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Bifurcation: qualitative change in behavior of the equilibrium of a system.
Due to variation of a bifurcation parameter. Leads to a new steady state.

Stability of uniform steady states related to the sign of A\, of the linearized
system. If the steady state is initially stable, Re(\x) < O.

At bifurcation, at least one eigenvalue crosses the imaginary axis:

@ Turing bifurcation, in which one eigenvalue crosses the origin,

@ Hopf bifurcation, where a pair of imaginary eigenvalues crosses the real
axis and results in a limit cycle with oscillations.

We analyze the occurence of Turing bifurcation.
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The contents is extracted from:

@ G. Gambino, M.C. Lombardo, M. Sammartino,
Turing instability and traveling fronts for a nonlinear reaction-diffusion
system with cross-diffusion,
Mathematics and Computers in Simulation 82(6) (2012) 1112-1132.
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Linear self-diffusion problem

Problem:
3[U1 — d1AU1 = 7f1 (U1, U2) in QT = (0, T) X Q7
Otlp — th AUy = v (U, Up) in Qr,
Vui-n=Vu-n=0 onlTr=0(0,T) xQ,
U1(~70) = U1, Ug(-,O) = Uog in Q.

We take Q = [0, 27], and (fi, f2) nonlinear, e.g. competitive Lotka-Volterra.

In vector form:

ou — dAu = ~f(u), d = diag(d;, ).

Non-trivial uniform steady state G = (i1, i) are constant positive solutions of

() = 0.
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Linear self-diffusion problem

Linearization around U gives, forw = u — Q,
oW — dAw = v Df(G)w,
with

_ (01fi(u)  Oafi(u)
Di(u) = (61 B(u) aié(u)) '

We look for a particular solution of the form
w = exp(Axt + ikx)u,

where
@ U, is a constant eigenvector,
@ )\, is an eigenvalue, representing the linear growth rate,
@ k is the wavenumber of the perturbation.
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Linear self-diffusion problem

Upon substitution, one gets the eigenvalue problem
AW = W, with A, = yDf(i) — K2d.
For each k, we obtain the particular solution
(Crxuic€M! + Coxup ™) ¥,

where ¢y depend on the initial data.

The general solution can be expressed as

w(t, x) = Z (Crru1 €M + Copupieet) e,
k
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Linear self-diffusion problem

The characteristic equation is, for Ax = yDf(i) — k?d
A2 — tr(Ak) Ak + det(Ax) =0,
where

tr(Ax) = (011 () + 02(0)) — kz(d1 + db),
det(Ay) = didok* — y(cads £ (Q) + 01 D2 (0)) k2 + ~2 det(DE(Q1)),

having the roots

A = %(tr(Ak) + Vir(Ad) — 4det(Ak)).
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Conditions for linear instability

We look for diffusion-driven instability: if no spatial variations (k = 0) then
Re()\jo) < 0. This implies

tr(Ao) = tr(DF(ii)) < 0, det(Ay) = det(Df(i1)) > 0.

Returning to spatial-dependent problem: look for changes of sign of Re(\x)
when varying diffusion coefficients.

We have tr(Ax) < 0. The only way for Re(\x) > 0 is det(Ax) < 0, with

det(Ax) = 0y dok* — (201 f (01) + dyDafo(11)) K2 + ~2 det(DF(1)).
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Linear self-diffusion problem Conditi for linear i

The point of minimum is

K2 ’Yd281 fy (ﬁ) +d 82f2(ﬁ)
c 2d,d> ’

and the minimum value is

(dz(r“)1 f1 (l]) + d1 82f2(ﬁ))2}
4d,d> '

h(k?) =2 | det(DA(i)) ~
We have h(k2) = 0 (bifurcation) if d, is a positive root of
(4

(91 £,(0)) 2 + 2(20a 1, (1) D1 fo (@) — 01 fy (1) Da (@) ) d; + (D2(i))° = O,

where d; is the critical diffusion ratio.

If o, exists, then critical wavenumber is obtained from k2, with dS/df = dj.
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Linear self-diffusion problem Conditi for linear i

For d* > d, exists a range of unstable wavenumbers in [kZ, kZ], where
det(Ak1) = det(Ak2) =0.

The wavenumbers are discrete and a finite number in [kZ, k3].

Within this range, Re(\x) is positive and assumes its maximum value for k2.

For large t,

k2
w(t,x)~ > ugee"™.
k=ki
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

Linear stability of the competitive Lotka-Volterra
system

Consider

fi(u) = aju; — (Binus + Bializ) Uj,

with o, B > 0, for i,j = 1,2. The co-existence equilibrium is

- Bosay — Broae  Priaz — PBoray
b= ( ),

B11822 — B12B21” B11P22 — B12521

with &; > 0, for which

Df(u) = <—ﬁ11l~l1 —ﬁ1za1> .

—Bo1lly  —foollp
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

U is stable for the dynamical system if the eigenvalues of Df(u) are negative,
p? — tr(Df(u)) + det(Df(u)) = 0.
Thus, the conditions are

tr(Df(u)) <0, and det(Df(u)) >0 (for negative real part),
tr(Df(u))? — 4 det(Df(u)) > 0 (for null imaginary part).

The second condition is equivalent to
(B11Th — Bo2li2)® + 4B12B21Ur Uiz > 0.
Both conditions are satisfied if 5; > 0, and

tr(B) >0, and det(B) >0, with B=(3;).
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Linear self-diffusion problem Linear stability of the competitive Lotka-Volterra system

Returning to the spatial-dependent problem and writing
(91 £,(0)) 202 + 2(20a 1 (1) D1 fo (@) — 01 f; () Do (@) ) d; + (D2o())° = O,
as ad? + bd; + ¢ = 0, the solutions are d, = %(—b + /b2 — 4ac). For real
and positive solutions
b* —4ac>0 and b<0.
After some computations,
b? —4ac >0 <= Bi2fe1 > B11Bze,

contradicts the stability assumption det(B) > 0 for the dynamical system.

Thus  is linearly stable for any choice of the diffusion coefficients.
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Cross-diffusion problem
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Cross-diffusion problem

May the Lotka-Volterra system be instable in more complex situations?

We study the SKT cross-diffusion case:

Oruy — div Jy(u) = ~f(uy, up) in Qr,
Otlo — div JZ(U) = ’7f2(U1 s U2) in QT7
Ji(u)-n=dr(u)-n=0 onlr,
ui(-,0) = uyo, Ua(+,0) = Unp in Q,

with flows and reaction terms

Ji(u) = V(U,'(d1 +apVuy + a,QVUQ))
fi(u) = ajui — (B us + Bial2) U,

with the coefficients B = (5;) satisfying the kinetic stability conditions

tr(B) >0, and det(B)> 0.
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Cross-diffusion problem

We study the co-existence homogeneous stationary state

. Booar — Braaz  Priaz — Berag
= ( )

B11B22 — B1221” B11 P22 — 12521

with &; > 0, for which,

K = Di(@i) = (-51101 —512171> .

—B21lp  — P22l
Linearization around U gives the following system forw = u —
oW — DAW = vKw,
with

D— di +2a11ly + aplle aia
a1y b + apt iy + 2anpin
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Cross-diffusion problem

The corresponding eigenvalue problem leads to
X2 — tr(Ao) . + h(K?) = 0,
with A, = vK — kD, and
h(k?) = det(Ax) = det(D)k* + vgk? + ~? det(K),
being

q =P1101(2ap2liz + O2) + fo2lz(2a11 01 + d)
+ a2l (Loalle — Po1li) + @01 Uy (B11ly — Br2llz).
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Conditions for linear instability

Spatial patterns arise for Re(\) > 0.
Since (i is stable for the kinetics then tr(Ax) < 0.

Therefore, the only way to have Re(\x) > 0 is h(k?) < 0.

Condition for marginal stability
min(h(kZ)) = 0.

The minimum of h is attained for

k2 — 7q
¢ 2det(D)’

which requires g < 0.

The only potential destabilizing mechanism in q is the cross-diffusion.
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Election of the bifurcation parameter

q =P1104(2anlis + o) + [o2lia(2a1104 + 0y)
+ aipla(Boalle — Po1Un) + @21 U1 (L1104 — P12li).

Conditions on the positiveness and stability of & imply that

Boalle — 214 <0 OR Byl — P12l < 0.

When ai» destabilizes then ax¢ stabilizes and vice versa.

We choose Booil — B2101 < 0 and

b := aj2 as the bifurcation parameter.
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Critical value of the bifurcation parameter
Since h(k?) depends on b, one gets the bifurcation value from
min(h(kZ)) = 0.

Consider

my = Up(B21l — Poollz) > 0,

Mo = 1101 (282200 + b)) + Boolp(2a1101 + di) + @1 U1 (B1101 — S12li) > 0,
S0 g = —myb + my. The minimum value of h(k?) is

(—m1 b+ m2)2
4det(D) )

Let £ € R, to be determined, and set b = mo/m; + £. We get the marginal
stability condition

min(h(k2)) = yz(det(K) -

>
mj

2 _
4det(K)£ —det(D) = 0.
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Cross-diffusion problem Conditi for linear ii

Replacing a2 = b= my/my + € in D, we get
- - mo . ~
det(D) :Uz(dz + 2322U2)§ + (EUQ(dz + 2322U2)

+ (di +2a1101) (02 + a1l + 2322512)>~

Therefore, €2 — det(D) = 0 has a positive root, denoted by ¢*.

m;
4 det(K)

The critical value for bifurcation is

pe= T2 4 &t
m
Observe that g := —myb + m» < 0 is guaranteed.
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Cross-diffusion problem Conditi for linear ii

For b > b° the system has a finite k pattern-forming stationary instability.
Unstable wavenumbers are between the roots of h(k?), denoted by k? and k3.
It is straightforward to check that these roots are proportional to ~.

For pattern formation, v must be big enough so that at least one of the modes
allowed by the boundary conditions is in [kZ, kZ].
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Amplitude equations and weakly nonlinear
analysis

Linear stability theory is useful for understanding pattern formation:
@ Diffusion is the key mechanism.
@ Determine conditions on system parameters.
@ Gives length scale of pattern formation, 1/kc.

But,
@ the exponentially growing solutions are physically meaningless.

To predict the amplitude and the form, nonlinear terms must be included.

We perform a weakly nonlinear analysis based on multiple scales.
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Amplitude equations and weakly nonlinear analysis
Nonlinear expansion

In Turing bifurcation,
@ Viose to the bifurcation, Re(\x) < 0.
@ The linear instability must be preceded by Re(\) = 0.

Therefore, the pattern evolves on a slow temporal scale, like et with A\, =~ 0.

@ New, scaled, magnitudes are considered, and treated as separate
variables.
@ We fix a control parameter
s, b—bg

g = 5

be

and write the solution of the original system as a expansion in terms of £2.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Considering a random perturbation, w, around the steady state, we recast the
original nonlinear system as

oW = LOw + NPw,

where £° = K + DPA is the linear part, and A/? contains 2nd order terms,

1 1
Nb = EQK(wv W) + EAQ%(W7 W)7

with the bilinear forms

(25X = Bra(x'y? + Xy
QK(X,y)’Y(2/822X2y2521(x1y2+x2y1) )

a1 x'y' + b(x'y? + x2y)
2322X2y2+az1(x1y2+)(2y1) .

os(xy) = (

(University of Oviedo) Review on cross-diffusion 27/40



Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The idea is: '
Expand w in ¢, so the leading term is A(t)e*, with A slowly varying.
We consider

b= b° 4 by 4 e2bp + 3b3 + O(e*),

W = W + £2Ws + 3wy 4 O(e?),

O = €07, + 207, + 307, + O(e*).
Then,

Db — dy + 2811L:11 + bl 901 )
apy Up Ob + ap1 Uy + 2ax s

> (bl b
=DpP —l—ZE/( 102 101)4—0(54).

j=1
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

£P = 7K + DPA takes the form
=L +Z A+ O(e*), with £ =~yK + DA

For the quadratic terms

QK(W, W) = EZQK(W1 ) W1) + ZESQK(W17W2) + 0(64)7
OB (w, w) = 208 (wy, wy) + 253(Ogc(w1,w2) + (bywy W12,0)’> + O(e*).

For the time derivative expansion,

oW = 6287'1 Wy + 63(8T1W2 + 872W1) + 0(64).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Introducing these expansions in 9w = £°w + N®w, leads to
O(): L£w;= 0,

C 1 C
O(?): LVwy= orw; — §(QK(W17W1) + AQY (wq, W)

U O
—b1<02 O1>AW1=:F,

g . 1,2
O(e%) 1 L% W3 = Or,W2 + Or,W1 — Qx (W1, W2) — AQD (W1, Wz) — by A <W10W1>

— <L(j)2 L(l)1> (b1 AW, + bgAW1) = G,

with

£ = yK + D A.
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Amplitude equations and weakly nonlinear analysis
Studying the orders of the expansion

We solve in x € (0,27 /k.), and later adapt to Q = (0, 27).

Order =: The solution of the linear problem £%°wy = 0in (0, 27 /k) with
Neumann boundary conditions is

wi = A(Ty, To)pcos(kex), with p € ker(vK — k2D?"),

where A is still arbitrary.

p is defined up to a multiplicative constant, we normalize

—vKoq + Dg:kg

p= 1,M’7 with M = < ,
( ) 7K22—D§2k02

where Kj, ij?c are the i/, j-entries of the matrices K and DY,
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis
2. b°
Order c~: L% w, =F.

Observing that

Ok (W1, wq) = ATy, T2)? cos?(kex) Qk (p, p),
Qf (w1, wy) = A(Th, To)? cos?(kex) Q5 (o, p),
and using standard trigonometric identities, we find

1

E(QK(W1,W1)+AQ%C(W1,W1))
1 o
=2 AT, To)? (Qx(p. ) + (Qk(p. p) — 4k2QY (. p)) cOS(2kox))
1 ,
=4 AT T2)? D My(p. p) cos(jkeX),
j=0,2
with

= O — Pk2QY.
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Therefore,
1 )
F=—2A(T, T2)? ) M;(p, p) cos(jkex)
j=0,2

+ (07, A1p + byk3A1 (T + T4 M, 0)') cos(kex).
Fredholm alternative: since ker £°° = span(p), a solution if and only if
(F,) =0 for 4 e ker((£)"),
where (-, -) denotes the scalar product in L?(0,27/k;), and

—7Kiz + D?%kE

= (1,M*) cos(ksx), with M* = ———=___127¢
% = (1.M")" cosi{kex) Y
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

0= (F,¢) = 1A2 Z /\/l,(p,p)(1,M*)’/K cos(jkex) cos(kex)dx
0

=2 |
j=0,2
27

T
+ (07,40 + buRRA(Ee + 1M, 0)1) (1, M°)’ /0 cos? (ksx)dx.

The first integrand at the right hand side vanishes, so we obtain

by kc(az + i M)

87-1A(T1, T2) = XA(T17 T2)a with X = 1+ MM~

No indication on the asymptotic behavior, T; — oo, of the amplitude!
Suppress secular terms in F setting 71 = by = 0.

Then the compatibility condition is satisfied, and

1 > :
F= AT ];2 Mj(p. p) cos(jkex).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The solution of £%°w, = F is explicitly computed: Introducing

wo = A(T2)? Y wy;cos(jkex),

j=0,2

we get

LW, = (7K + DY Ao = A(T2)2 Y (7K — (jks)2 D)W cos (jkoX).
j=0,2

W, must satisfy the linear systems
1 .
ij2] = _ZMj(pap)’ forj:0a27

with L; = vK — j2k2D"".
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Amplitude equations and weakly nonlinear analysis
c
Order £3: £%w; = G.
Since Ty = by =0,

G = 97,wq — Qu(Wy, W) — AQY (Wq, W) — (L(I)z Lg) b2 Awy,

where, for p = (@i + 0y M, 0)',
wi = A(T2)pcos(kex),  Wo = A(T2)?(Wag + Wap COS(2kcX)).
Then

8T2W1 =p COS(ch)aTZA( 7-2)7

B (L(I)Z ‘3) be AW = A(T2)kG cos(kex)bz(liz + 1h M, 0)"
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Using that Qk and Q‘E,C are bilinear, and
2cos(x) cos(y) = cos(x + y) + cos(x — y),
and recalling
w; = A(T2)pcos(kq:x), W = A(T2)?(Wao + Wap cOS(2K:X)).
we get

Ok (W1, Wz) = A(T2)?Qk (W1, Wao) + A(T2)? cos(2ksx) Qk (W1, Wa2)
= A( 7—2)3 cos(kex)Qk(p, W20)
+ A(T2)3 cos(2k.x) cos(kex)Qx (p, Wa2)

= A(TL)? ( cos(kex)(Qk(p, W20)

1 1
+ EQK(p, W22)) + 3 cos(3k:x)Qk (p, sz))-
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

Similarly
AQY (wq,Wp) = A(T2)3< — k2 cos(kex)(QY (p, Wao) + %Qg(p, Wa2))
_ gkg cos(3k:.x) Q% (p, Wgz)) :
Recalling the definition M, = O — k20,
Ok (Wi, Wz) + AOY (Wq,Wz) =A( Tz)S(COS(ch) (M1(p,W20) + %JVH (p,W22))

1
+ > cos(3kcx) M;3(p, ng)).

Thus,
G= (pargA +GA+ GﬁS)AS) cos(kox) + GaA® cos(3kex),
G\" = (1 + Uy M)k2b2(1,0)",
GSS) = —(M1(p,wz) + %/\/h(p, W22)),
Gs3 = —%/\/lg(p7 Wop).
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Cross-diffusion problem Amplitude equations and weakly nonlinear analysis

The solvability condition is (G, ¥) = 0, leading to
(pcos(kox), ¥)or, A+ (GL") cos(kox), ) A + (G\¥ cos(k.x), ) A% = 0.
Thus, recalling the definition of 1 = (1, M*) cos(k.x), and defining

1
UZAGS)'T' L:G(31)'77

p-n’ pem’
for n = (1, M*)', the resulting Stuart-Landau equation is

or,A=cA— LA,

We may check that o > 0. Two qualitatively cases depending on the sign of L:
@ the supercritical case, for L > 0,
@ the subcritical case, for L < 0.
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The supercritical case

lfo,L > 0ind7,A=0A— LA®then A, = \/o/L.

The amplitude and the form of the asymptotic pattern is

W= gpﬁcos(kcx) + 52% (W20 + W22 COS(2K:X)) + O(e?).

In general, this solution is not compatible with the Neumann boundary
conditions in Q = [0, 27, that require k. to be integer or semi-integer.

We define k. as the first integer or semi-integer to become unstable when
b > b, and take

W= gpﬁcos(Ecx) + 52% (W2 + W2o COS(2kcx)) + O(£°).
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