈ L2(0,T ; H1(Ω))∩H1(0,T ; (H1(Ω))′), such that, for all ϕ ∈ L2(0,T ; H1(Ω)),∫ T

0
< ∂tu, ϕ > +

∫
QT

∇u · ∇ϕ =

∫
QT

u ϕ,

with < ·, · > denoting the duality product between H1(Ω) and its dual (H1(Ω))′.
In addition, the initial data is satisfied in the sense∫ T

0
< ∂tu, ψ > +

∫
QT

(u − u0)∂tψ = 0,

for all ψ ∈ L2(0,T ; H1(Ω)) ∩ H1(0,T ; L2(Ω)) such that ψ(T ) = 0 a.e. in Ω.
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A nonlinear population model
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A nonlinear population model

Problem: Find u : (0,T )× Ω→ R such that

∂tu − div(u∇u) = f (u) = u(α− βu) in QT ,

u∇u · n = 0 on ΓT ,

u(·,0) = u0 ≥ 0 in Ω.

In terms of population dynamics
Population diffuses to avoid overcrowding (maxima of u).
Newborns are proportional to the existent population. Growth limit in
terms of the so-called carrying capacity of the habitat.
The corresponding kinetics (∂tu = f (u)) has a stable equilibrium at
u = α/β.

Generic form of weak solution:∫
QT

〈∂tu, ϕ〉+

∫
QT

u∇u · ∇ϕ =

∫
QT

f (u)ϕ, for all ϕ ∈ V .
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A nonlinear population model Formal arguments

Formal arguments
Formal estimates:

Using ϕ = ln(u) we get, for F (s) = s(ln(s)− 1) + 1 ≥ 0,∫
Ω

F (u(T )) +

∫
QT

|∇u|2 =

∫
Ω

F (u0) +

∫
QT

f (u) ln(u).

The term E(t) =

∫
Ω

F (u(t)) is called the entropy of the system. This

identity only makes sense if u > 0.
Using ϕ = 1 in we get (if u ≥ 0)∫

Ω

u(T ) ≤
∫

Ω

u0 + α

∫
QT

u,

and then Gronwall’s lemma implies∫
Ω

u(T ) ≤ eαT
∫

Ω

u0 ≤ C.
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A nonlinear population model Formal arguments

Suppose that the RHS in the weak formulation may be controled by the LHS:

max
t∈(0,T )

∫
Ω

F (u(t)) + ‖u‖L∞(L1) + ‖∇u‖L2 ≤ C,

so ‖u‖L2(H1) ≤ C (we shall see later why).

Introduce again a sequence of aproximated problems (Pn), e.g.∫
QT

∂tun ϕ+

∫
QT

ψn(un)∇un · ∇ϕ =

∫
QT

f (un)ϕ, for all ϕ ∈ V , (Pn)

with ψn → id , and suppose un satisfies the above estimate. That is,
‖un‖L2(H1) ≤ C. Then,

∇un ⇀ ∇u weakly in L2(QT ).

The gradient estimate is the first ingredient to prove the strong compactness
of un in some Lp.

We need strong convergence in Lp, and a.e. convergence in QT to pass
to the limit in the nonlinear terms.
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A nonlinear population model Formal arguments

The second ingredient is an estimate for the time derivative.

Lemma (Simon, Aubin-Lions)

Let X, B, and Y be Banach spaces with X ⊂ B ⊂ Y such that
X is compactly embedded in B.
B is continuously embedded in Y .

Suppose that the sequence un satisfies:
un is bounded in Lq(0,T ; X ) ∩ L1

loc(0,T ; X ), for 1 < q ≤ ∞.
∂tun is bounded in L1

loc(0,T ; Y ).
Then, for all p < q, there exists a subsequence of un (not relabeled) and an
element u ∈ Lp(0,T ; B) such that

un → u strongly in Lp(0,T ; B) and a.e. in QT .
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A nonlinear population model Formal arguments

A usual situation is: X = H1(Ω), and B = L2(Ω). Indeed,

Theorem (Rellich-Kondrachov)

Let Ω ⊂ RN be bounded and of class C1, and 1 ≤ p ≤ ∞. The following
injections are compact:

W 1,p(Ω) ⊂ Lq(Ω), for all 1 ≤ q < p∗, with p∗ = Np/(N − p), if p < N,
W 1,p(Ω) ⊂ Lq(Ω), for all p ≤ q <∞, if p = N,
W 1,p(Ω) ⊂ C(Ω̄), if p > N.

Then we get that

∂tun bounded in L1(0,T ; Y ) =⇒ un → u strongly in L2(QT ) and a.e. in QT .
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A nonlinear population model Formal arguments

Summarizing, if the RHS may be absorbed by LHS, and the time derivative
estimate is available, we have

∇un ⇀ ∇u weakly in L2(QT ),

∂tun ⇀ ∂tu weakly in L1(0,T ; Y ),

un → u strongly in L2(QT ) and a.e. in QT .

With these kind of estimates (and others), we have to justify the limits∫
QT

〈∂tun, ϕ〉 →
∫

QT

〈∂tu, ϕ〉,∫
QT

ψn(un)∇un · ∇ϕ→
∫

QT

u∇u · ∇ϕ,∫
QT

(αun − βu2
n)ϕ =

∫
QT

f (un)ϕ→
∫

QT

f (u)ϕ.
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A nonlinear population model Time discretization

Time discretization
First (non-successful) attempt.

Nonlinear problem: Given uk−1 ∈ V , find uk : Ω→ R such that
1
τ

(uk − uk−1)− div(uk∇uk ) = f (uk ) in Ω,

uk∇uk · n = 0 on ∂Ω.

Linear problem (for Lax-Milgram): Given uk−1, v ∈ V , find uk : Ω→ R
1
τ

(uk − uk−1)− div(v∇uk ) = f (v) in Ω,

v∇uk · n = 0 on ∂Ω.

Like in the linear case, we would like to take H = H1(Ω), and define

A(u, ϕ) =

∫
Ω

v∇u · ∇ϕ+
1
τ

∫
Ω

uϕ.

However, A(u, ϕ) is not coercive (v might vanish). And we need, for using
ϕ = ln u, to avoid u = 0. We adopt the following approximation.
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A nonlinear population model Time discretization

Approximation of the linear problem

Regularized linear problem.
Let ε > 0. Given uk−1

ε , v ∈ V , find uk
ε : Ω→ R

1
τ

(uk
ε − uk−1

ε )− div(aε(v)∇uk
ε )) = fε(v) in Ω,

aε(v)∇uk
ε · n = 0 on ∂Ω,

with fε(s) = αs − βaε(s)2. Here, aε(s)→ s, to which we impose

ε−1 ≥ aε(s) ≥ ε for all s ∈ R.

In weak form:

1
τ

∫
Ω

(uk
ε − uk−1

ε )ϕ+

∫
Ω

aε(v)∇uk
ε · ∇ϕ =

∫
Ω

fε(v)ϕ, for all ϕ ∈ H1(Ω).
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A nonlinear population model Time discretization

Now we can take H = H1(Ω), V = L2(Ω) in Lax-Milgram, and define

Aε(u, ϕ) =

∫
Ω

aε(v)∇u · ∇ϕ+
1
τ

∫
Ω

uϕ, F = fε(v) +
1
τ

uk−1
ε ∈ L2(Ω).

Aε is clearly continuous and coercive in H1(Ω), and therefore there exists a
weak solution uk

ε ∈ H1(Ω).

At this point, we reformulate the nonlinear time-discrete problem.
Given uk−1

ε ∈ L2(Ω), find uk : Ω→ R such that

1
τ

(uk
ε − uk−1

ε )− div(aε(uk
ε )∇uk

ε )) = fε(uk
ε ) in Ω,

aε(uk
ε )∇uk

ε · n = 0 on ∂Ω.
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A nonlinear population model Time discretization

Now, observe the following inconvenient:

Assuming that we may use ϕ = F ′(uk
ε ) = ln(uk

ε ), we obtain∫
Ω

aε(uk
ε )F ′′(uk

ε )|∇uk
ε |2 =

∫
Ω

aε(uk
ε )

uk
ε

|∇uk
ε |2,

instead of the original formal identity∫
Ω

uF ′′(u)|∇u|2 =

∫
Ω

|∇u|2.

Thus, we also need to approximate F by a suitable Fε which allows us to
obtain an L2 estimate of ∇uε.
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A nonlinear population model Time discretization

The definition of aε and Fε

For ε > 0, we want to produce approximations:
aε such that aε(s)→ s as ε→ 0, with ε−1 ≥ aε(s) ≥ ε for all s ∈ R.
Fε non-negative and smooth such that Fε(s)→ F (s) = s(ln(s)− 1) + 1,
as ε→ 0.
aε(s)F ′′ε (s) = 1 for all s ∈ R.

Let aε : R→ [ε, ε−1] be given by the truncature function

aε(s) :=


ε if s ≤ ε,

s if ε ≤ s ≤ ε−1,

ε−1 if ε−1 ≤ s.
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A nonlinear population model Time discretization

Using the third condition, we set F ′′ε (s) = 1/aε(s). Integrating and adjusting
the integration constants for continuity, we get Fε ∈ C2,1(R,R+) given by

Fε(s) :=



s2 − ε2

2ε
+ s(ln ε− 1) + 1 if s ≤ ε,

s(ln s − 1) + 1 if ε ≤ s ≤ ε−1,

ε(s2 − ε−2)

2
+ s(ln ε−1 − 1) + 1 if ε−1 ≤ s,

with

F ′ε(s) :=


s
ε

+ ln ε− 1 if s ≤ ε,

ln s if ε ≤ s ≤ ε−1,

εs + ln ε−1 − 1 if ε−1 ≤ s.
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Figure : The convex function Fε and its derivatives.
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Fixed point method to couple the nonlinearities

Theorem (Leray-Schauder fixed point theorem)

Let V be a Banach space and let S : V × [0,1]→ V be a continuous and
compact map such that
• S(v ,0) = 0 for all v ∈ V.
• For each pair (v , σ) ∈ V × [0,1] satisfying v = S(v , σ), there exists a

positive constant C, such that ‖v‖V ≤ C.
Then there exist a fixed point, w ∈ V, of the map S(v ,1), i.e. w = S(w ,1).

To solve the nonlinear time-discrete problem we define
S : L2(Ω)× [0,1]→ L2(Ω) such that, for uk−1

ε ∈ L2(Ω) given,

(v , σ) 7→ uk,σ
ε

solution of
1
τ

uk,σ
ε − div(aε(v)∇uk,σ

ε )) = σ
(
fε(v) +

1
τ

uk−1
ε

)
in Ω,

aε(v)∇uk,σ
ε · n = 0 on ∂Ω.
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Lax-Milgram shows that there exists a unique solution uk,σ
ε ∈ H1(Ω) of the

above problem. Thus, S is well defined.

To apply Leray-Schauder’s theorem, we have to check the following:
1 Continuity: Let vn ∈ L2(Ω), σn ∈ [0,1], with

vn → v strongly in L2(Ω), σn → σ.

Denote by uk
ε,n to the solution of the linear problem corresponding to

(vn, σn), that is S(vn, σn). We must check

uk
ε,n → uk,σ

ε strongly in L2(Ω), as n→∞.

2 Compactness: Since we start with v ∈ L2(Ω) and finish in
S(v , σ) = uk,σ

ε ∈ H1(Ω), we deduce that S is compact.
3 S(v ,0) = 0, which is inmmediate. Use ϕ = uk,σ

ε as test function.
4 If v = S(v , σ)(= uk,σ

ε ) for (v , σ) ∈ L2(Ω)× [0,1] then ‖uk,σ
ε ‖L2 ≤ C.
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We start proving the continuity. Using ϕ = uk
ε,n ∈ H1(Ω)

1
τ

∫
Ω

|uk
ε,n|2 +

∫
Ω

aε(vn)|∇uk
ε,n|2 = σn

∫
Ω

fε(vn)uk
ε,n +

σn

τ

∫
Ω

uk−1
ε uk

ε,n.

Since aε(s) ≥ ε for all s ∈ R, we have∫
Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤ τασn

∫
Ω

vnuk
ε,n − τβσn

∫
Ω

aε(vn)2uk
ε,n + σn

∫
Ω

uk−1
ε uk

ε,n

Using Young’s inequality in the form ab ≤ γa2 +
b2

γ
, and σn ≤ 1, we get,

1
4

∫
Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤ 4τ2α2

∫
Ω

v2
n + 4τ2β2

∫
Ω

|aε(vn)|4 + 4
∫

Ω

|uk−1
ε |2.
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Thus, since vn, uk−1
ε ∈ L2(Ω), and aε(s) ≤ ε−1, we obtain∫

Ω

|uk
ε,n|2 + τε

∫
Ω

|∇uk
ε,n|2 ≤ C(1 + τ2ε−4),

implying that ‖uk
ε,n‖H1(Ω) is bounded.

The compact embedding L2(Ω) ⊂ H1(Ω), implies

uk
ε,n ⇀ z weakly in H1(Ω),

uk
ε,n → z strongly in L2(Ω), and a.e. in Ω.

Finally, the continuity will be proven if we identify z as S(v , σ)(= uk,σ
ε ).
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Let’s take the limit n→∞ in the weak formulation

1
τ

∫
Ω

uk
ε,nϕ+

∫
Ω

aε(vn)∇uk
ε,n · ∇ϕ = σn

∫
Ω

fε(vn)ϕ+
σn

τ

∫
Ω

uk−1
ε ϕ.

By assumption, vn → v strongly in L2(Ω).

Since aε is Lipschitz continuous, we have

‖aε(vn)− aε(v)‖L2 ≤ ‖vn − v‖L2 ,

and thus aε(vn)→ aε(v) strongly in L2(Ω) and a.e. in Ω, as n→∞.

Similarly,

fε(vn)→ fε(v) strongly in L2(Ω).

(University of Oviedo) Review on cross-diffusion 40 / 99



A nonlinear population model Time discretization

Theorem (Dominated convergence theorem)

Let fn be a sequence of functions of L1(Ω) satisfying
fn(x)→ f (x) a.e. in Ω,
there is a function g ∈ Lp(Ω), with 1 ≤ p <∞, such that, for all n,
|fn(x)| ≤ g(x) a.e. in Ω.

Then f ∈ Lp(Ω) and fn → f strongly in Lp(Ω).

Being aε(vn) ≤ ε−1 for all n, we may use the DCT to deduce

aε(vn)→ aε(v) strongly in Lp(Ω), for all p <∞.
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Thus,

aε(vn)∇uk
ε,n ⇀ aε(v)∇z weakly in Lq(Ω), for q =

2p
p − 2

< 2, and 2 < p <∞.

Since ∇ϕ ∈ L2(Ω), the above convergence is not enough to pass to the limit in

∫
Ω

aε(vn)∇uk
ε,n · ∇ϕ.

However, having the bound

‖aε(vn)∇uk
ε,n‖L2 ≤ ‖aε(vn)‖L∞‖∇uk

ε,n‖L2 ≤ C,

we deduce that, in fact, up to a subsequence,

aε(vn)∇uk
ε,n ⇀ aε(v)∇z weakly in L2(Ω).
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Thus, we get , as n→∞,

1
τ

∫
Ω

zϕ+

∫
Ω

aε(v)∇z · ∇ϕ = σ

∫
Ω

fε(v)ϕ+
σ

τ

∫
Ω

uk−1
ε ϕ,

so z is a weak solution corresponding to v .

Moreover, the limit z is unique because the solution of the limit problem may
be obtained by Lax-Milgram’s lemma.

Therefore, we deduce that the whole sequence converges, this is, z = S(v , σ).
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Point 4: uniform bound of the fixed points of S.

Assume v = uk,σ
ε and let us prove ‖uk,σ

ε ‖L2 ≤ C, for all σ ∈ [0,1].

uk,σ
ε satisfies

1
τ

uk,σ
ε − div(aε(uk,σ

ε )∇uk,σ
ε )) = σ

(
fε(uk,σ

ε ) +
1
τ

uk−1
ε

)
in Ω,

aε(uk,σ
ε )∇uk,σ

ε · n = 0 on ∂Ω.

Using ϕ = uk,σ
ε ∈ H1(Ω) we obtain (as before)∫

Ω

|uk,σ
ε |2 + τε

∫
Ω

|∇uk,σ
ε |2 ≤ C(1 + τ2ε−4σ2) ≤ C(1 + τ2ε−4).

We deduce the existence of a fixed point of S(v ,1), which we denote by uk
ε ,

which is a solution of the nonlinear time-discrete problem.
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Further estimates for the nonlinear time-discrete
problem

Until now, we have shown the existence of a solution

1
τ

∫
Ω

(uk
ε − uk−1

ε )ϕ+

∫
Ω

aε(uk
ε )∇uk

ε · ∇ϕ =

∫
Ω

fε(uk
ε )ϕ, for all ϕ ∈ H1(Ω).

Now, we deduce uniform estimates with respect to ε:

Taking ϕ = F ′ε(u
k
ε )

1
τ

∫
Ω

(uk
ε − uk−1

ε )F ′ε(u
k
ε ) +

∫
Ω

|∇uk
ε |2 =

∫
Ω

fε(uk
ε )F ′ε(u

k
ε ).

For the first term of the LHS, we use the convexity estimate

(s − t)F ′ε(s) ≥ Fε(s)− Fε(t), for all s, t ∈ R.
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For the term at the right hand side, we use

Fε(s) ≥ ε

2
s2 − 2 for all s ≥ 0, Fε(s) ≥ s2

2ε
for all s ≤ 0,

max{aε(s), sF ′ε(s)} ≤ 2Fε(s) + 1 for all s ∈ R,

aε(s)F ′ε(s) ≥ s − 1 for all s ∈ R,
Fε(aε(s)) ≤ Fε(s) for all s ∈ R,
[1− s]+ ≤ 1 + [s]−

to deduce

fε(s)F ′ε(s) ≤ (2α + 4β)Fε(s) + α + 3β.

Therefore,

(1− ωτ)

∫
Ω

Fε(uk
ε ) + τ

∫
Ω

|∇uk
ε |2 ≤ Cτ +

∫
Ω

Fε(uk−1
ε ),

with ω = 2(α + β). Here, we impose τ < ω−1.
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Therefore, we have

(1− ωτ)

∫
Ω

Fε(uk
ε ) + τ

∫
Ω

|∇uk
ε |2 ≤ Cτ +

∫
Ω

Fε(uk−1
ε ),

Estimate of the entropy.

max
k=1,...,K

∫
Ω

Fε(uk
ε ) ≤ eωT/(1−ωτ)

(
CT +

∫
Ω

Fε(u0)
)
≤ C.

Estimate of the gradient. Summing in k∫
Ω

Fε(uk
ε ) + τ

K∑
k=1

∫
Ω

|∇uk
ε |2 ≤ CτK +

∫
Ω

Fε(u0) + ωτ

K∑
k=1

∫
Ω

Fε(uk
ε )

≤ CT +

∫
Ω

Fε(u0) + ωT max
k=1,...,K

∫
Ω

Fε(uk
ε ),

implying

τ

K∑
k=1

∫
Ω

|∇uk
ε |2 ≤ C.
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Extenct of negativity of uk
ε . From

Fε(s) ≥ s2

2ε
for all s ≤ 0

we get

1
2ε

∫
Ω

|[uk
ε ]−|2 ≤

∫
Ω

Fε([uk
ε ]−) =

∫
uk
ε≤0

Fε(uk
ε )

≤
∫

uk
ε≤0

Fε(uk
ε ) +

∫
uk
ε≥0

Fε(uk
ε ) =

∫
Ω

Fε(uk
ε ) ≤ C.

Thus,

max
k=1,...,K

∫
Ω

|[uk
ε ]−|2 ≤ Cε.
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L1 estimate.

Using ϕ = 1

(1− ατ)

∫
Ω

uk
ε ≤

∫
Ω

uk−1
ε , implying max

k=1,...,K

∫
Ω

uk
ε ≤ C.

Young’s inequality,∫
Ω

|uk
ε | =

∫
Ω

([uk
ε ]+ + [uk

ε ]−) =

∫
Ω

uk
ε + 2

∫
Ω

[uk
ε ]− ≤ C

(
1 +

∫
Ω

|[uk
ε ]−|2

)
,

and then,

max
k=1,...,K

∫
Ω

|uk
ε | ≤ C.
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Summarizing, we have obtained the bound

max
k=1,...,K

(∫
Ω

Fε(uk
ε ) +

∫
Ω

|uk
ε |+

1
ε

∫
Ω

([uk
ε ]−)2

)
+ τ

K∑
k=1

∫
Ω

|∇uk
ε |2 ≤ C.
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Back to the evolution problem

Take u(τ)
ε (t , x) = uk

ε (x), ũ(τ)
ε (t , x) = uk

ε (x) +
tk − t
τ

(uk−1
ε (x)− uk

ε (x)),

satisfying the identity∫ T

0
∂t ũ(τ)

ε ϕ+

∫
QT

aε(u(τ)
ε )∇u(τ)

ε · ∇ϕ =

∫
QT

fε(u(τ)
ε )ϕ,

for all ϕ ∈ V , to be chosen such that V ⊂ L2(0,T ; H1(Ω)).

For passing to the limits τ → 0 and ε→ 0 we need:
1 Time derivative: weak convergence of ∂t ũ(τ)

ε in some large space.
2 Diffusive term: strong convergence of aε(u(τ)

ε ), and weak convergence
of ∇u(τ)

ε . Since the latter will be in L2(QT ), we need to investigate the
larger space in which aε(u(τ)

ε ) converges strongly to fix the space of test
functions.

3 Reaction term: strong convergence of u(τ)
ε in some Lp(QT ).

4 Identification: The limits of u(τ)
ε and ũ(τ)

ε are the same function.
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Uniform estimates in ε and τ

The estimates for the sequence of time-independent problems lead to

max
t∈(0,T )

(∫
Ω

Fε(u(τ)
ε (t)) +

∫
Ω

|u(τ)
ε (t)|+ 1

ε

∫
Ω

([u(τ)
ε (t)]−)2

)
+

∫
QT

|∇u(τ)
ε |2 ≤ C.

Theorem (Poincaré-Wirtinger’s inequality)

Let Ω be a connected open set of class C1 and let 1 ≤ p ≤ ∞. Then, for all
u ∈W 1,p(Ω), there exists a constant C such that

‖u − uΩ‖Lp ≤ C‖∇u‖Lp , where uΩ =
1
|Ω|

∫
Ω

u.

Therefore

‖u(τ)
ε ‖2

L2 ≤
1
|Ω|
‖u(τ)
ε ‖2

L1 + C‖∇u(τ)
ε ‖2

L2 ≤ C =⇒ ‖u(τ)
ε ‖L2(H1) ≤ C.
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We also have, for στu(τ)
ε (t) = uk−1

ε if t ∈ (tk−1, tk ],

‖ũ(τ)
ε ‖L2 ≤ 2‖u(τ)

ε ‖L2 + ‖στu(τ)
ε ‖L2 ≤ C,

‖ũ(τ)
ε ‖L2(H1) ≤ 2‖u(τ)

ε ‖L2(H1) + ‖στu(τ)
ε ‖L2(H1) ≤ C.
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Time derivative estimate

∫ T

0
〈∂t ũ(τ)

ε , ϕ〉 ≤
∫

QT

|aε(u(τ)
ε )||∇u(τ)

ε ||∇ϕ|+
∫

QT

|fε(u(τ)
ε )||ϕ|

≤ ‖aε(u(τ)
ε )‖L∞‖∇u(τ)

ε ‖L2‖∇ϕ‖L2 + α‖u(τ)
ε ‖L2‖ϕ‖L2

+β‖aε(u(τ)
ε )‖2

L∞‖ϕ‖L1 ,

where 〈·, ·〉 denotes the duality product in (H1(Ω))′ × H1(Ω).
Then, ∫ T

0
〈∂t ũ(τ)

ε , ϕ〉 ≤ Cε−1‖∇ϕ‖L2 +
(
C + ε−2)‖ϕ‖L2 ≤ Cε−2‖ϕ‖L2(H1),

and thus,

‖∂t ũ(τ)
ε ‖L2((H1)′) ≤ Cε−2.
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The limit τ → 0

From the bounds we deduce the existence of uε, zε ∈ L2(0,T ; H1(Ω)) and of
subsequences of u(τ)

ε and ũ(τ)
ε (not relabeled) such that, as τ → 0,

u(τ)
ε ⇀ uε weakly in L2(0,T ; H1(Ω)),

u(τ)
ε ⇀ uε weakly in L2(QT ),

ũ(τ)
ε ⇀ zε weakly in L2(0,T ; H1(Ω)),

ũ(τ)
ε ⇀ zε weakly in L2(QT ),

∂t ũ(τ)
ε ⇀ ∂tzε weakly in L2(0,T ; (H1(Ω))′).
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Identification z = u. Like in the linear case,

‖ũ(τ)
ε − u(τ)

ε ‖L2((H1)′) ≤ τ‖∂t ũ(τ)
ε ‖L2((H1)′) → 0 as τ → 0,

and hence zε = uε.

Compactness and strong convergence for ũ(τ)
ε . The compactness

Aubin-Lions-Simon’s lemma, gives

ũ(τ)
ε → uε strongly in L2(QT ), and a.e. in QT .
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Lemma

Let (H, ‖ · ‖H) be a Hilbert space and let V ⊂ H be a proper linear subspace
dense in H. Assume that (V , ‖ · ‖V ) is a Banach space and, under the
identification H = H ′, consider the triplet V ⊂ H ⊂ V ′. Then

〈f , v〉V ′×V = (f , v)H , for all f ∈ H, v ∈ V .

In particular, for all v ∈ V,

‖v‖2
H = 〈v , v〉V ′×V ≤ ‖v‖V ′‖v‖V .

Strong convergence for u(τ)
ε . Setting V = L2(0,T ; H1(Ω)), H = L2(QT )

‖u(τ)
ε − uε‖L2 ≤ ‖u(τ)

ε − ũ(τ)
ε ‖L2 + ‖ũ(τ)

ε − uε‖L2

≤ ‖u(τ)
ε − ũ(τ)

ε ‖
1/2
L2((H1)′)

‖u(τ)
ε − ũ(τ)

ε ‖
1/2
L2(H1)

+ ‖ũ(τ)
ε − uε‖L2 ,

and then

‖u(τ)
ε − uε‖L2 ≤ C‖u(τ)

ε − ũ(τ)
ε ‖

1/2
L2((H1)′)

+ ‖ũ(τ)
ε − u‖L2 → 0 as τ → 0.
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Convergence. We have to pass to the limit τ → 0 in the expression∫ T

0
〈∂t ũ(τ)

ε , ϕ〉+

∫
QT

aε(u(τ)
ε )∇u(τ)

ε · ∇ϕ =

∫
QT

fε(u(τ)
ε )ϕ, for ϕ ∈ L2(0,T ; H1(Ω)).

The time derivative term, recalling zε = uε, passes to the limit without any
additional reasoning. The linear part of the reaction term, also passes to the
limit, thanks to, e.g., the L2(QT ) strong convergence.

For the convergence of aε(u(τ)
ε ) we use the dominated convergence theorem:

By continuity of aε, we have aε(u(τ)
ε )→ aε(uε) a.e. in QT as τ → 0.

‖aε(u(τ)
ε )‖L∞ ≤ ε−1.

Thus (DCT), as τ → 0,

aε(u(τ)
ε )→ aε(uε) strongly in Lp(QT ) for any 1 ≤ p <∞.
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Quadratic term of the reaction function.∫
QT

∣∣aε(u(τ)
ε )2 − aε(uε)2

∣∣2 =

∫
QT

∣∣aε(u(τ)
ε )− aε(uε)

∣∣2∣∣aε(u(τ)
ε ) + aε(uε)

∣∣2
≤ ‖aε(u(τ)

ε )− aε(uε)‖2
L4‖aε(u(τ)

ε ) + aε(uε)‖2
L4 ,

and therefore

aε(u(τ)
ε )2 → aε(uε)2 strongly in L2(QT ).
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For the diffusion term, we have

aε(u(τ)
ε )∇u(τ)

ε ⇀ uε∇uε weakly in Lq(QT ) for any q < 2.

However, we also have

‖aε(u(τ)
ε )∇u(τ)

ε ‖L2 ≤ ‖aε(u(τ)
ε )‖L∞‖∇u(τ)

ε ‖L2 ≤ Cε−1,

implying

aε(u(τ)
ε )∇u(τ)

ε ⇀ uε∇uε weakly in L2(QT ).

Therefore, we may pass to the limit to obtain that
uε ∈ L2(0,T ; H1(Ω)) ∩ H1(0,T ; (H1(Ω))′) satisfies∫ T

0
〈∂tuε, ϕ〉+

∫
QT

aε(uε)∇uε · ∇ϕ =

∫
QT

fε(uε)ϕ, for all ϕ ∈ L2(0,T ; H1(Ω)).
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The limit ε→ 0

Since the uniform bound of aε is lost in the limit ε→ 0, we can not expect

lim
ε→0

∫
QT

aε(u(τ)
ε )∇u(τ)

ε · ∇ϕ

to be well defined for test functions ϕ ∈ L2(0,T ; H1(Ω)).

We have to investigate in which Lp space may aε(u(τ)
ε ) converge strongly, and

then seek for a suitable space of test functions in which this limit may be
performed.

In addition, the time derivative bounds we obtained are dependent of the
regularity of the other terms (through the argument for the duality 〈∂t ũ, ϕ〉).

Thus, if the other terms are less regular, the time derivative will be less regular
too, and we shall therefore need to impose more regularity of ϕ in both the
space and the time variables.
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Uniform estimates in ε and weak convergences.

Taking the limit τ → 0 we get

max
t∈(0,T )

(∫
Ω

Fε(uε(t)) +

∫
Ω

|uε(t)|+
1
ε

∫
Ω

([uε(t)]−)2
)

+

∫
QT

|∇uε|2 ≤ C.

and then

‖uε‖L2(H1) ≤ C.
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Theorem (Gagliardo-Niremberg’s interpolation inequality)

Let Ω ⊂ RN be a regular open bounded set, and let u ∈ Lq(Ω) ∩W m,r (Ω), with
1 ≤ p,q ≤ ∞, and m ∈ N. Then u ∈W j,p(Ω), and

‖Dju‖Lp ≤ C‖Dmu‖θLr ‖u‖1−θ
Lq ,

where
1
p

=
j
n

+
(1

r
− m

n

)
θ +

1− θ
q

, and
j
m
≤ θ ≤ 1.

Taking p = (2N + 2)/N, θ = 2N(p − 1)/(p(N + 2)), and thus θp = 2, yields

‖uε‖Lp ≤
(∫ T

0
‖uε‖(1−θ)p

L1(Ω)
‖uε‖θp

H1(Ω)

)1/p
≤ ‖uε‖1−θ

L∞(L1)
‖uε‖θL2(H1) ≤ C.
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A nonlinear population model The limit ε → 0

Time derivative estimate.

Let r ′ = r/(r − 1) to be determined. Using p > 2,∫ T

0
〈∂tuε, ϕ〉 ≤

∫
QT

|aε(uε)||∇uε||∇ϕ|+
∫

QT

|fε(uε)||ϕ|

≤ ‖aε(uε)‖Lp‖∇uε‖L2‖∇ϕ‖Lr′ + α‖uε‖Lp‖ϕ‖Lp′

+β‖aε(uε)‖2
Lp‖ϕ‖L(p/2)′ ,

where 〈·, ·〉 is for (W 1,r ′(Ω))′ ×W 1,r ′(Ω).

Here, r ′ is such that

1 =
1
p

+
1
2

+
1
r ′

=⇒ r ′ = 2(N + 1).

Then, we take Lr ′(0,T ; W 1,r ′(Ω)) as the new (smaller, more regular) space of
test funtions.
In addition, r ′ ≥ max{p′, (p/2)′}, and thus the norms of the reaction term are
also well defined.
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A nonlinear population model The limit ε → 0

Therefore, noting that aε(s) ≤ ε+ s, we find∫ T

0
〈∂tuε, ϕ〉 ≤ (C + ‖uε‖Lp )‖∇uε‖L2‖∇ϕ‖Lr′ +

(
C + ‖uε‖Lp + ‖uε‖2

Lp

)
‖ϕ‖Lr′

≤ C‖ϕ‖Lr′ (W 1,r′ ),

and thus, for r = (2N + 2)/(2N + 1),

‖∂tuε‖Lr ((W 1,r′ )′) ≤ C.

From the general estimate, we also deduce

‖[uε]−‖L∞(L2) ≤ C
√
ε.
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A nonlinear population model The limit ε → 0

Thus we have the existence of u, z ∈ L2(0,T ; H1(Ω)) and of subsequences of
uε (not relabeled) such that

uε ⇀ u weakly in L2(0,T ; H1(Ω)),

uε ⇀ u weakly in Lp(QT ),

∂tuε ⇀ ∂tu weakly in Lr (0,T ; (W 1,r ′(Ω))′),

[uε]− ⇀ 0 weakly*-weakly in L∞(0,T ; L2(Ω)).
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A nonlinear population model The limit ε → 0

Compactness and strong convergences.

We again use the compactness Aubin-Lions-Simon’s lemma, to get

uε → u strongly in Lγ(0,T ; L2(Ω)), for any γ < 2, and a.e. in QT .

Lemma

Let Ω ⊂ RN be an open set, and let fn be a sequence in Lp(Ω) ∩ Lγ(Ω), with
p > γ, and f ∈ Lγ(Ω). Assume that

fn → f strongly in Lγ(Ω) and ‖fn‖Lp ≤ C.

Then f ∈ Lq(Ω) and fn → f strongly in Lq(Ω) for all γ ≤ q < p.

Using the bound ‖uε‖Lp ≤ C, we get

uε → u strongly in Lq(QT ), for any γ ≤ q < p.

In particular, we may choose 2 ≤ q < p = (2N + 2)/N.
This further implies, using ‖[uε]−‖Lp ≤ ‖uε‖Lp ,

[uε]− → 0 strongly in Lq(QT ) and a.e. in QT , that is u ≥ 0 a.e. in QT .
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A nonlinear population model The limit ε → 0

Convergence of aε(uε).

‖u − aε(uε)‖Lq ≤ ‖u − ãε(u)‖Lq + ‖ãε(u)− ãε(uε)‖Lq + ‖ãε(uε)− aε(uε)‖Lq ,

ãε(s) :=

s if s ≤ ε−1,

ε−1 if s ≥ ε−1.

Theorem (Monotone convergence theorem)

Let Ω ⊂ RN be an open set, and let fn ∈ L1(Ω) be a sequence of functions
satisfying

1 f1 ≤ f2 ≤ · · · a.e. in Ω,

2 sup
n

∫
Ω

fn <∞.

Then there exists f ∈ L1(Ω) such that fn → f strongly in L1(Ω) and a.e. in Ω.

ãε(s) is monotone increasing, ãε(s) ≤ s for all s ∈ R, and u ∈ L1(QT ) imply
(MCT) ãε(u)→ a(u) strongly in L1(QT ).

Using the uniform bound of ‖u‖Lq we deduce ‖u − ãε(u)‖Lq → 0 as ε→ 0.
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A nonlinear population model The limit ε → 0

‖u − aε(uε)‖Lq ≤ ‖u − ãε(u)‖Lq + ‖ãε(u)− ãε(uε)‖Lq + ‖ãε(uε)− aε(uε)‖Lq ,

Since ãε is Lipschitz continuous, we get

|ãε(u)− ãε(uε)| ≤ |u − uε|

and then the strong convergence uε → u implies

‖ãε(u)− ãε(uε)‖Lq → 0 as ε→ 0.
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A nonlinear population model The limit ε → 0

‖u − aε(uε)‖Lq ≤ ‖u − ãε(u)‖Lq + ‖ãε(u)− ãε(uε)‖Lq + ‖ãε(uε)− aε(uε)‖Lq ,

We have

|ãε(uε)− aε(uε)| = |uε − ε|1uε≤ε = (ε− uε)10≤uε≤ε + (|uε|+ ε)1uε<0.

The first term of the RHS is bounded by ε|QT |, while the second is equal to
[uε]− + ε1uε<0. Thus∫

QT

|ãε(uε)− aε(uε)|q ≤ C
(
εq +

∫
QT

|[uε]−|q
)
→ 0

as ε→ 0. Therefore

aε(uε)→ u strongly in Lq(QT ).
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A nonlinear population model The limit ε → 0

We have to pass to the limit in the expression∫ T

0
〈∂tuε, ϕ〉+

∫
QT

aε(uε)∇uε · ∇ϕ =

∫
QT

fε(uε)ϕ, for all ϕ ∈ Lr ′(0,T ; W 1,r ′(Ω)).

The time derivative and the linear part of the reaction term pass to the limit
without any additional reasoning.

For the quadratic part of the reaction term, we have∫
QT

∣∣aε(uε)2 − u2
∣∣q/2 ≤

(∫
QT

∣∣aε(uε)− u
∣∣q)1/2(∫

QT

∣∣aε(uε) + u
∣∣q)1/2

≤‖aε(uε)− u‖q/2
Lq ‖aε(uε) + u‖q/2

Lq → 0,

as ε→ 0. Thus, since

2
q

+
1
r ′
≤ 1 if we choose q ≥ 4(N + 1)

2N + 1
,

which is possible, we deduce∫
QT

aε(uε)2ϕ→
∫

QT

u2ϕ.
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A nonlinear population model The limit ε → 0

For the diffusion term, we have the same reasoning than before: aε(uε)→ u
strongly in Lq(QT ) and ∇uε ⇀ ∇u weakly in L2(QT ), implly

aε(uε)∇uε ⇀ u∇u weakly in Lγ(QT ),

with γ = 2q/(2 + q), which is smaller than r . However, we also have

‖aε(uε)∇uε‖Lr′ ≤ ‖aε(uε)‖Lp‖∇uε‖L2 ≤ C,

implying

aε(uε)∇uε ⇀ u∇u weakly in Lr (QT ).

Finally, observe that due to the convergence of [uε]− → 0 in Lq(QT ), we
deduce u ≥ 0 a.e. in QT .
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A nonlinear population model The limit ε → 0

Theorem

Let Ω ⊂ RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that u0 ∈ L2(Ω). Then, there exists u ≥ 0 in QT with

u ∈ L2(0,T ; H1(Ω)) ∩ Lp(QT ) ∩W 1,r (0,T ; (W 1,r ′(Ω))′),

where p = 2(N + 1)/N, r = 2(N + 1)/(2N + 1), and r ′ = 2(N + 1), satisfying,
for all ϕ ∈ Lr ′(0,T ; W 1,r ′(Ω)),∫ T

0
< ∂tu, ϕ > +

∫
QT

u∇u · ∇ϕ =

∫
QT

f (u)ϕ,

with < ·, · > denoting the duality product between W 1,r ′(Ω) and its dual
(W 1,r ′(Ω))′, being the initial data satisfied in the sense∫ T

0
< ∂tu, ψ > +

∫
QT

(u − u0)∂tψ = 0,

for all ψ ∈ Lr ′(0,T ; W 1,r ′(Ω)) ∩ H1(0,T ; L2(Ω)) such that ψ(T ) = 0 a.e. in Ω.
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A cross-diffusion population model

Outline
1 A linear population model

Formal arguments
Time discretization
Back to the evolution problem

2 A nonlinear population model
Formal arguments
Time discretization
Back to the evolution problem
The limit τ → 0
The limit ε→ 0

3 A cross-diffusion population model
Formal estimates
Symmetrization
Solving a time discrete approximated symmetric problem
Back to the original unknowns
Back to the evolution problem
The limit τ → 0
The limit ε→ 0
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A cross-diffusion population model

Problem: Find u1,u2 : (0,T )× Ω→ R such that, using the notation
u = (u1,u2),

∂tu1 − div J1(u) = f1(u) in QT ,

∂tu2 − div J2(u) = f2(u) in QT ,

J1(u) · n = J2(u) · n = 0 on ΓT ,

u(·,0) = u0 in Ω.

The reaction terms are of the competitive Lotka-Volterra type

fi (u) = ui
(
αi − (βi1u1 + βi2u2)

)
, αi , βij ≥ 0 for i = 1,2.

The flows are of the Bousenberg-Travis (BT) model

Ji (u) = ai0∇ui + ui (ai1∇u1 + ai2∇u2)− biui∇Φ, aij ≥ 0,bi ≥ 0.

The Shigesada-Kawasaki-Teramoto (SKT) model, for which

JSKT
i (u) = ∇

(
ui (ai0 + ai1u1 + ai2u2)

)
− biui∇Φ,

may be treated in a similarly way.
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A cross-diffusion population model

In terms of population dynamics,
The populations diffuses partly randomly, and partly to avoid
overcrowding caused by both populations.
The populations are drifted to the minima of the environmental potential
Φ, representing the best environmental locations.
The newborns are proportional to the existent population, but there is a
growth limit given in terms of the intra- and inter-specific competence
between populations. The corresponding kinetics (∂tui = fi (u)) has stable
equilibria at

( α1

β11
,0
)
,
(
0,
α2

β22

)
,
( α1β22 − α2β12

β11β22 − β12β21
,
α2β11 − α1β21

β11β22 − β12β21

)
,

depending on the relationship between the coefficients. However, due to
the cross-diffusion, these equilibria are not always the steady state
solutions of the problem.
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A cross-diffusion population model

Introducing the rescaling1 U1 = a21u1 and U2 = a12u2, we write

Ji (u) = ai0∇ui + ui (ai∇ui +∇uj )− biui∇Φ, for i , j = 1,2, with j 6= i .

We shall follow the line of the proof of existence of weak solutions developed
for an scalar equation.

1Here, we assume a12 6= 0 and a21 6= 0. Otherwise, the system is triangular (instead of full),
and the problem is simpler.
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A cross-diffusion population model Formal estimates

Formal estimates
• Multiplying by ln(ui ), we get, for F (s) = s(ln(s)− 1) + 1 ≥ 0,

2∑
i=1

∫
Ω

F (ui (T )) +
2∑

i=1

∫
QT

a0i

ui
|∇ui |2 +

∫
QT

(
a1|∇u1|2 + a2|∇u2|2 + 2∇u1 · ∇u2

)

=
2∑

i=1

∫
Ω

F (ui0) +
2∑

i=1

∫
QT

fi (u) ln(ui ) +
2∑

i=1

∫
QT

∇Φ · ∇ui .

We have
1
ui
|∇ui |2 = 4|∇

√
ui |2, and, if a1a2 > 1 (det(a) > 0, before rescaling),

a1|∇u1|2 + a2|∇u2|2 + 2∇u1 · ∇u2 ≥ a0(|∇u1|2 + |∇u2|2),

for some a0 > 0. Thus, if the RHS may be controled by the LHS, we get

2∑
i=1

∫
Ω

F (ui (T )) +

∫
QT

(|∇u1|2 + |∇u2|2) ≤ C.
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A cross-diffusion population model Formal estimates

• Integrating the equations we get (if ui ≥ 0)∫
Ω

(u1(T ) + u2(T )) ≤
∫

Ω

(u10 + u20) + α̃

∫
QT

(u1 + u2),

with α̃ = max{α1, α2}, and then Gronwall’s lemma implies∫
Ω

(u1(T ) + u2(T )) ≤ eα̃T
∫

Ω

(u10 + u20) ≤ C.

We then deduce from these two estimates that ‖ui‖L2(H1) ≤ C, like in the
scalar case.
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A cross-diffusion population model Symmetrization

Symmetrization

We simplify: ai0 = 0 and Φ = 0, and write

∂tu− div(a(u)∇u) = f(u),

where a(u) is the non-symmetric matrix given by

a(u) =

(
a1u1 u1
u2 a2u2

)
.

We used the notation

div(a(u)∇u) =

(
div(a1u1∇u1 + u1∇u2)
div(u2∇u1 + a2u2∇u2)

)
.

Following the line of previous sections, we first discretize in time,

1
τ

(uk − uk−1)− div(a(uk )∇uk ) = f(uk ),
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A cross-diffusion population model Symmetrization

and then (approximate) and linearize to use Lax-Milgram’s lemma

1
τ

(uk − uk−1)− div(a(v)∇uk ) = f(v).

Since a is non-symmetric, the corresponding bilinear form

A(u,u) =

∫
Ω

(
a1v1|∇u1|2 + a2v2|∇u2|2 + (v1 + v2)∇u1 · ∇u2

)
,

is not, in general, coercive since the condition for this form to be coercive is
that the matrix (

a1v1
1
2 (v1 + v2)

1
2 (v1 + v2) a2v2

)
is positive definite, that is, 4a1a2v1v2 > (v1 + v2)2, which is not true in general.
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A cross-diffusion population model Symmetrization

The entropy estimate of the nonlinear problem is not inherited by the linear
approximation, as it happened for the scalar problem.

The existence of an entropy estimate is usually accompanied by a change of
unknowns which symmetrizes the problem: for wi = F ′(ui ) = ln(ui )

∂t

(
ew1

ew2

)
− div(b(w)∇w) = f(ew1 ,ew2 ),

being b(w) the symmetric matrix

b(w) =

(
a1e2w1 ew1+w2

ew1+w2 a2e2w2

)
.

Strategy: solve for w, and justify the equivalency.
This is not straightforward. For instance, since

∇ui = ∇ewi = ewi∇wi ,

if we obtain ∇wi ∈ L2, this regularity does not inmmediately translates to ∇ui ,
unless wi ∈ L∞, which is not expected.
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

The formal calculations of the previous section may be also done in terms of
the approximation to the logarithm given by F ′ε.

Since F ′ε is increasing in R, its inverse is well defined (approximating the
exponential). We introduce the notation

gε = (F ′ε)
−1, satisfying g′ε = aε ◦ gε.

Then, for σ ∈ [0,1], we set the problem: Given wk−1
ε ∈ L2(Ω)2, with

Fε(gε(wk−1
i,ε )) ∈ L1(Ω), find wk

ε : Ω→ R2 such that

σ

τ
(gε(wk

i,ε)− gε(wk−1
i,ε ))− div Gε

i (wk
ε) + εwk

i,ε = σhεi (wk
ε) in Ω,

Gε
i (wk

ε) · n = 0 on ∂Ω,

with, for i , j = 1,2 and i 6= j ,

Gε
i (w) = g′ε(wi )(aig′ε(wi )∇wi + g′ε(wj )∇wj ),

hεi (w) = αigε(wi )− g′ε(wi )
(
βi1g′ε(w1) + βi2g′ε(w2)

)
.
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

Lax-Milgram. A : H1(Ω)2 × H1(Ω)2 → R and F : L2(Ω)2 × L2(Ω)2 → R
defined by, for v ∈ L2(Ω)2 and σ ∈ [0,1],

A(w,ϕ) =
2∑

i=1

(∫
Ω

εwiϕi +
2∑

i,j=1
j 6=i

∫
Ω

g′ε(vi )
(
aig′ε(vi )∇wi + g′ε(vj )∇wj

)
· ∇ϕi

)
,

F (ϕ) = σ

2∑
i=1

(∫
Ω

(
αigε(vi )− g′ε(vi )

(
βi1g′ε(v1) + βi2g′ε(v2)

))
ϕi

− 1
τ

∫
Ω

(gε(vi )− gε(wk−1
i,ε ))ϕi

)
.

with ϕ = (ϕ1, ϕ2) ∈ H1(Ω)2. We have, using a1a2 > 1,

A(w,w) ≥
2∑

i=1

(
ε

∫
Ω

w2
i + a0c(ε)

∫
Ω

|∇wi |2
)
,

with c(ε) = min
s∈R

(g′ε(s))2 > ε2. Thus, A is coercive, and both A and F are

clearly continuous.
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

Lax-Milgram’s lemma ensures the existence of a unique weak solution,
wk
ε,σ ∈ H1(Ω)2, of

σ

τ
(gε(vi )− gε(wk−1

i,ε ))− div Gε
i (wk

ε,σ,v) + εwk
i,ε,σ = σhεi (wk

ε,σ,v) in Ω,

Gε
i (wk

ε,σ,v) · n = 0 on ∂Ω,

with

Gε
i (w,v) = g′ε(vi )

(
aig′ε(vi )∇wi + g′ε(vj )∇wj

)
,

hεi (w,v) = αigε(vi )− g′ε(vi )
(
βi1g′ε(v1) + βi2g′ε(v2)

)
.
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

Fixed point. Define the map S : L2(Ω)2 × [0,1]→ L2(Ω)2 given by
S(v, σ) = wk

ε,σ.

To apply the Leray-Schauder’s theorem, we have to check the following:
1 Continuity and compactness of S. The arguments are similar to the case

of a scalar equation.
2 S(v,0) = 0, which is inmmediate.
3 If v = S(v, σ) for (v, σ) ∈ L2(Ω)2 × [0,1] then ‖v‖L2 ≤ C.

Let us prove the last point.

We assume that v = wk
ε,σ, and we have to show an uniform bound, with

respect to σ ∈ [0,1], of ‖wk
ε,σ‖L2 .

For clarity, we replace wk
ε,σ by w, and wk−1

ε by w̃.
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

We have that, by assumption, w solves

σ

τ
(gε(wi )− gε(w̃i ))− div Gε

i (w) + εwi = σhεi (w) in Ω,

Gε
i (w) · n = 0 on ∂Ω.

Using ϕ = wi we get, similarly to the deduction of the coercivity of A,

2∑
i=1

(
σ

∫
Ω

(gε(wi )− gε(w̃i ))wi + τε

∫
Ω

w2
i + τa0c(ε)

∫
Ω

|∇wi |2
)
≤ τσ

2∑
i=1

∫
Ω

hεi (w)wi

The convexity of Fε implies Fε(x)− Fε(y) ≤ F ′ε(x)(x − y).

Choosing x = gε(wi ) and y = gε(w̃i ), and noticing g−1
ε = F ′ε, we deduce∫

Ω

(gε(wi )− gε(w̃i ))wi ≥
∫

Ω

(Fε(gε(wi ))− Fε(gε(w̃i ))).
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A cross-diffusion population model Solving a time discrete approximated symmetric problem

For the RHS term, we claim (and it’s true!) that, for i = 1,2,

f εi (s1, s2)F ′ε(si ) ≤ C(1 + Fε(s1) + Fε(s2)) for all s1, s2 ∈ R,

with f εi (s1, s2)) = αisi − aε(si )
(
βi1aε(s1) + βi2aε(s2)

)
.

Taking si = gε(wi ), we get

2∑
i=1

∫
Ω

hεi (w)wi ≤ C
2∑

i=1

∫
Ω

(1 + Fε(gε(wi ))).

Therefore, we obtain (τ < 1/C and σ ≤ 1)

2∑
i=1

(
σ(1− Cτ)

∫
Ω

Fε(gε(wi )) + τε

∫
Ω

w2
i + τa0c(ε)

∫
Ω

|∇wi |2
)

≤ Cστ + σ

2∑
i=1

∫
Ω

∫
Ω

Fε(gε(w̃i )).

Since, by assumption, Fε(gε(wk−1
i,ε )) ∈ L1(Ω), we deduce the σ−uniform

estimate for wk
ε,σ.
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A cross-diffusion population model Back to the original unknowns

Back to the original unknowns

We define uk
i,ε = gε(wk

i,ε) and notice that uk
i,ε ∈ H1(Ω), since

∇uk
i,ε = g′ε(w

k
i,ε)∇wk

i,ε = aε(gε(wk
i,ε))∇wk

i,ε.

Introducing this change of unknowns in the equations for wk
ε , with σ = 1, we

see that uk
ε satisfies,

1
τ

(uk
i,ε − uk−1

i,ε )− div Jεi (uk
ε) + εF ′ε(u

k
i,ε) = f εi (uk

ε) in Ω,

Jεi (uk
ε) · n = 0 on ∂Ω,

for given uk−1
ε ∈ L2(Ω)2 with Fε(uk−1

i,ε ) ∈ L1(Ω), with

Jεi (u) = aε(ui )(ai∇ui +∇uj ),

f εi (u) = αiui − aε(ui )
(
βi1aε(u1) + βi2aε(u2)

)
.
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Moreover, using ϕ = F ′ε(u
k
i,ε) leads to

2∑
i=1

max
k=1,...,K

(∫
Ω

Fε(uk
i,ε) +

∫
Ω

|uk
i,ε|+

1
ε

∫
Ω

([uk
i,ε]−)2 + τε

∫
Ω

|F ′ε(uk
i,ε)|2

)
+

τ

2∑
i=1

K∑
k=1

∫
Ω

|∇uk
i,ε|2 ≤ C.
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Back to the evolution problem
Consider

u(τ)
i,ε (t , x) = uk

i,ε(x), ũ(τ)
i,ε (t , x) = uk

i,ε(x) +
tk − t
τ

(uk−1
i,ε (x)− uk

i,ε(x)).

Replacing these functions in the weak formulation∫ T

0
∂t ũ

(τ)
i,ε ϕ+

∫
QT

Jεi (u(τ)
ε ) · ∇ϕ+ ε

∫
QT

F ′ε(u
(τ)
i,ε )ϕ =

∫
QT

f εi (u(τ)
ε )ϕ,

for all ϕ ∈ L2(0,T ; H1(Ω)), and the discrete energy estimate gives

max
t∈(0,T )

(∫
Ω

Fε(u
(τ)
i,ε (t)) +

∫
Ω

|u(τ)
i,ε (t)|+ 1

ε

∫
Ω

([u(τ)
i,ε (t)]−)2

)
+ ε

∫
QT

|F ′ε(u
(τ)
i,ε )|2

+

∫
QT

|∇u(τ)
i,ε |

2 ≤ C.

Poincaré-Wirtinger’s inequality implies

‖u(τ)
i,ε ‖L2(H1) ≤ C, ‖ũ(τ)

i,ε ‖L2(H1) ≤ C.
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Time derivative estimate.

We have, for ϕ ∈ L2(0,T ; H1(Ω)),∫ T

0
〈∂t ũ

(τ)
i,ε , ϕ〉 ≤ ai

∫
QT

|aε(u(τ)
i,ε )|

(
|∇u(τ)

i,ε |+ |∇u(τ)
j,ε |
)
|∇ϕ|+

∫
QT

|f εi (u(τ)
ε )||ϕ|

+ ε

∫
QT

|F ′ε(u
(τ)
i,ε )||ϕ| ≤ Cε−2‖ϕ‖L2(H1),

and thus

‖∂t ũ
(τ)
i,ε ‖L2((H1)′) ≤ Cε−2.
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The limit τ → 0
From the previous bounds, we deduce, as τ → 0,

u(τ)
ε ⇀ uε weakly in L2(0,T ; H1(Ω))2,

u(τ)
ε ⇀ uε weakly in L2(QT )2,

ũ(τ)
ε ⇀ zε weakly in L2(0,T ; H1(Ω))2,

ũ(τ)
ε ⇀ zε weakly in L2(QT )2,

∂t ũ(τ)
ε ⇀ ∂tzε weakly in L2(0,T ; (H1(Ω))′)2,

the identification zε = uε being deduced like in the scalar case.

Compactness and strong convergences.

Aubin-Lions-Simon’s lemma, gives

ũ(τ)
ε → uε strongly in L2(QT )2, and a.e. in QT .

In particular, like in the scalar case, we also obtain

u(τ)
ε → uε strongly in L2(QT ), and a.e. in QT .
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Convergence.

Passing to the limit τ → 0 is justified like in the previous cases.

We obtain that uε ∈ L2(0,T ; H1(Ω))2 ∩ H1(0,T ; (H1(Ω))′)2 satisfies,∫ T

0
〈∂tui,ε, ϕ〉+

∫
QT

Jεi (uε) · ∇ϕ+ ε

∫
QT

F ′ε(ui,ε)ϕ =

∫
QT

f εi (uε)ϕ,

for all ϕ ∈ L2(0,T ; H1(Ω)),
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The limit ε→ 0

Taking the limit τ → 0 we get

max
t∈(0,T )

(∫
Ω

Fε(uε(t)) +

∫
Ω

|uε(t)|+
1
ε

∫
Ω

([uε(t)]−)2
)

+ ε

∫
QT

|F ′ε(ui,ε)|2

+

∫
QT

|∇uε|2 ≤ C.

‖uε‖L2(H1) ≤ C.
Gagliardo-Nirenberg: ‖uε‖Lp ≤ C, for p = (2N + 2)/N,
Time derivative: ‖∂tuε‖Lr ((W 1,r′ )′) ≤ C, for r = (2N + 2)/(2N + 1).

Also, ‖[ui,ε]−‖L∞(L2) ≤ C
√
ε and

√
ε‖F ′ε(ui,ε)‖L2 ≤ C.
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From these bounds, we get

uε ⇀ u weakly in L2(0,T ; H1(Ω))2,

uε ⇀ u weakly in Lp(QT )2,

∂tuε ⇀ ∂tu weakly in Lr (0,T ; (W 1,r ′(Ω))′)2,

[uε]− ⇀ 0 weakly*-weakly in L∞(0,T ; L2(Ω))2

(University of Oviedo) Review on cross-diffusion 96 / 99



A cross-diffusion population model The limit ε → 0

Compactness and strong convergences.

Aubin-Lions-Simon’s lemma, and similar reasonings than in the scalar case:

uε → u strongly in Lq(QT )2, for any 1 ≤ q < p.

[uε]− → 0 strongly in Lq(QT )2 and a.e. in QT , that is ui ≥ 0 a.e. in QT ,

aε(ui,ε)→ ui strongly in Lq(QT ).

with 2 ≤ q < p = (2N + 2)/N.

Convergence.

Except for the term involving F ′ε(ui,ε), the passing to the limit of the rest of
terms are justified like in the scalar case. For the former,

ε

∫
QT

F ′ε(ui,ε)ϕ ≤ ε‖F ′ε(ui,ε)‖L2‖ϕ‖L2 ≤ C
√
ε→ 0.
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Theorem

Let Ω ⊂ RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that ui0 ∈ L2(Ω) are non-negative, for i = 1,2, and define

Ji (u1,u2) = ui (ai∇ui +∇uj ), with ai > 0, a1a2 > 1,

fi (u1,u2) = ui
(
αi − (βi1u1 + βi2u2)

)
,

for i , j = 1,2 and i 6= j . Then, there exists non-negative (u1,u2), with

ui ∈ L2(0,T ; H1(Ω)) ∩ Lp(QT ) ∩W 1,r (0,T ; (W 1,r ′(Ω))′),

where p = 2(N + 1)/N, r = 2(N + 1)/(2N + 1), and r ′ = 2(N + 1), satisfying,
for all ϕ ∈ Lr ′(0,T ; W 1,r ′(Ω)) and i = 1,2,∫ T

0
< ∂tui , ϕ > +

∫
QT

Ji (u1,u2) · ∇ϕ =

∫
QT

fi (u1,u2)ϕ,

with 〈·, ·〉 denoting the duality product between W 1,r ′(Ω) and its dual
(W 1,r ′(Ω))′. The initial data is satisfied in the sense of (W 1,r ′(Ω))′.
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Thank you!
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