Nonlinear analysis tools for proving
existence of weak solutions
of cross-diffusion problems

Gonzalo Galiano

Dpt. of Mathematics -University of Oviedo

(University of Oviedo) Review on cross-diffusion 1/99



Objective: proving existence of weak solutions of evolution cross-diffusion
problems of the Shigesada-Kawasaki-Teramoto (SKT) type.

Steps:
@ Linear scalar heat equation,
© Nonlinear scalar reaction-diffusion problem,
© Cross-diffusion problem.
Rules:
@ the maximum principle can not be applied, and
@ the starting point to construct a solution is the Lax-Milgram’s lemma.

The problems are motivated by population dynamics, but the techniques apply
to general evolution reaction-convection-diffusion problems.

Along the way, we recall well known results of functional analysis that provide
us with powerful tools to tackle these problems.
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A linear population model

Problem: Given T > 0 and bounded Q c R", find (a non-negative)
u:(0,T)x Q— R such that

ou—Au=u inQr=(0,T) xQ,
Vu-n=0 onlr=9(0,T) x Q,
u(,0)=up >0 in Q.

In terms of population dynamics,
@ Population diffuses randomly.

@ Newborns are proportional to the existent population, and no growth limit.
The corresponding kinetics (0;u = u) implies exponential growth.
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A linear population model

First ingredient: energy estimate — notion of weak solution.

Suppose u is smooth solution. We get the energy identity

;/S;u(t) |Vu|2 /UO+/(D[

Lemma (Gronwall’s lemma)

LetT >0,ae L>(0,T),and A € L'(0, T), with A\ > 0 in (0, T). Suppose that,
for b € C([0, T]) increasing,

a(t) < b(t) + /tk(s)a(s)ds a.e. in (0, T).
0

Using Gronwall’s lemma,

/u(t)zg e2’/ us, which implies / u? < TezT/ us.
Q Q ar Q
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A linear population model

Therefore,

ull Lo zy + VUl 2 < C = |[[u][ 2y < C.

Since

ou = —div(Vu) 4+ u e L2(0, T; (H'(Q))),
we don'’t expect d;u € LP(Qr).
A generic definition of weak solution

;
/ (Oru, ) + Vu-Vy = / up, forallyeV,
0 Qr Qr

with V a space of test functions and (-, -) the duality product of V' x V.
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Formal arguments

Method of proof: Consider a sequence of approximating problems (P,) such
that (P,) — (P) as n — cc.

Suppose the energy estimate is satisfied by uj, slution of

;
/ (Otup, ) + Vu,,-Vga:/ upp, forallpe V, (Pn)
0 Qr Qr

that is
Hun||L°°(L2) + ||unH/_2(H1) < C.

Then, there exists a subsequence of u, (that we do not relabel) and
ue L0, T;L3(Q)) N L%0, T; H'(Q)) such that

up — u  weakly*-weakly in L>=(0, T; L?(Q)),
Vu, — Vu weakly in L2(Qr).
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Then, for all p € V c L3(0, T; H'(Q)),

Vun -V — Vu-Vo,
Qr Qr

Qr Qr

Second ingredient: Estimate for the time derivative.
Definition

Let V be a normed space, and ¢ : V — R be a linear functional. Then the
norm of ) on the dual space V' of V is defined by

X))y
ol = sup L Xvxv
xev  IXllv
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A linear population model Formal arguments

Fix V = 20, T; H'(Q)),

)
/ (Ortim, ) < / IV tn|[Vig] + / tnl ]
0 Qr Qr

< IVnll 2 Velle + lunllzllelle < Cllellzen-

Thus (|0un||2(H1yy < C, implying

Otup — z  weakly in L2(0, T; (H'(Q))).
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A linear population model Formal arguments

Identification z = 0;u:
For ¢ € C3°(0, T; H'(Q)), dense in L3(0, T; H'(Q)),

/0 (Orum ) /0 ",

Using the weak convergence in e.g. L2(Qr)

/Or(atunﬂmz—/o (Un, Op) = / /uné?ﬂ/)—> / /u&,w / GRY

and, density plus uniqueness of the limit

/ N2 = / "),

for all p € L2(0, T; H'(Q)). Thatis, z = d;u.

Therefore, u, solution of (P,) converges to u solution of (P).
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A linear population model Formal arguments

Sense of initial data.

For ¢ € C*=(Qr)
T
/0 Orlu — o), ) = — /O (=)o + /Q (W(T) — uo)u(T)—
| /Q (u(0) — to)(0).

Choosing 4 € L?(0, T; H'(Q)) N H'(0, T; L3(Q)), with 1(T) = 0 the initial
condition is satisfied in the sense

/OT@tU’W + /QT(U — Up)0rp = 0.
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A linear population model Formal arguments

Theorem (Sobolev’s embedding theorem)

Let Q2 c RN be bounded and of class C', and1 < p < oo. The following
injections are continuous:

o W'P(Q) C LP'(Q), with p* = Np/(N — p), if p < N,
@ W'P(Q) c LIY(Q), forall1 < q < oo, ifp=N,
o W'P(Q) c C(Q), ifp> N.

Thus, the injection H'(0, T; L3(Q)) c C([0, T]; L3(Q)) is continuous, so it
makes sense to set ¢(T) =0in Q.

If the solution is more regular, say o:u € LZ(OT), then

m1&mm+éy:www—4wmwm/

Q

wazéwfwwwm

for all /(0) € L?(Q), implying u(0) = up a.e. in Q.
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Time discretization

We start here the rigorous proof. Take
KeN, 7=T/K, t=kr, (0,T]=Uo(t1, k]

Problem: Given u*~" € [2(Q), find u* : Q — R such that

’
/(uk — UM + / Vuk Vo = / ukp forall p € H'(Q).
Q Q Q

T

Lemma (Lax-Milgram)

Let H be a Hilbert space and assume that A: H x H — R is a continuous
coercive bilinear form. Then, given any F € H', there exists a unique element
u € H such that A(u, ¢) = (F, ) forall ¢ € H.
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Set H = H'(Q), and

A(u, ) = /QVU-chJr ; /Q Uy, F = ;uk‘1 e L2(Q) c (H'Y(Q)Y

Ais clearly continuous and coercive in H'(Q). Then, (Lax-Milgram) there
exists a weak solution, u* € H'(Q) of the time discrete problem.

Uniform estimates.
Use ¢ = u¥ as test function

(1—T/|u|+7/|wk\ /“k

Youngs' inequality gives

1
(1_7')/|Uk|2+7'/|VUk|2§f/|Uk_1|2.
2 Q Q 2 Q

Taking 7 < 1/2, and using (1 — r)~" < exp(r(1 —r)~") forall r € [0,1),

/luk|2 < e4T/ |U0|2 < C.
Q Q
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A linear population model Time discretization

Summing for k = 1,..., K, we obtain

K K
1/ K2 / k|2 1/ 2 / k|2
— utlc+r [Vu e < = [ |w|*+7 |u"|7,
[0S [wet g [l ery [

and thus, using K7 =T,

TZ/WUK\Z /|uo|2+TC<C

Therefore

 max /|u |2+TZ/\VU 2<c
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Back to the evolution problem
Back to the evolution problem

Introduce piecewise constant and linear interpolators in time,

WOt x) = k() B0 x) = 00+ E W () - k(o)

for (f,x) € (t_1,t%] x Q,fork =1,...,K. Then

max / |u(T)\2+/ VuIR < ¢,
Q Qr

te(0,T)

and since t, — t < 7, we also deduce

max / |&<T>\2+/ VEOPR < C.
te(0,7) Jq Qr

Replacing u{™ and (™) in the weak formulation we get

8ta(7)§0 + /

VU . vy - / UMy forall p e L2(0, T; H'(Q).
Qr

Qr Qr
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A linear population model Back to the evolution problem

From this identity and the above estimates, we obtain, like in the formal

computation,

HatD(*) ”L?((H‘)’) <C.

Therefore, we deduce the existence of u, z € L?(0, T; H'(Q)) and
subsequences of u(™ and (™) such that

U~y
u™ —~u
o)~z
o~z

o) — 9,z

(University of Oviedo)

weakly in L2(0, T; H'(Q)),
weakly*-weakly in L=(0, T; L3(Q))),
weakly in L2(0, T; H'(Q)),
weakly*-weakly in L=(0, T; L3(Q))),
weakly in L2(0, T; (H'(Q))).
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A linear population model Back to the evolution problem

Identification z = u.
Fort e (tk_1 s tk],

uk=1(x) — Uk (x)

8t x) — Ut x)] = |(t — 1) | < 1[0t x)|,

we deduce

||U(T) _ U(T)||L2((H1)’) < T||8[[I(T)||L2((H1)/) —0 ast— 0,
and hence z = u.

Therefore, we may pass to the limit = — 0, obtaining
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A linear population model Back to the evolution problem

Theorem

LetQ c RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that uy € L?(Q). Then, there exists
uel?0,T; HY(Q)NH'(0, T; (H'(Q))), such that, for all p € L2(0, T; H'(Q)),

—
/ <8tu,g0>+/ VU~V90:/ Uy,
0 Qr Qr

with < -,- > denoting the duality product between H'(Q) and its dual (H'(Q))'.
In addition, the initial data is satisfied in the sense

-
/ <8tu,w>+/ (Uu— w)oryp =0,
0 Qr

for all ) € L2(0, T; H'(Q)) N H'(0, T; L3(Q)) such that(T) = 0 a.e. in Q.
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Outline

© A nonlinear population model
@ Formal arguments
@ Time discretization
@ Back to the evolution problem
@ ThelimitT — 0
@ Thelimite - 0
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A nonlinear population model

Problem: Find v : (0, T) x Q — R such that

oru — div(uvu) = f(u) = u(a — Bu) in Qr,
uvVu-n=0 onrlr,
u(-,0)=up >0 in Q.

In terms of population dynamics
@ Population diffuses to avoid overcrowding (maxima of u).

@ Newborns are proportional to the existent population. Growth limit in
terms of the so-called carrying capacity of the habitat.
The corresponding kinetics (0;u = f(u)) has a stable equilibrium at
u=ua/p.

Generic form of weak solution:

/ (0, @) +/ uvu-Ve = f(u)p, forallpe V.
ar ar ar
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Formal arguments

Formal estimates:
@ Using ¢ = In(u) we get, for F(s) = s(In(s) —1)+1>0,

/QF(U(T))+/O \VU\ZZ/QF(UO)—F ROLO!

The term E(t) = / F(u(t)) is called the entropy of the system. This
Q
identity only makes sense if u > 0.
@ Using ¢ =1 in we get (if u > 0)

/Qu(T) S./s2uo+a./(37 u,

and then Gronwall’s lemma implies

/u(T)geaT/uogc.
Q Q
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A nonlinear population model Formal arguments

Suppose that the RHS in the weak formulation may be controled by the LHS:

max [ F(u(t Ul| oo vu|;2 < C,
max [ Fu(®) + ullosq) + [ Vulis < C,

80 |[ul[ 21y < C (we shall see later why).
Introduce again a sequence of aproximated problems (Pp), e.g.
OtUp cer/ Yn(Un)VUup -V = / f(up)p, forallye V, (Pn)
ar ar Jar
with ¢, — id, and suppose u, satisfies the above estimate. That is,
||UnH/_2(H1) < C. Then,

Vu, — Vu weakly in L2(Q7).

The gradient estimate is the first ingredient to prove the strong compactness
of u, in some LP.

We need strong convergence in L”, and a.e. convergence in Qr to pass
to the limit in the nonlinear terms.

(University of Oviedo) Review on cross-diffusion 25/99



A nonlinear population model Formal arguments

The second ingredient is an estimate for the time derivative.
Lemma (Simon, Aubin-Lions)

Let X, B, and Y be Banach spaces with X ¢ B C Y such that
@ X is compactly embedded in B.
@ B is continuously embedded in Y.

Suppose that the sequence u,, satisfies:
@ up, is bounded in L9(0, T; X) N L},,(0, T; X), for1 < g < .
@ Oup is bounded in L},,(0, T; Y).

Then, for all p < q, there exists a subsequence of uy, (not relabeled) and an
element u € LP(0, T; B) such that

u, — u strongly in LP(0, T; B) and a.e. in Qr.
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A nonlinear population model Formal arguments

A usual situation is: X = H'(Q), and B = L?(Q). Indeed,
Theorem (Rellich-Kondrachov)
LetQ c RN be bounded and of class C', and1 < p < oo. The following
injections are compact:
o W'P(Q) c LY(Q), forall1 < q < p*, with p* = Np/(N — p), ifp < N,
@ W'P(Q) c LI(Q), forallp < q < oo, ifp=N,
e W'P(Q)c C(Q), ifp> N.

Then we get that

dup bounded in L'(0, T; Y) = u, — u strongly in L2(Q7) and a.e. in Qr.

(University of Oviedo) Review on cross-diffusion 27/99




A nonlinear population model Formal arguments

Summarizing, if the RHS may be absorbed by LHS, and the time derivative
estimate is available, we have

Vu, — Vu weakly in L3(Qr),
iUy — Oru weakly in L'(0, T; Y),
Up— U strongly in L?(Qr) and a.e. in Q7.

With these kind of estimates (and others), we have to justify the limits

/ Ortn ) > [ (0w ),
Qr Qr

Un(Un)VUn -V — | uVu- Ve,
Qr

(ats — BUB), /funw ().

Qr
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Time discretization

First (non-successful) attempt.

Nonlinear problem: Given =" € V, find u¥ : Q — R such that
1
—(UF — U — div(uFvuk) = f(UF) inQ,
=

ukvuk-n=0 on 99.

Linear problem (for Lax-Milgram): Given v~", v e V, findu* : Q - R

l(uk —uk=Ty — div(vVuF) = f(v) inQ,
-
vWuk-n=0 on 9Q.

Like in the linear case, we would like to take H = H'(Q), and define

A(u,gp):/QvVu-VgaJr;/pr.

However, A(u, ¢) is not coercive (v might vanish). And we need, for using
¢ = Inu, to avoid u = 0. We adopt the following approximation.
Review on cross-diffusion  29/99



Approximation of the linear problem

Regularized linear problem.
Lete > 0. Given u*~", ve V,finduf: Q - R

Lk~ uf ) — div(a (V) = £.(v) inQ,
:
a.(v)Vuk-n=0 on 99,

with £.(s) = as — Ba.(s)?. Here, a.(s) — s, to which we impose

e '>a.(s)>¢ forallseR.

In weak form:

1/(u‘fj— U§_1)<p+/ a.(v)Vuk - vy = / f.(v)p, forallpe H'(Q).
Q Q Q

T
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A nonlinear population model Time discretization

Now we can take H = H'(Q), V = L?(Q) in Lax-Milgram, and define
1 1
A (U, ) = / a.(v)Vu -V + f/ up, F=~f(v)+—-u"el?Q).
Q T Ja T

A. is clearly continuous and coercive in H'(Q), and therefore there exists a
weak solution uf ¢ H'(Q).

At this point, we reformulate the nonlinear time-discrete problem.
Given uf~" € L?(Q), find u¥ : Q — R such that

1(u§ — Uk —div(a. (uF)Vuk)) = £ (U9 in Q.
-
a.(uvuk-n=0 on 99.
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A nonlinear population model Time discretization

Now, observe the following inconvenient:
Assuming that we may use ¢ = F'(u¥) = In(u¥), we obtain
K
a.(uk
[atr e - [ =B vue
Q Q

uk

€

instead of the original formal identity
/ uF" (u)|Vul]® = / |Vul?.
Q Q

Thus, we also need to approximate F by a suitable F. which allows us to
obtain an L? estimate of Vu..
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The definition of a. and F.

For ¢ > 0, we want to produce approximations:
@ a.suchthata.(s) » sase — 0,withe~' > a.(s) > e forall s € R.

@ F. non-negative and smooth such that F.(s) — F(s) = s(In(s) — 1) + 1,
ase — 0.

@ a.(s)F/(s)=1forall seR.

Let a. : R — [, '] be given by the truncature function

€ if s <e,
a.(s) =«<s ife<s<e!
e! ife ! <s.
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A nonlinear population model Time discretization

Using the third condition, we set F/(s) = 1/a.(s). Integrating and adjusting
the integration constants for continuity, we get F. € C>'(R, R, ) given by

°0_ 2
i +5s(lne—1)+1 if s <e,
F.(s):=<{s(ns—1)+1 fe<s<e ',
2_ -2
(e~ > )i sine — )11 el <s,
with s
2 4ne -1 if s <&,
g
Fl(s):=<1Ins ife<s<e T,
es+Ine " -1 ife ! <s.
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A nonlinear population model Time discretization

F. F!
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Figure : The convex function F. and its derivatives.
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Fixed point method to couple the nonlinearities

Theorem (Leray-Schauder fixed point theorem)
Let V be a Banach space andlet S : V x [0,1] — V be a continuous and
compact map such that

e S(v,0)=0forallveV.

e foreach pair (v,o) € V x [0, 1] satisfying v = S(v, o), there exists a
positive constant C, such that ||v||y < C.

Then there exist a fixed point, w € V, of the map S(v, 1), i.e. w = S(w, 1).

To solve the nonlinear time-discrete problem we define
S: L3(Q) x [0,1] — L3(Q) such that, for u*~" € L2(Q) given,

(v,0) — ufe

solution of
1 . 1 .
;uﬁ"’ —div(a:(V)VurE)) = o (f.(v) + ;u§*1) in Q,
a.(v)Vuo.n=0 on 9.
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A nonlinear population model Time discretization

Lax-Milgram shows that there exists a unique solution - € H'(Q) of the
above problem. Thus, S is well defined.

To apply Leray-Schauder’s theorem, we have to check the following:
@ Continuity: Let v, € L3(Q), o, € [0, 1], with

Vo — v strongly in L3(Q), o5 — 0.

Denote by ug,, to the solution of the linear problem corresponding to
(Vn,on), thatis S(v,, o). We must check

uk, — U strongly in [3(Q), asn— oc.

@ Compactness: Since we start with v € L2(Q) and finish in
S(v,0) = uf7 € H'(Q), we deduce that S is compact.

@ S(v,0) = 0, which is inmmediate. Use ¢ = u*” as test function.
Q Ifv=S(v,0)(= uk7)for (v,0) € L3(Q) x [0, 1] then ||u| 2 < C.

(University of Oviedo) Review on cross-diffusion

37/99



A nonlinear population model Time discretization

We start proving the continuity. Using » = uf, € H'(Q
e,n

1 o _
L R R o A PRy P T
T JQ Q Q T Ja

Since a.(s) > ¢ for all s € R, we have

sk,

/|U§,n|2+7—5/ |Vu§n|2 STO(O’n/ Vnuf’n—rﬁan/ ag(vn)zuf),,—l—an/ .
Q Q Q Q Q

2
Using Young’s inequality in the form ab < va® + % and o, < 1, we get,

1 _
3 [ aP e [ ViR < arta® [ R areR [ (o)t +a [ U
Q Q Q Q Q

Review on cross-diffusion 38/99
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A nonlinear population model Time discretization

Thus, since v,,, u*~' € L?(Q), and a.(s) < ', we obtain
1ot 7 [ 90 < 01+ 27,

implying that [|uf || 1) is bounded.
The compact embedding L?(Q) ¢ H'(Q), implies
uk, =z weakly in H'(Q),

uk,— z strongly in L?(Q), and a.e. in Q.

Finally, the continuity will be proven if we identify z as S(v, o)(= u*7).

g
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A nonlinear population model Time discretization

Let’s take the limit n — oo in the weak formulation

1 o _
- / Ug,n‘ﬂ + / as(vn)vug,n Vo= Un/ fo(vn)p + = / Ug 190-
T JQ Q Q T Ja

By assumption, v, — v strongly in L2(Q).

Since a. is Lipschitz continuous, we have
l|@-(vn) — @:(V)|lez < [[Vh — Vlli2,

and thus a.(v,) — a.(v) strongly in L2(Q) and a.e. in Q, as n — oc.

Similarly,

f.(vn) — £.(v) strongly in L3(Q).
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A nonlinear population model Time discretization

Theorem (Dominated convergence theorem)
Let f, be a sequence of functions of L' (Q) satisfying
o fy(x) — f(x) a.e. inQ,

@ there is a function g € LP(Q), with1 < p < co, such that, for all n,
[f2(x)] < 9(x) a.e. in Q.

Then f € LP(Q) and f, — f strongly in LP(Q).

Being a.(v,) < ¢~ for all n, we may use the DCT to deduce

a.(vp) — a-(v) strongly in LP(Q), for all p < cc.

(University of Oviedo)
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A nonlinear population model Time discretization

Thus,

2p

a-(va)VUl , — a.(v)Vz weakly in L9(Q), for g = —— <2, and2 < p < cc.

Since Vg € L?(Q), the above convergence is not enough to pass to the limit in

However, having the bound
2= (va) VUl lliz < llac(Va)lle= IV U pll 2 < C.,
we deduce that, in fact, up to a subsequence,

a-(v)Vut , — a.(v)Vz weakly in L3(Q).
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A nonlinear population model Time discretization

Thus, we get , as n — oo,

1
—/z<p+/ag(v)Vz~V<p:a/fa(v)gp+g/ué‘”(p,
T Ja Q Q T Ja

S0 z is a weak solution corresponding to v.

Moreover, the limit z is unique because the solution of the limit problem may
be obtained by Lax-Milgram’s lemma.

Therefore, we deduce that the whole sequence converges, this is, z = S(v, o).
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A nonlinear population model Time discretization

Point 4: uniform bound of the fixed points of S.
Assume v = 17 and let us prove ||u¥7 |- < C, forall o € [0,1].

Uk satisfies

1 .
;uﬁ’” —div(a.(uf7)Vuk)) = o (L (u57) + ;ué‘”) in Q,

a.(u)wuko . n=0 on 99.

Using ¢ = uf? € H'(Q) we obtain (as before)

[ 1utef e [ Va0 4 r2e0) < 01 4 2.
Q Q

We deduce the existence of a fixed point of S(v, 1), which we denote by u*,
which is a solution of the nonlinear time-discrete problem.
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A nonlinear population model Time discretization

Further estimates for the nonlinear time-discrete
problem

Until now, we have shown the existence of a solution

1;/(uﬁ—ué“1)gz>+/ a. (U VUt - vy = / f.(uf)p, forallp e H'(Q).
Q Q Q

Now, we deduce uniform estimates with respect to e:
Taking ¢ = F/(u¥)

R T R T AT 0!
TJa Q Q

For the first term of the LHS, we use the convexity estimate

(s —t)F.(s) > F.(s) — F-(t), forall s teR.

(University of Oviedo)

Review on cross-diffusion 45/99



A nonlinear population model Time discretization

For the term at the right hand side, we use

2
F.(s) > %sz —2 foralls>0, F.(s)> ;5 forall s <0,

max{a.(s), sF.(s)} <2F.(s)+1 forallseR,

a.(s)F.(s)>s—1 foralseR,
F.(a.(s)) < F.(s) forallscR,
[1—58]+ <1+4]s]-

to deduce
f.(S)F.(s) < (2a+ 4B)F-(S) + o + 30.

Therefore,

(1-wr) [ Rty [ VukP < or o [ R,
Q Q Q

with w = 2(a + 3). Here, we impose 7 < w™ .
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A nonlinear population model Time discretization

Therefore, we have

1—wT/F +T/|Vuk\2<CT+/F k1)

Estimate of the entropy.

 max /F <e°"T/1“”) CT+/F Uo) _C.
Estimate of the gradient. Summing in k

/QFE(Uf)-l-TkZi/Q|Vu§2 < CTK+/QFE(UO)+MEK:/ F.(u¥)

gCT+/F€(uo +wT max /F(u
Q

implying
K
K2
> / ViR < C.
k=19
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A nonlinear population model Time discretization

Extenct of negativity of u*. From

FE(s)E% forall s < 0
we get
—/ W42 < / ([ 1_):/ F.(uf)
uk<o
<[ Fwy+ / Fa(uf) = / () <C.
uk<o uk>0 Q
Thus,

 max /|[u"]_|2 < Ce.
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A nonlinear population model Time discretization

L' estimate.

Using ¢ = 1

(1 —on-)/uéfg/u?fq, implying ~ max /uéfgC.
Q Q k=1,...K Ja

Young’s inequality,

L= [+ = [ e [ <o(i+ [ 1w F).

and then,

,max /|u|<C
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A nonlinear population model Time discretization

Summarizing, we have obtained the bound

1
k k ! 2<
k:n11,fa.).(,K</QF6(U€)+/Q‘us‘+ 5/([‘1 +TE /\Vu |- <C.
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Back to the evolution problem
Back to the evolution problem

b —t
T

Take u((t, x) = uk(x), T(t, x) = uk(x) +
satisfying the identity

)
/ o) + / a.(uVuD Vo= [ L),
0 Qr Qr

for all ¢ € V, to be chosen such that V ¢ L%(0, T; H'(Q)).

For passing to the limits = — 0 and = — 0 we need:
@ Time derivative: weak convergence of 6&/@ in some large space.

© Diffusive term: strong convergence of a.(u{™), and weak convergence
of Vu!™). Since the latter will be in L2(Q7), we need to investigate the
larger space in which ag(ugT)) converges strongly to fix the space of test
functions.

© Reaction term: strong convergence of u(™) in some LP(Qr).
© Identification: The limits of u{”) and (") are the same function.
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Uniform estimates in < and 7

The estimates for the sequence of time-independent problems lead to
1
max ([ F@O0)+ [ W01+ 2 [ (o1 2)+ [ vee<c.
te(0,7) Q € Ja Qr

Theorem (Poincaré-Wirtinger’s inequality)

Let Q be a connected open set of class C' and let 1 < p < co. Then, for all
u € W'P(Q), there exists a constant C such that

1
|u— uglle < C|| VU, where uqg = @/ u
Q

Therefore

luE < |||UT)HL1 +CIIVU | < € = (lul iz < C.

19i
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A nonlinear population model Back to the evolution problem

We also have, for o, 0" (t) = uk =" if t € (t_1, t],

)

1872 < 2)u87 g2 + [l ullie < .,

T 2grry < 20U 2ty + Nlo7 US| 211y < C.
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Time derivative estimate

)
7(T)
/0<atu5 ) < /Qraa ) Vul ||w|+/o|f( OIE

< Jla: (U= VUl ||L2||V‘P||L2JFQHUT)HLZH‘P”LZ
+Blla- () F lleller

where (-, ) denotes the duality product in (H'(Q))" x H'(Q).
Then,

)
/0 @), ) < Ce[Vgllie + (C + ) gl < Ce2lllzgrns

and thus,

108 | 2 ((aryy < Ce™2
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A nonlinear population model The limit = — 0

The limit- — 0

From the bounds we deduce the existence of u., z. € L2(0, T; H'(Q)) and of
subsequences of u™) and (™) (not relabeled) such that, as 7 — 0,

u("') — U,

€

u(T) — U,

€

[’é‘") -z

o)~z

) — 9z,

(University of Oviedo)

weakly in L2(0, T; H'(Q)),
weakly in L2(Qr),

weakly in L2(0, T; H'(Q)),
weakly in L2(Qr),

weakly in L2(0, T; (H'(Q))).
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A nonlinear population model The limit = — 0

Identification z = u. Like in the linear case,
||D§T) — UéT)HLz((/_p)/) < T||8[EI£T)||L2((H1)/) -0 as7—0,
and hence z. = u..

Compactness and strong convergence for E/Q). The compactness
Aubin-Lions-Simon’s lemma, gives

o) — u. strongly in L2(Qr), and a.e. in Qr.
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A nonlinear population model The limit = — 0

Lemma

Let(H,| - ||n) be a Hilbert space and let V C H be a proper linear subspace
dense in H. Assume that (V, || - ||v) is a Banach space and, under the
identification H = H', consider the triplet V ¢ H c V'. Then

<f,V>Vr><V:(f,V)H, forallfe Hyve V.
In particular, for all v € V,

IVIIE = (v, iy < DIvIivelIvilv.

Strong convergence for u(”). Setting V = L2(0, T; H'(Q)), H = L?(Qr)
Ul — iz < U = 6 + (1807 — w2
< Ul = TGy 1687 = BN oy + 187 = ez,
and then

Jul™) — |2 < Cllul™) — 7)H1/2 )+||1"J§T)—u||Lz—>0 as T — 0.
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A nonlinear population model The limit = — 0

Convergence. We have to pass to the limit 7 — 0 in the expression

/<5tu(fv >+/ a-(uvu Vo= [ L), forpe (0, T; H'(Q))
0 Qr Qr

The time derivative term, recalling z. = u., passes to the limit without any
additional reasoning. The linear part of the reaction term, also passes to the
limit, thanks to, e.g., the L?(Qr) strong convergence.

For the convergence of a.(u{")) we use the dominated convergence theorem:
e By cont|nU|ty of a., we have a.(u{”) — a.(u.) a.e. in Qras 7 — 0.
® Jla-(ul)|lp~ <&

Thus (DCT),as 7 — 0,

a.(u")) — a.(u.) strongly in LP(Qr) forany 1 < p < co.
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A nonlinear population model The limit = — 0

Quadratic term of the reaction function.

[ a0 - a(upf = [ Ja?) - a(u)fla() + a()f
Qr Qr

< au(?) - au(un) . (u) + a(un)
and therefore

a.(ul)? = a.(u.)? strongly in L2(Q7).
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A nonlinear population model The limit = — 0

For the diffusion term, we have
a.(u)vul) —~ u.Vu. weaklyin LI(Qr) forany g < 2.
However, we also have
la- (U VUl 2 < @ (U)o IV Ul < Ce77,
implying
a.(uUMVul) ~ u.Vu. weakly in L2(Qr).

Therefore, we may pass to the limit to obtain that
u. € L2(0, T; H'(Q)) n H'(0, T; (H'(Q))') satisfies

;
/ (01U, ©) +/ a.(u.)Vu, -V = f.(u.)p, forall e L?(0,T;H'(Q)).
J0 Qr Qr
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The limits - 0

Since the uniform bound of a. is lost in the limit ¢ — 0, we can not expect

Iim/ a.(uMvul) . v
Qr

e—0

to be well defined for test functions ¢ € L2(0, T; H'(Q)).

We have to investigate in which LP space may ag(ugT)) converge strongly, and
then seek for a suitable space of test functions in which this limit may be
performed.

In addition, the time derivative bounds we obtained are dependent of the
regularity of the other terms (through the argument for the duality (0:4, ¢)).

Thus, if the other terms are less regular, the time derivative will be less regular
too, and we shall therefore need to impose more regularity of ¢ in both the
space and the time variables.

(University of Oviedo) Review on cross-diffusion 61/99



A nonlinear population model The limite — 0

Uniform estimates in : and weak convergences.

Taking the limit - — 0 we get

max ([ Fuo)+ [ o+ [uo-r)+ [ vup<e.

and then

| Uell 21y < C.
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A nonlinear population model The limite — 0

Theorem (Gagliardo-Niremberg'’s interpolation inequality)

LetQ c RN be a regular open bounded set, and let u € LY(Q) N W™ (Q), with
1<p,g<oo,andme N. Thenu € WP(Q), and

IDulle < CID™ul|llullj7°,
where

=%+(7—F)9+—, and

o=

Taking p= (2N +2)/N, 6 = 2N(p — 1)/(p(N + 2)), and thus 6p = 2, yields

T p 1/p
HUEIILPS(/O e uelihigy) < el ey < C.
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A nonlinear population model The limite — 0

Time derivative estimate.

Let r' = r/(r — 1) to be determined. Using p > 2,

.
| o) < [ jauivedvel + [ 16wl
0 Qr Qr

< la(u)ller Vel 2l Vel + elltellell el
+B @ (U)o 2l erar

where (-, ) is for (W' (Q)) x W' (Q).
Here, r’ is such that

1 1 1 ,
Then, we take L™ (0, T; W' (Q)) as the new (smaller, more regular) space of
test funtions.
In addition, r’ > max{p’, (p/2)’}, and thus the norms of the reaction term are
also well defined.
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A nonlinear population model The limite — 0

Therefore, noting that a.(s) < e + s, we find

;
/0 (Orte, 0) < (C+ el Vel Vel + (C + luellee + uellZ) el
< Cllellr wirys
and thus, for r = (2N + 2)/(2N + 1),

||atU5H/_r((W1,r/)/) <C.

From the general estimate, we also deduce

I[te] -l 2y < CVe.
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A nonlinear population model The limite — 0

Thus we have the existence of u, z € L2(0, T; H'(Q)) and of subsequences of
u. (not relabeled) such that

U. —u weakly in L2(0, T; H'(Q)),

u. —u weakly in LP(Qr),

AU, — dyu weakly in L"(0, T; (W' (Q))"),
[u.]- —0 weakly*-weakly in L>(0, T; L3(Q)).
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A nonlinear population model The limite — 0

Compactness and strong convergences.
We again use the compactness Aubin-Lions-Simon’s lemma, to get

u. — u strongly in L7(0, T; L3(Q)), forany vy < 2, and a.e. in Qr.
Lemma

LetQ c RN be an open set, and let f, be a sequence in LP(Q) N L7 (), with
p >, andf e L7(Q2). Assume that

fo — f strongly in L"(Q) and ||fa||» < C.

Then f € L9(Q) and f, — f strongly in LY(Q2) for allv < g < p.

Using the bound ||u.||.r < C, we get
u. — u strongly in L9(Qr), forany v < g <p.

In particular, we may choose 2 < g < p= (2N + 2)/N.
This further implies, using ||[u:]—||le < ||Uc]|es

[u.]- — 0 strongly in L9(Qr) and a.e. in Qr, thatis u > 0 a.e. in Qr.
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A nonlinear population model The limite — 0

Convergence of a.(u.).

|u—a(ue)lle < [|u—a(u)l|a + ||<‘N3€(U) - éa(ua)HLq + ”és(us) — a:(U:)ll1a,

3 s ifs<e ',
a-(s) :=

g1 if s>e 1.

Theorem (Monotone convergence theorem)

LetQ c RN be an open set, and let f, € L' (Q) be a sequence of functions
satisfying

Q H<h<---aeinQ,
Q sup / fa < o0.
n Ja
Then there exists f € L'(Q) such that f, — f strongly in L'(Q) and a.e. in Q.

3.(s) is monotone increasing, a.(s) < sforall s € R, and u € L'(Q7) imply
(MCT) &.(u) — a(u) strongly in L'(Q7).

Using the uniform bound of ||u[;.« we deduce ||u — &.(u)||.s — 0 as e — 0.
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A nonlinear population model The limite — 0

Ju = ac(Ue)lle < [lu— ac(U)lles + (18 () — ac(ue)[|ea + |18 (u:) — ac(ue)lea,

Since 2. is Lipschitz continuous, we get
|és(u) - és(us)‘ < ‘U - UE‘
and then the strong convergence u. — u implies

|2 (u) — a-(u.)|j.e — 0 ase— 0.
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A nonlinear population model The limite — 0

||U - as(UE)HLq < HU - és(u)”L‘? + ”és(u) - ée(us)HLq + ”éa(ua) - aS(US)Hqu

We have
|8 (Ue) — a-(u:)| = |ue — e[1u.<e = (¢ — U)To<u. < + (JUe| + &) 10, <0

The first term of the RHS is bounded by ¢|Qr|, while the second is equal to
[U:]- + &1y <o0- Thus

/OT 8. () — a.(u.)]9 < c(eq +/ |[u5]_|‘7> -0

Qr

as € — 0. Therefore

a.(u.) — u strongly in L9(Qr).
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A nonlinear population model The limite — 0

We have to pass to the limit in the expression
T
/ (OtUe, ) +/ a.(u.)Vu. -V = f.(u.)p, forallye L"(O, T, W‘v’/(Q)).
0 Qr Qr
The time derivative and the linear part of the reaction term pass to the limit
without any additional reasoning.

For the quadratic part of the reaction term, we have

/QT la.(u.)? — u?| 2 <(/or |a-(u.) - u}q)1/2(/QT |ag(ug)+u]0’)1/2

2 2
<lla-(u.) — ul 1% |la-(u.) + ul§s% — o,

as ¢ — 0. Thus, since
2 1 4(N+1)

—+ =<1 fif h > -
q+r’_ if we choose q > N1

which is possible, we deduce
/ as(ue)z@ — U2§D~
ar ar
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A nonlinear population model The limite — 0

For the diffusion term, we have the same reasoning than before: a.(u.) — u
strongly in L9(Qr) and Vu. — Vu weakly in L2(Q7), implly

a.(u.)Vu. — uVu weakly in L(Qr),
with v = 2q/(2 + g), which is smaller than r. However, we also have
lac(ue) Vel < llae(ue)ller Ve 2 < C,
implying
a.(u:.)Vu. — uvu weakly in L"(Qr).

Finally, observe that due to the convergence of [u.]_ — 0in L9(Q7), we
deduce u > 0 a.e. in Qr.
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A nonlinear population model The limite — 0

Theorem

LetQ c RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that uy € L?(Q). Then, there exists u > 0 in Q7 with

ue L0, T; H'(Q)) N LP(Qr) n W' (0, T, (W' (Q))),
where p=2(N+1)/N,r=2(N+1)/(2N+1), and r' = 2(N + 1), satisfying,
forall o € L (0, T; W' (Q)),

T
/ <0tu,g0>+/ uvVu-Ve = f(u) o,
0 Qr Qr

with < -, - > denoting the duality product between W"”(Q) and its dual
(W' (Q)), being the initial data satisfied in the sense

:
/ < oW, > +/ (U — Uo)dxth = 0,
0 Qr

forall € L™ (0, T; W' (Q)) N H'(0, T; L3(Q)) such that ¢(T) = 0 a.e. in Q.
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Outline

e A cross-diffusion population model

Formal estimates
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A cross-diffusion population model

Problem: Find uy, s : (0, T) x Q — R such that, using the notation
u=(ur, ),

Oty — div Jy(u) = fi(u) in Qr,
Ot — div da(u) = f(u) in Qr,
Ji(u)-n=do(u)-n=0 onflr,
u(-,0) = ug in Q.

The reaction terms are of the competitive Lotka-Volterra type

fi(u) = ui(ai — (Bnts + Biale)),  «;, B3 >0 fori=1,2.

The flows are of the Bousenberg-Travis (BT) model

J,'(U) = aVu + u,-(a,-1Vu1 + aiQVUQ) — biuiVo, aj > 0,b; > 0.

The Shigesada-Kawasaki-Teramoto (SKT) model, for which
J,-SKT(U) = V(u,-(a,-o + ajjuy + a,-2u2)) — biuiVo,

may be treated in a similarly way.
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A cross-diffusion population model

In terms of population dynamics,

The populations diffuses partly randomly, and partly to avoid
overcrowding caused by both populations.

The populations are drifted to the minima of the environmental potential
®, representing the best environmental locations.

The newborns are proportional to the existent population, but there is a
growth limit given in terms of the intra- and inter-specific competence
between populations. The corresponding kinetics (0;u; = f;(u)) has stable
equilibria at

(ﬂ 0). | g) a1fo2 — a2 apBiy — o Bo )
Bi1’ "Bo2’’ “B11B22 — B12B21” P11B22 — P12B21”’

depending on the relationship between the coefficients. However, due to
the cross-diffusion, these equilibria are not always the steady state
solutions of the problem.
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A cross-diffusion population model

Introducing the rescaling! U = ap1uy and Us = ayalp, we write

Ji(u) = apVu; + ui(avVu + Vuy) — biuiVe, fori,j=1,2, withj#i.

We shall follow the line of the proof of existence of weak solutions developed
for an scalar equation.

"Here, we assume aj» # 0 and apy # 0. Otherwise, the system is triangular (instead of full),
and the problem is simpler.
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Formal estimates

e Multiplying by In(u;), we get, for F(s) = s(In(s) —1)+1 >0,
2 2 an
Z/ F(U,'(T))—‘rZ/ ﬂ|Vu,-|2+/ (31|VU1‘2+82|VU2|2+2VU1 ~VU2)
i1 /9 i—1 Jar Ui Qr
2 2 2
- Z/ F(uo) + Z/ f(u) In(u;) + Z/ Vo vy,
i=1 79 =1 7 ar =1 7 ar

We have %\Vu,-|2 = 4|V/u;?, and, if aja» > 1 (det(a) > 0, before rescaling),
i

a1|Vuy |2 + 32|VU2|2 +2Vu; - Ve > ao(|Vu |2 + |VU2|2),

for some ag > 0. Thus, if the RHS may be controled by the LHS, we get
2
> [ Fwmy+ [ (v vep) <o
i—1/Q Qr
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A cross-diffusion population model Formal estimates

e Integrating the equations we get (if u; > 0)

(u1o+u20)+d/ (uy + w2),
Qr

/Q(U1(T) +ux(T)) < /

JQ

with & = max{a1, @z}, and then Gronwall’s lemma implies

/(U1(T) +w(T)) < e‘”/(um + Ux) < C.
Q

Q

We then deduce from these two estimates that ||ujf|;2(1) < C, like in the
scalar case.
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Symmetrization

We simplify: aj, = 0 and ¢ = 0, and write
oiu — div(a(u)Vu) = f(u),
where a(u) is the non-symmetric matrix given by
(a1 U4
a(u) = ( Uz 32U2> ’
We used the notation

div(a(u)Vu) = (diV(a1 uVuy + u1Vu2)> .

div(teVur + ax s Vi)

Following the line of previous sections, we first discretize in time,

;(uk — uk) — div(a(uf) Vuk) = f(uk),
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A cross-diffusion population model Symmetrization

and then (approximate) and linearize to use Lax-Milgram’s lemma

1 .
;(uk —uf") —div(a(v)Vu¥) = f(v).
Since a is non-symmetric, the corresponding bilinear form
Alu,u) = / (@vi|Vui 2 + @ |Vl + (vi + v2)Vuy - Vis),
Q

is not, in general, coercive since the condition for this form to be coercive is
that the matrix
< avq %(V1 + V2)>
T(vi + v2) aVo

is positive definite, that is, 4a;a, vy v> > (v4 + v2)2, which is not true in general.
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A cross-diffusion population model Symmetrization

The entropy estimate of the nonlinear problem is not inherited by the linear
approximation, as it happened for the scalar problem.

The existence of an entropy estimate is usually accompanied by a change of
unknowns which symmetrizes the problem: for w; = F'(u;) = In(u;)

) <2Z> — div(b(w)Vw) = f(e", &),

being b(w) the symmetric matrix

2. Wi+ W,
aes™ emt’?
b(W) = <eW1+W2 aze2W2

Strategy: solve for w, and justify the equivalency.
This is not straightforward. For instance, since

Vui =Ve" = e"Vw,,

if we obtain Vw; € L2, this regularity does not inmmediately translates to Vu;,
unless w; € L*, which is not expected.
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A cross-diffusion population model Solving a time di: pproxi y ic pi

The formal calculations of the previous section may be also done in terms of
the approximation to the logarithm given by F..

Since F! is increasing in R, its inverse is well defined (approximating the
exponential). We introduce the notation

g-=(F)™", satisfying ¢.=a.og..

Then, for o € [0, 1], we set the problem: Given w*~" ¢ [2(Q)?, with
F-(9-(w/C ")) € L'(Q), find w! : Q — R? such that

Z(ge(Wh) — g (wk)) — div G (WE) + ewf. = o b7 (W) in Q,
Gi(wK-n=0 on 99,
with, fori,j = 1,2 and i # j,

Gi (w) = g.(w;)(aig.(wi)Vw; + gL (w;)Vw)),
hf (W) = aig-(wW;) — gL(w;) (Bi1gL(wr) + Biegl(w2)).
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Lax-Milgram. A: H'(Q)? x H'(Q)? - Rand F : L3(Q)* x [3(Q)? = R
defined by, for v € L2(Q)? and o € [0, 1],

2 2
Awp) =3 ( / ot 3 | g u)w+ gy Tw) - Vi),
J#
2
Flo)=0) (/Q (@ige(vi) — gL(vi) (BigL(v1) + Bigi(v2)) ) i
i=1

_ 1 /Q(gg(vo - 0w )er).

with @ = (1, w2) € H'(Q). We have, using a;a, > 1,

A= 3" (= [+ acle) [ (9w,

i=1

with ¢(e) = mi}g(g;(s))2 > £2. Thus, A'is coercive, and both A and F are
se
clearly continuous.
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A cross-diffusion population model Solving a time di: pproxi y ic pi

Lax-Milgram’s lemma ensures the existence of a unique weak solution,
wk e H'(Q)?, of

g(gs(vf)—gs(W,-, )) —div G (WE, V) +ewf. , = ohf(Wl,,v)  inQ,
G (wk corV) - n=0 on 09,
with

G;(w,v) = g.(v)(aigL(vi)Vw; + gL(v))V W),
hi (W, v) = ;g (vi) — gL(v)) (Bi1gL(v1) + Bi2gl(V2)).
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A cross-diffusion population model Solving a time di: pproxi y ic pi

Fixed point. Define the map S: L%(Q)2 x [0,1] — L?(Q)? given by
S(v,0) =wk .

To apply the Leray-Schauder’s theorem, we have to check the following:

@ Continuity and compactness of S. The arguments are similar to the case
of a scalar equation.

Q@ S(v,0) = 0, which is inmmediate.
Q Ifv=_S8(v,0)for (v,0) € L3(Q)? x [0, 1] then |v||2 < C.

Let us prove the last point.

We assume that v = w’gﬂ, and we have to show an uniform bound, with

respect to o € [0, 1], of [w¥ |2

For clarity, we replace w¥ , by w, and w~" by w.
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A cross-diffusion population model Solving a time di: pproxi y ic pi

We have that, by assumption, w solves

Z(9-(w) — g:(W)) — dv GF () + ew; = o (w) in Q,
Gi(w)-n=0 on 9Q.
Using ¢ = w; we get, similarly to the deduction of the coercivity of A,

2

. 2
> (o [ (outm) ~ g.Cipwi+ = [ wE 4 ravcle) [ [vwf) <70y [ wym
i—1 Q JQ JQ i—1 Q
The convexity of F. implies F.(x) — F.(y) < F.(x)(x — y).

Choosing x = g.(w;) and y = g.(W;), and noticing g-' = F/, we deduce

/(gs(wi) - gs(Wi))Wi > /(Fe(ge(wi)) - Fe(gs(ﬁ/l)))
Q Q
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A cross-diffusion population model Solving a time di: pproxi y ic pi

For the RHS term, we claim (and it’s true!) that, fori = 1,2,
ff(s1,82)FL(si) < C(1 + F.(s1) + F.(s2)) forall 51,8, € R,

with f£(s1, 2)) = a;sj — a:(s)) (B a-(s1) + Brea-(sz)).
Taking s; = g.(w;), we get

;/th(w)wi < C;/QU + F(g-(w))).

Therefore, we obtain (r < 1/Cand o < 1)

1221:( 1-Cr) /F (9:( W:))—l-T&/W + Tapc(e /\Vw,
SCMHE /Q /Q F.(9.()

Since, by assumptlon F. (gg( 1)) € L'(Q), we deduce the o—uniform
estimate for ww.
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Back to the original unknowns

We define uf, = g-(w/".) and notice that uf’. € H'(Q), since

Vuf. = gLw) VW = a-(g-(w/.)) V..

Introducing this change of unknowns in the equations for w’g, witho =1, we

see that u” satisfies,
1 . .
;(u,’-fs — uf ") = divJi (uf) + eF/(uf.) = f7(uf) inQ,
Juy-n=o0 on 99,

for given u¥~" e L2(Q)? with F.(u/ ") € L'(Q), with

J7 (u) = a.(u)(aVu; + V),
a-(uj) (Bina:(ur) + Biea:(u2)).

ff(u) = oju; —
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A cross-diffusion population model Back to the original unknowns

Moreover, using ¢ = F.(uf’.) leads to

2
1
max ([ A+ [kl L [ (R e re [ IRGEE) +
P k=1,...,K Q Q g Ja Q
2 K

Tzz/wu,ﬁfgc.
JQ

i=1 k=1
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Back to the evolution problem
Back to the evolution problem

Consider

. (r be—t,
uT (e x) = Ul (x), BTt X) = uf L (x) + S (U (x) — Ul (x)).

- ie

Replacing these functions in the weak formulation

[ [ s vore [ Fue= [ o
Qr

Qr

forall p € L2(0, T; H' (Q)), and the discrete energy estimate gives

max ([ w2y [ 21 D [l r) e [ R

/ VU <C.
Qr

Poincaré-Wirtinger’s inequality implies

U ey < €, 18 |2y < C.
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A cross-diffusion population model Back to the evolution problem

Time derivative estimate.
We have, for ¢ € L2(0, T; H'(Q)),

/O O, ¢) < /O (U (19U + U] Vel + / £ U)o
T

Qr

/\F'( ol < Ce2lgl oy,
Qr

and thus

||8[UIE ||L2 (H'y < CE
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The limitr — 0

From the previous bounds, we deduce, as 7 — 0,

ul) — u, weakly in L2(0, T; H'(Q))?,
ul) ~u, weakly in L?(Qr)?,

0 2z, weakly in L2(0, T; H'(Q))?,
i) — 2z, weakly in L2(Qr)?,

0,0 — Orz. weakly in L3(0, T; (H'(Q))')?,

the identification z. = u. being deduced like in the scalar case.
Compactness and strong convergences.
Aubin-Lions-Simon’s lemma, gives

G — u. strongly in L2(Qr)?, and a.e. in Qr.
In particular, like in the scalar case, we also obtain

ul” — u. strongly in L3(Qr), and a.e. in Qr.
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A cross-diffusion population model The limit = — 0

Convergence.
Passing to the limit 7 — 0 is justified like in the previous cases.
We obtain that u. € L2(0, T; H'(Q))> N H'(0, T; (H'())")? satisfies,

JF(U.) - Vi + / Flude= | Fu)e
Qr Qr

]
/ (Ortier ) +
0

Qr

forall ¢ € L2(0, T; H'(Q)),
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The limits - 0

Taking the limit 7 — 0 we get

max ([ R+ [l D [[Qo12) << [ 1R

VuP < C.

Qr

© [|Uc|[zmy < C.

@ Gagliardo-Nirenberg: ||u.|[,» < C, for p = (2N +2)/N,

@ Time derivative: [|0;Uz || r(w1.ryy < C, for r = (2N +2)/(2N +1).
© Also, [[uie]- |~y < CVE and V[ FL(u;.)] . < C.
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A cross-diffusion population model The limite — 0

From these bounds, we get

u. ~u weakly in L2(0, T; H'(Q))?,

u.—u weakly in LP(Qr)?,

du. — duu weakly in L7(0, T; (W' (Q))")?,
[u]- —0 weakly*-weakly in L=(0, T; L3(Q))?
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A cross-diffusion population model The limite — 0

Compactness and strong convergences.

Aubin-Lions-Simon’s lemma, and similar reasonings than in the scalar case:

u. — u strongly in L9(Qr)?, forany 1 < g < p.
[u]- — 0 strongly in L9(Q7)? and a.e. in Qr, thatis u; > 0 a.e. in Qr,
a.(uj.) — u; strongly in L9(Qr).

with2 <g<p=(2N+2)/N.

Convergence.

Except for the term involving F/(u;.), the passing to the limit of the rest of
terms are justified like in the scalar case. For the former,

g / Fl(uic)p < el FL(Uie) el < CVE — 0.
Qr
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Theorem

LetQ c RN be a bounded set with Lipschitz continuous boundary, and let
T > 0. Suppose that uj, € L?(Q) are non-negative, fori = 1,2, and define

Ji(ug, ) = ui(aiVu; + Vu;), witha; >0, aja > 1,
fi(us, u2) = Ui(ey — (Binur + Braliz)),
fori,j=1,2 andi # j. Then, there exists non-negative (uy, uz), with
u; € L2(0, T; H'(Q)) N LP(Qr) n W (0, T; (W' (Q))),
where p=2(N+1)/N,r=2(N+1)/(2N + 1), and r' = 2(N + 1), satisfying,
forallp € L (0, T; W' (Q)) and i = 1,2,
T
/ <O o>+ | Ji(un, ) - Vo= [ fi(u, ) ¢,
0 Qr Qr

with (-,-) denoting the duality product between W' (Q) and its dual
(W' (Q)). The initial data is satisfied in the sense of (W' (Q))'.
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Thank you!
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