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Bifurcation: qualitative change in behavior of the equilibrium of a system.

Due to variation of a bifurcation parameter. Leads to a new steady state.

Stability of uniform steady states related to the sign of λk of the linearized
system. If the steady state is initially stable, Re(λk ) < 0.

At bifurcation, at least one eigenvalue crosses the imaginary axis:

Turing bifurcation, in which one eigenvalue crosses the origin,
Hopf bifurcation, where a pair of imaginary eigenvalues crosses the real
axis and results in a limit cycle with oscillations.

We analyze the occurence of Turing bifurcation.
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The contents is extracted from:

1 G. Gambino, M.C. Lombardo, M. Sammartino,
Turing instability and traveling fronts for a nonlinear reaction-diffusion
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Linear self-diffusion problem

Problem:

∂tu1 − d1∆u1 = γf1(u1,u2) in QT = (0,T )× Ω,

∂tu2 − d2∆u2 = γf2(u1,u2) in QT ,

∇u1 · n = ∇u2 · n = 0 on ΓT = ∂(0,T )× Ω,

u1(·,0) = u10, u2(·,0) = u20 in Ω.

We take Ω = [0,2π], and (f1, f2) nonlinear, e.g. competitive Lotka-Volterra.

In vector form:

∂tu− d∆u = γf(u), d = diag(d1,d2).

Non-trivial uniform steady state ũ = (ũ1, ũ2) are constant positive solutions of

f(ũ) = 0.

(University of Oviedo) Review on cross-diffusion 6 / 40



Linear self-diffusion problem

Linearization around ũ gives, for w = u− ũ,

∂tw− d∆w = γDf(ũ)w,

with

Df(u) =

(
∂1f1(u) ∂2f1(u)
∂1f2(u) ∂2f2(u)

)
.

We look for a particular solution of the form

w = exp(λk t + ikx)uk ,

where
uk is a constant eigenvector,
λk is an eigenvalue, representing the linear growth rate,
k is the wavenumber of the perturbation.
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Linear self-diffusion problem

Upon substitution, one gets the eigenvalue problem

Ak w = λk w, with Ak = γDf(ũ)− k2d .

For each k , we obtain the particular solution(
c1k u1k eλ1k t + c2k u2k eλ2k t)eikx ,

where cjk depend on the initial data.

The general solution can be expressed as

w(t , x) =
∑

k

(
c1k u1k eλ1k t + c2k u2k eλ2k t)eikx .
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Linear self-diffusion problem

The characteristic equation is, for Ak = γDf(ũ)− k2d

λ2
k − tr(Ak )λk + det(Ak ) = 0,

where

tr(Ak ) = γ(∂1f1(ũ) + ∂2f2(ũ))− k2(d1 + d2),

det(Ak ) = d1d2k4 − γ(d2∂1f1(ũ) + d1∂2f2(ũ))k2 + γ2 det(Df(ũ)),

having the roots

λk =
1
2

(
tr(Ak )±

√
tr(Ak )− 4 det(Ak )

)
.
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Linear self-diffusion problem Conditions for linear instability

Conditions for linear instability

We look for diffusion-driven instability: if no spatial variations (k = 0) then
Re(λj0) < 0. This implies

tr(A0) = tr(Df(ũ)) < 0, det(A0) = det(Df(ũ)) > 0.

Returning to spatial-dependent problem: look for changes of sign of Re(λk )
when varying diffusion coefficients.

We have tr(Ak ) < 0. The only way for Re(λk ) > 0 is det(Ak ) < 0, with

det(Ak ) = d1d2k4 − γ(d2∂1f1(ũ) + d1∂2f2(ũ))k2 + γ2 det(Df(ũ)).
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Linear self-diffusion problem Conditions for linear instability

The point of minimum is

k2
c = γ

d2∂1f1(ũ) + d1∂2f2(ũ)

2d1d2
,

and the minimum value is

h(k2
c ) = γ2

[
det(Df(ũ))−

(
d2∂1f1(ũ) + d1∂2f2(ũ)

)2

4d1d2

]
.

We have h(k2
c ) = 0 (bifurcation) if dc is a positive root of(

∂1f1(ũ)
)2d2

c + 2
(
2∂2f1(ũ)∂1f2(ũ)− ∂1f1(ũ)∂2f2(ũ)

)
dc +

(
∂2f2(ũ)

)2
= 0,

where dc is the critical diffusion ratio.

If dc exists, then critical wavenumber is obtained from k2
c , with dc

2/d
c
1 = dc .
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Linear self-diffusion problem Conditions for linear instability

For d∗ > dc , exists a range of unstable wavenumbers in [k2
1 , k

2
2 ], where

det(Ak1 ) = det(Ak2 ) = 0.

The wavenumbers are discrete and a finite number in [k2
1 , k

2
2 ].

Within this range, Re(λk ) is positive and assumes its maximum value for k2
c .

For large t ,

w(t , x) ≈
k2∑

k=k1

uk eλk teikx .
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

Linear stability of the competitive Lotka-Volterra
system

Consider

fi (u) = αiui − (βi1u1 + βi2u2)ui ,

with αi , βij ≥ 0, for i , j = 1,2. The co-existence equilibrium is

ũ =
( β22α1 − β12α2

β11β22 − β12β21
,
β11α2 − β21α1

β11β22 − β12β21

)
,

with ũi > 0, for which

Df(u) =

(
−β11ũ1 −β12ũ1
−β21ũ2 −β22ũ2

)
.
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

ũ is stable for the dynamical system if the eigenvalues of Df(u) are negative,

µ2 − tr(Df(u)) + det(Df(u)) = 0.

Thus, the conditions are

tr(Df(u)) < 0, and det(Df(u)) > 0 (for negative real part),

tr(Df(u))2 − 4 det(Df(u)) ≥ 0 (for null imaginary part).

The second condition is equivalent to

(β11ũ1 − β22ũ2)2 + 4β12β21ũ1ũ2 ≥ 0.

Both conditions are satisfied if βij ≥ 0, and

tr(B) > 0, and det(B) > 0, with B = (βij ).
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

Returning to the spatial-dependent problem and writing(
∂1f1(ũ)

)2d2
c + 2

(
2∂2f1(ũ)∂1f2(ũ)− ∂1f1(ũ)∂2f2(ũ)

)
dc +

(
∂2f2(ũ)

)2
= 0,

as ad2
c + bdc + c = 0, the solutions are dc =

1
2

(−b ±
√

b2 − 4ac). For real
and positive solutions

b2 − 4ac > 0 and b < 0.

After some computations,

b2 − 4ac > 0 ⇐⇒ β12β21 > β11β22,

contradicts the stability assumption det(B) > 0 for the dynamical system.

Thus ũ is linearly stable for any choice of the diffusion coefficients.
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Cross-diffusion problem

May the Lotka-Volterra system be instable in more complex situations?

We study the SKT cross-diffusion case:

∂tu1 − div J1(u) = γf1(u1,u2) in QT ,

∂tu2 − div J2(u) = γf2(u1,u2) in QT ,

J1(u) · n = J2(u) · n = 0 on ΓT ,

u1(·,0) = u10, u2(·,0) = u20 in Ω,

with flows and reaction terms

Ji (u) = ∇
(
ui (d1 + ai1∇u1 + ai2∇u2)

)
fi (u) = αiui − (βi1u1 + βi2u2)ui ,

with the coefficients B = (βij ) satisfying the kinetic stability conditions

tr(B) > 0, and det(B) > 0.
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Cross-diffusion problem

We study the co-existence homogeneous stationary state

ũ =
( β22α1 − β12α2

β11β22 − β12β21
,
β11α2 − β21α1

β11β22 − β12β21

)
,

with ũi > 0, for which,

K := Df(ũ) =

(
−β11ũ1 −β12ũ1
−β21ũ2 −β22ũ2

)
.

Linearization around ũ gives the following system for w = u− ũ

∂tw− D∆w = γK w,

with

D =

(
d1 + 2a11ũ1 + a12ũ2 a12ũ1

a21ũ2 d2 + a21ũ1 + 2a22ũ2

)
.
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Cross-diffusion problem

The corresponding eigenvalue problem leads to

λ2
k − tr(Ak )λk + h(k2) = 0,

with Ak = γK − k2D, and

h(k2) = det(Ak ) = det(D)k4 + γqk2 + γ2 det(K ),

being

q =β11ũ1(2a22ũ2 + d2) + β22ũ2(2a11ũ1 + d1)

+ a12ũ2(β22ũ2 − β21ũ1) + a21ũ1(β11ũ1 − β12ũ2).
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Cross-diffusion problem Conditions for linear instability

Conditions for linear instability

Spatial patterns arise for Re(λk ) > 0.

Since ũ is stable for the kinetics then tr(Ak ) < 0.

Therefore, the only way to have Re(λk ) > 0 is h(k2) < 0.

Condition for marginal stability

min(h(k2
c )) = 0.

The minimum of h is attained for

k2
c = − γq

2 det(D)
,

which requires q < 0.

The only potential destabilizing mechanism in q is the cross-diffusion.
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Cross-diffusion problem Conditions for linear instability

Election of the bifurcation parameter

q =β11ũ1(2a22ũ2 + d2) + β22ũ2(2a11ũ1 + d1)

+ a12ũ2(β22ũ2 − β21ũ1) + a21ũ1(β11ũ1 − β12ũ2).

Conditions on the positiveness and stability of ũ imply that

β22ũ2 − β21ũ1 < 0 OR β11ũ1 − β12ũ2 < 0.

When a12 destabilizes then a21 stabilizes and vice versa.

We choose β22ũ2 − β21ũ1 < 0 and

b := a12 as the bifurcation parameter.
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Cross-diffusion problem Conditions for linear instability

Critical value of the bifurcation parameter
Since h(k2) depends on b, one gets the bifurcation value from

min(h(k2
c )) = 0.

Consider

m1 = ũ2(β21ũ1 − β22ũ2) ≥ 0,
m2 = β11ũ1(2a22ũ2 + d2) + β22ũ2(2a11ũ1 + d1) + a21ũ1(β11ũ1 − β12ũ2) ≥ 0,

so q = −m1b + m2. The minimum value of h(k2) is

min(h(k2
c )) = γ2

(
det(K )− (−m1b + m2)2

4 det(D)

)
.

Let ξ ∈ R, to be determined, and set b = m2/m1 + ξ. We get the marginal
stability condition

m2
1

4 det(K )
ξ2 − det(D) = 0.
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Cross-diffusion problem Conditions for linear instability

Replacing a12 ≡ b = m2/m1 + ξ in D, we get

det(D) =ũ2(d2 + 2a22ũ2)ξ +
(m2

m1
ũ2(d2 + 2a22ũ2)

+ (d1 + 2a11ũ1)(d2 + a21ũ1 + 2a22ũ2)
)
.

Therefore,
m2

1
4 det(K )

ξ2 − det(D) = 0 has a positive root, denoted by ξ+.

The critical value for bifurcation is

bc =
m2

m1
+ ξ+.

Observe that q := −m1b + m2 < 0 is guaranteed.
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Cross-diffusion problem Conditions for linear instability

For b > bc the system has a finite k pattern-forming stationary instability.

Unstable wavenumbers are between the roots of h(k2), denoted by k2
1 and k2

2 .

It is straightforward to check that these roots are proportional to γ.

For pattern formation, γ must be big enough so that at least one of the modes
allowed by the boundary conditions is in [k2

1 , k
2
2 ].
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Amplitude equations and weakly nonlinear
analysis

Linear stability theory is useful for understanding pattern formation:

Diffusion is the key mechanism.
Determine conditions on system parameters.
Gives length scale of pattern formation, 1/kc .

But,
the exponentially growing solutions are physically meaningless.

To predict the amplitude and the form, nonlinear terms must be included.

We perform a weakly nonlinear analysis based on multiple scales.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Nonlinear expansion

In Turing bifurcation,
Vlose to the bifurcation, Re(λk ) < 0.
The linear instability must be preceded by Re(λk ) = 0.

Therefore, the pattern evolves on a slow temporal scale, like eλk t , with λk ≈ 0.

New, scaled, magnitudes are considered, and treated as separate
variables.
We fix a control parameter

ε2 =
b − bc

bc
,

and write the solution of the original system as a expansion in terms of ε2.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Considering a random perturbation, w, around the steady state, we recast the
original nonlinear system as

∂tw = Lbw +N bw,

where Lb = γK + Db∆ is the linear part, and N b contains 2nd order terms,

N b =
1
2
QK (w,w) +

1
2

∆Qb
D(w,w),

with the bilinear forms

QK (x,y) = γ

(
−2β11x1y1 − β12(x1y2 + x2y1)
−2β22x2y2 − β21(x1y2 + x2y1)

)
,

Qb
D(x,y) =

(
2a11x1y1 + b(x1y2 + x2y1)

2a22x2y2 + a21(x1y2 + x2y1)

)
.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The idea is:
Expand w in ε, so the leading term is A(t)eikcx , with A slowly varying.

We consider

b = bc + εb1 + ε2b2 + ε3b3 + O(ε4),

w = εw1 + ε2w2 + ε3w3 + O(ε4),

∂t = ε∂T1 + ε2∂T2 + ε3∂T3 + O(ε4).

Then,

Db =

(
d1 + 2a11ũ1 + bũ2 bũ1

a21ũ2 d2 + a21ũ1 + 2a22ũ2

)
=Dbc

+
3∑

j=1

εj
(

bj ũ2 bj ũ1
0 0

)
+ O(ε4).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Lb = γK + Db∆ takes the form

Lb = Lbc
+

3∑
j=1

εj
(

bj ũ2 bj ũ1
0 0

)
∆ + O(ε4), with Lbc

= γK + Dbc
∆.

For the quadratic terms

QK (w,w) = ε2QK (w1,w1) + 2ε3QK (w1,w2) + O(ε4),

Qb
D(w,w) = ε2Qbc

D (w1,w1) + 2ε3
(

Qbc

D (w1,w2) + (b1w1
1 w2

1 ,0)t
)

+ O(ε4).

For the time derivative expansion,

∂tw = ε2∂T1w1 + ε3(∂T1w2 + ∂T2w1) + O(ε4).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Introducing these expansions in ∂tw = Lbw +N bw, leads to

O(ε) : Lbc
w1 = 0,

O(ε2) : Lbc
w2 = ∂T1w1 −

1
2
(
QK (w1,w1) + ∆Qbc

D (w1,w1)
)

− b1

(
ũ2 ũ1
0 0

)
∆w1 =: F,

O(ε3) : Lbc
w3 = ∂T1w2 + ∂T2w1 −QK (w1,w2)−∆Qbc

D (w1,w2)− b1∆

(
w1

1 w2
1

0

)
−
(

ũ2 ũ1
0 0

)
(b1∆w2 + b2∆w1) =: G,

with

Lbc
= γK + Dbc

∆.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Studying the orders of the expansion

We solve in x ∈ (0,2π/kc), and later adapt to Ω = (0,2π).

Order ε: The solution of the linear problem Lbc
w1 = 0 in (0,2π/kc) with

Neumann boundary conditions is

w1 = A(T1,T2)ρ cos(kcx), with ρ ∈ ker(γK − k2
c Dbc

),

where A is still arbitrary.

ρ is defined up to a multiplicative constant, we normalize

ρ = (1,M)t , with M =
−γK21 + Dbc

21k2
c

γK22 − Dbc

22k2
c
,

where Kij ,Dbc

ij are the i , j-entries of the matrices K and Dbc
.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Order ε2: Lbc
w2 = F.

Observing that

QK (w1,w1) = A(T1,T2)2 cos2(kcx)QK (ρ,ρ),

Qbc

D (w1,w1) = A(T1,T2)2 cos2(kcx)Qbc

D (ρ,ρ),

and using standard trigonometric identities, we find

1
2
(
QK (w1,w1) + ∆Qbc

D (w1,w1)
)

=
1
4

A(T1,T2)2
(
QK (ρ,ρ) +

(
QK (ρ,ρ)− 4k2

cQbc

D (ρ,ρ)
)

cos(2kcx)
)

=
1
4

A(T1,T2)2
∑
j=0,2

Mj (ρ,ρ) cos(jkcx),

with

Mj = QK − j2k2
cQbc

D .
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Therefore,

F =− 1
4

A(T1,T2)2
∑
j=0,2

Mj (ρ,ρ) cos(jkcx)

+
(
∂T1A1ρ+ b1k2

c A1(ũ2 + ũ1M,0)t
)

cos(kcx).

Fredholm alternative: since kerLbc
= span(ρ), a solution if and only if

〈F,ψ〉 = 0 for ψ ∈ ker((Lbc
)∗),

where 〈·, ·〉 denotes the scalar product in L2(0,2π/kc), and

ψ = (1,M∗)t cos(kcx), with M∗ =
−γK12 + Dbc

12k2
c

γK22 − Dbc

22k2
c
.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

0 = 〈F,ψ〉 =− 1
4

A2
∑
j=0,2

Mj (ρ,ρ)(1,M∗)t
∫ 2π

kc

0
cos(jkcx) cos(kcx)dx

+
(
∂T1Aρ+ b1k2

c A(ũ2 + ũ1M,0)t
)

(1,M∗)t
∫ 2π

kc

0
cos2(kcx)dx .

The first integrand at the right hand side vanishes, so we obtain

∂T1A(T1,T2) = χA(T1,T2), with χ = −b1kc(ũ2 + ũ1M)

1 + MM∗
.

No indication on the asymptotic behavior, Ti →∞, of the amplitude!

Suppress secular terms in F setting T1 = b1 = 0.

Then the compatibility condition is satisfied, and

F = −1
4

A(T2)2
∑
j=0,2

Mj (ρ,ρ) cos(jkcx).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The solution of Lbc
w2 = F is explicitly computed: Introducing

w2 = A(T2)2
∑
j=0,2

w2j cos(jkcx),

we get

Lbc
w2 = (γK + Dbc

∆)w2 = A(T2)2
∑
j=0,2

(
γK − (jkc)2Dbc)

w2j cos(jkcx).

w2j must satisfy the linear systems

Ljw2j = −1
4
Mj (ρ,ρ), for j = 0,2,

with Lj = γK − j2k2
c Dbc

.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Order ε3: Lbc
w3 = G.

Since T1 = b1 = 0,

G = ∂T2w1 −QK (w1,w2)−∆Qbc

D (w1,w2)−
(

ũ2 ũ1
0 0

)
b2∆w1,

where, for ρ = (ũ2 + ũ1M,0)t ,

w1 = A(T2)ρ cos(kcx), w2 = A(T2)2(w20 + w22 cos(2kcx)).

Then

∂T2w1 = ρ cos(kcx)∂T2A(T2),

−
(

ũ2 ũ1
0 0

)
b2∆w1 = A(T2)k2

c cos(kcx)b2(ũ2 + ũ1M,0)t .
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Using that QK and Qbc

D are bilinear, and

2 cos(x) cos(y) = cos(x + y) + cos(x − y),

and recalling

w1 = A(T2)ρ cos(kcx), w2 = A(T2)2(w20 + w22 cos(2kcx)).

we get

QK (w1,w2) = A(T2)2QK (w1,w20) + A(T2)2 cos(2kcx)QK (w1,w22)

= A(T2)3 cos(kcx)QK (ρ,w20)

+ A(T2)3 cos(2kcx) cos(kcx)QK (ρ,w22)

= A(T2)3
(

cos(kcx)
(
QK (ρ,w20)

+
1
2
QK (ρ,w22)

)
+

1
2

cos(3kcx)QK (ρ,w22)
)
.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Similarly

∆Qbc

D (w1,w2) = A(T2)3
(
− k2

c cos(kcx)
(
Qbc

D (ρ,w20) +
1
2
Qbc

D (ρ,w22)
)

− 9
2

k2
c cos(3kcx)Qbc

D (ρ,w22)
)
.

Recalling the definitionMj = QK − j2k2
cQbc

D ,

QK (w1,w2) + ∆Qbc

D (w1,w2) =A(T2)3
(

cos(kcx)
(
M1(ρ,w20) +

1
2
M1(ρ,w22)

)
+

1
2

cos(3kcx)M3(ρ,w22)
)
.

Thus,

G =
(
ρ∂T2A + G(1)

1 A + G(3)
1 A3

)
cos(kcx) + G3A3 cos(3kcx),

G(1)
1 = (ũ2 + ũ1M)k2

c b2(1,0)t ,

G(3)
1 = −

(
M1(ρ,w20) +

1
2
M1(ρ,w22)

)
,

G3 = −1
2
M3(ρ,w22).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The solvability condition is 〈G,ψ〉 = 0, leading to

〈ρ cos(kcx),ψ〉∂T2A + 〈G(1)
1 cos(kcx),ψ〉A + 〈G(3)

1 cos(kcx),ψ〉A3 = 0.

Thus, recalling the definition of ψ = (1,M∗)t cos(kcx), and defining

σ =
G(1)

1 · η
ρ · η

, L =
G(1)

3 · η
ρ · η

,

for η = (1,M∗)t , the resulting Stuart-Landau equation is

∂T2A = σA− LA3.

We may check that σ > 0. Two qualitatively cases depending on the sign of L:
the supercritical case, for L > 0,
the subcritical case, for L < 0.
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Cross-diffusion problem The supercritical case

The supercritical case

If σ, L > 0 in ∂T2A = σA− LA3 then A∞ =
√
σ/L.

The amplitude and the form of the asymptotic pattern is

w̃ = ερ

√
σ

L
cos(kcx) + ε2σ

L
(
w20 + w22 cos(2kcx)

)
+ O(ε3).

In general, this solution is not compatible with the Neumann boundary
conditions in Ω = [0,2π], that require kc to be integer or semi-integer.

We define k̄c as the first integer or semi-integer to become unstable when
b > bc , and take

w̃ = ερ

√
σ

L
cos(k̄cx) + ε2σ

L
(
w20 + w22 cos(2k̄cx)

)
+ O(ε3).
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