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I INTRODUCTION 

The model. The Boussinesq system of hydrodynamics equations [4], [16], arises from a zero order approximation to the coupling between the Navier-Stokes equations and the thermodynamic equation [15]. The presence of density gradients in a fluid means that gravitational potential energy can be converted into motion through the action of bouyant forces. Density differences are induced, for instance, by gradients of temperature arising by heating non uniformely the fluid. ln the Boussinesq approximation of a large class of flows problems, thermodynamical coefficients, such as viscosity, specific heat and thermal conductivity, can be assumed as constants leading to a coupled system with linear second order opera.tors in the Navier-Stokes equations and in the heat conduction equation [5], [8] , (10], [11], [9], [12], [17] . However, there are some fluids, such as lubrificants or some plasma flows, for which this is no longer an accurate assumption. In this paper we present a preliminar repport on the study of the well possednes as well as some properties on the supports of solutions to such type of Boussinesq system. For a more detailed work on this topic we refer to the reader to [6]. We start by considering the system derived in [15] 
{ u1 + (u · v)u - div (l_t(O)D(u)) +_vp = F(8),div u = O. C(8)1 + u · vC(8) - ticp(8) = 0. (1.1) 

where u is the velocity field of the fluid, 8 its temperature, p the pressure, µ ( 8) the viscosity of the fluid, F(8) the buoyancy force, D(u) :=vu+'i?ur. 
C(8) := {9 C(s)ds leo and i.p(8) := f° K(s)ds loo with C(0) and ;;;(8) being the specific heat and the conductivity, respectively. Assuming, as usual, 

C > 0 then C is inversible, and so 8 = c- 1(8) for some real argument 0. Then we can define the functions 
(1.2) Substituting these expressions in (1.1) and omitting the bars we get the following formulation of the Bous.<iinesq system 

{ u, + ( u • 17)u div (µ(B)D(u)) + vp = F(O).div u 0, 81 + u · vB - �ip(B) 0. (1.3) 

We briefly comment some interesting featuref that characterize this model. There are two paradigmatic situations covered by the model: the .fast and the slow heat diffusion. These cases mathematically correspond to the singular or degenerate character of the heat equatfon which may occur 
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according the relative behaviour of C and ti. Indeed, since C and 1, are non negative, their primitives C and zp are increasing functions. Suppose that a perturbation of a constant temperature Bo causes a small gradient of temperature between the boundary (higher temperature) and the interior (lower temperature) of a neighborhood, and assume that the behaviour of C and .,:; near B0 can be approximate as 

( 1.4) 
for s > 80 , where p, q > 0. From (1.2) we have that 

So whens-+ 00 ( and therefore C(s) -+ 0 ) we get one of the following behaviours of ,j:;1 dose to zero: (i) if p, q > 1 then ,,:/(0) == k i fc1,
(ii) if l > q > p either q > l > p then lim <p1(C(s)) 0,

C(s)-+0 

(iii) if p > 1 > q either 1 > p > q then lim ,p'(C(s)) +oo.
C(s)->0 

In the first case both linear parts dominate: this case arises, for i11stance, when conductivity and specific heat a.re taken as constants, leading to the classical heat equation with a linear diffusion tPrn1. In the other two cases the non linear parts dominatP and this leads to two difforent behaviours: 
if p < q, the specific heat dominates over the conductivity, i.e., when temperature a,pproches 80 the fluid stort8 mort hwt and this is worstly conduced. We shall prove that a front of temperature 

() = 00 arises. This type of phenomenon is known as slow diffusion: heat spends a positi\·e time to spread over the neighborhood, 
if p > q the opposite effect arises: the conductivity dominates over the specific heat, In this case the phenomenon is called fast diffusion. \Ve sha.11 prove that, in fart. 0 00 in the whole dolllain when the time is large enough 

Assumptfons and f1mclional setting. Given T > 0 and a bounded domain �l C !R;V, N 2: 2, and writting Qr :== n x (0, T) and "f:,y := afl >< (0, T), we consider the system of equations (1.:3) in Qr, adding the following auxiliary conditions: 
{ u = 0, u(x,O) cp(8) = 0 uo(x), 0(x,O) on 0o (x) on Q. 

The following conditions will be always assumed along the paper: 
(1.5) 

l, QC !RN is an open, bounded and connected set, with a Lipschitz continuous boundar�· having fi uite ( :V I) dinwnsi011a,l Haussdorf measure. 
2. /l : IR+ -+ lR+ is a locally Lipschitz continuous function and there exist m 1 > mo > 0 suchthat

3, F :JR+ -+ ]RN is a locally Lipschitz continuous function. 
(LG) 



Second World Congress of Nonlinear Analysts 3 4. i.p: IR+ ➔ IR+ is a continuous and strictly increasing function, with lf(O) 0.We will work in the usual functional setting of the Navier-Stokes equations by considering the spaces of free divergence (see, e . g., [19]). We introduce the spaces C;"'(D) .- { u E Cg"(f1; lRN): div u = 0}, L�(n) .- closure of (f!) in the norm of LP(fl; JR.v ), w;,P(f!) w�·P(n: 1R 1") n L�(Q), and the orthogonal projection 
Applying the projection to both sides of the Navier-Stokes equations and taking into a.ccount that P(1 vp = 0 and that u = P,,. u since div u = 0, we get 

{ u1 +P0 (u•v)u PO' div(;i(0)D(u)) 81 + u. ve o.c.p(0) = ou = 0, .p(0) = 0u(x,O) = uo(:i:). B(x,0) = Bo(x)which is the final form of the problem we will stud.v. 
PaF(0) in Qr. in Q y , on on D, 

2 EXISTENCE AND Ul\[QUE:'-IESS OF SOLUTIONS 

(1.7) 

E:i:istrnce of solutions. The existence of weak solutions for the system ( 1.7) is a consequence of previous results on the :-Javier-Stokes equationf. and on nonlinear diffusion equations. We give here a sketch of the proof, based in Galerkin method and Semigroups theory techniques, although other strategies are also possible (see, for instance, the formulation ma.de in [17] as a. suitable variational inequality). THEOREt,1 2.1 Assume 1- 4. Then if u0 E L;(Sl) and 80 E Lo::'(D) problem (l.7) has at least one solution ( u, 0) in the sense of distributions, with the following regularity: u E U'0 (0, T; L;(Sl)) n L2 (O, T; W;·2 (Q)),{/ E L''°(Q T),cp(0) E L2(O, T; IIJ{Q)).Moreover. if 00 2: 0 a.e. in Q then 0 2: 0 in QT, The proof (see [6)) consists on the followi11g steps: - uncoupling u and 0 in the system by introdtccing a suitable iterative scheme,proving existence of solutions for the Na.vier-Stokes system with a non constallt visco;;ity audprescribed (;I by using a Galerkin method ([13],[19]), - proving existence of solutions of the nonlinear heat equation with prescribed u by applying Semigroups theory ([3]), - passing to the limit in the iterative process means of some a p1·iori estimates.



4 Second World Congress of Nonlinear Analysts Uniquwess of solutions. The main difficulty in the study of the uniqueness of solutions for this kind of system& is due to the presence in the thermal equation of a coupling convection-diffusion where the convective term has a different homogeinity than the one of the diffusion term. Here we shall restrict ourselves to the non degenerate case. THEOREM 2.2 Assume 1 4, N = 2 and <p-1 : lR+ ➔ lR+ locally Lipschitz continuous. Then, atmost there exists a solution (u,8) of (1.7) such that u E Loc'(O,T, W;•00(D)). Proof. Suppose there exist two solutions, (u1, Bi), (u2, (h) and define u := u1 - u2 , (J ::::::: 8 1 - 82 , µ; 1t(8i), and F; F(O;). Then (u,8) satisfy: 
{ Ut +, (u1 · V)u + (u · V)u2 , div(lt1D(u) + (µ1 - µ2)D(u2)) F1 F2 in Qr,B1+ u1 ·'v8+u·'v82 6 (<p(tJ1) -,::(82)) 0 in Qr , u=O, <p(8)=0 on u(a:.0)=0 0(x,O)=0 inn. (2.8) 

Then if w J, are test functions, with div w = 0, adding the two resulting integral identities we get 
.l (u(T) · w(T) + 8(T){(T)) lr u · [w1 + (u 1 · v)w + div(Jt1D(w))] ++u2•(u•v)w- f [(µ1-Jt2)D(u2 ):Vw+(F 1 -F 2 )•w)+

. 

}Qr
+ j (0 (et+ U1. ve) + 02u. v� + (<.p(Oi) -..p(02)) J.-0.

Qr Adding and substracting t.he terms k (u • w + 0{) . IH uw and hL , where k, M are positive constants to be fixed and hL := hL(x, t) to be given later, and using the formula of variation of the parameters we obtain 
j� (u(T). w(T) + 0(T)�(T)) =: foT ,k(T-t) {l U · [w1 - kw+ AJ uw] +

+ i 9 (�1 - k� + hL60 + (h - hL) fJ!J..� + /}, where, given L E JR h = { h if h $ L •,L L if h > L.with 
and 

I .- f [u · (u1 · 'v)w + u · rdiv(p1D(w)) - M 6w] + u2 (u · v)w - (p1 - /t2) D(u2): Vw]
ln 

+ k(F1-F2)·w+Bu1•v{+tJ2u•v(.Notice that as c.p-1 is increasing and Lipschitz continuous then both h and hL are bounded from below by a positive constant h0 • Now we choose the test functions as solutions of the following uncoupled system: 
w 1 - kw + Jvf il w = u I <, - kU hr,/"{ divw = 0 w=O �=0 tJhL w(T) = 0, ffT) = 0 

in QT, in Qr, in Qr, (2.9) on ET, on Q. 
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Since u E 100 (0, T; 12(0)) n 12 (0, T; WJ•2(n)), BhL E L00 (Qr) and O <ho < hL s; L, the existence 
of regular solutions to (2.9) holds by well-known results (see e.g. (14]). Moreover, multiplying by �e

in the third equation of (2.9) we get the following estimate 

(2.10) 

Using such w and� as test functions we obtain 

The integral I can be estimated by using Poincare, Holder and Young's inequalities. We get 

2 f> 2 2 2 2 d3 2 k 2 
-Is; d1 llull2 + k llull1,2 + d2k llwll1,2 + iW ll�wll2 + y ll0llz + 4 

ll(llu 

where d; are some positive constants and 6 > 0 will be fixed later on (here we used the notation 
11/IIP := llflbu.1) and llfllp ,q := llfllwM(f!) ). We have thus that

0 2 J
T 

ek(T-t) {-l'vl :t (llwllt,2) d1 llull� {; llulli,2 + (2lvf - d2)k llwllt2 +

io d3 2 1 d 2 , 3k { 
} + ( 2 t)IIBll2 2dt(llel11,2)+ 4 11€111,2+ ln(h hL)B�� . 

Integrating by parts (in time) and using the following estimate 

llulli.2 

which is deduced by multiplying the first equation of (2.8) by u (and where the assumption JV= 2 
is used), we get 

O > {
7 

i(T-t) { [!_ d1 c1 �
k
-] llul/� + k(M. d2) llwll

.
i 2 +lo m1 · 

( 
ho l 

) 2 k 2 1
2 1 2 + 2 - k(rl3 - c3) 110112 + 4 11�11 1 ,2 + .M 1/w(O) 11,2 + 2 11�(0)111,2 + 

+ _o_ llu(T)II; + r /J(h - hL )t:1(},
km1 ln 

where c; are suitable positive constants. Notice that the conclusion holds if we can select the positive 
constants, k and 8, such that 

and if 

j•T i' . ek(T-t) /J(h - hi )t::,l, ➔ 0 as
0 .f! 

L ➔ oo, (2.11) 
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since in that case, making Af = d2 , we get 

The required inequalities are satisfied by choosing 

k = max {t
0 

(d3 - c2), c1} 

The property (2.11) follows from the inequality 

and 

the uniform estimate on 1/il..;lluiQr) given irt (2.10) and the a.e. convergence of h l to h. Indeed, by 
inequality 

IB(h hL)! S 2 lsp(Bi) + sp(B2)I, 
we can apply the dominate convergence theorem which implies (2.11). 
REMARK The Lipschitz continuity of sp-1 pla.ys an essential role in the derivation of the uniform 
bound on .6.e. Without this assumption the limit problem satisfied by e, when L -t oo, becomes 
degenerate and hence the estimate, in general, does not hold. 

3 STUDY OF THE SlIPPORT OF THE TEMPERATCRE 

In this section we shall show two different propertie,-; on the support of temperature component 
of the Boussinesq system according to the balance between specific heat <tnd thermal conductivity 
mentioned in the introduction: 

(i) the localization in time of the support (extinction in finite time property), and

(ii) the localization in space of the support (the finite speed of propagation property).

These kind of properties have been intensively studied in the recent years by a number of authors, 
and several techniques have been developed to this end (see [2], [1] and the references therein). \Ve 
use here tvvo Energy Methods which consist, in both cases, in the derivation of an ordiuary differential 
inequality for some energy norm of the temperature. A study of the respective inequalities prove;, 
the ocurrence of the mentioned phenomena. 
Property (i) occurs in the fast diffusion case, meanwhile property (ii) corresponds to the slow diffusion 
case. More precisely, 

DEFINITlON 3.1 Given a solution (u,0) of (1.7). we say that 0 satisfies the extinr-tion in finite time
property if there exists ti > 0 such that 0(·,t) = 0 in Q for all t?:: t

i , 

DEFINITION 3.2 Consider ,i·o E Q and a ball Bp0
(xo) = {x E JRN : Ii: - xol < Po} where Bo(x) = 0. 

Given ( u, 0) solution of ( 1. 7) we say that 0 satisfies the finite speed of propagation property if there 
exist t0 > 0 and a function p: [O,t0] ➔ [0,p0] with Po:= p(O) such that B(:r,t) = 0 a.e. in Bp(i) (.ru). 
for all t E [O, to] 

A sufficient condition for property (i) is given in the next result: 
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for some m E (0, 1), 

7 

(:J.12) 
and c1 > 0. Then any solution ( u, 0) of ( 1.7) is such that (J has the property of extinction in finite 
time. 
Proof. Multiplying the temperature equation of (1.7) formally by 0P with p > 0 (which can be 
justified by regularizing techniques) and integrating in Q we get 

(3.13) 

Here we used (:3. l 2) and that 
j�(u-'\7)(}-0P Q 

as a consequence of the divergence theorem and that u E L 2 (0, T; W,;·2(n)). The rest of the proof 
follows a.s in the case of pure diffusion equations (see, e.g., [l], [2] and their references). We define 
the energy 

E(t) 

Using (3.1;3) and the Sobolev's imbedding theorem we get the differential inequality 

(3.14) 

where o = and C > 0. As m E (0, 1) it follows that o- E (0, 1). We easily get the upper bound 

El-a
and the result holds with t J := C( 

0 
) ; 1 - 0-

Finally, we briefly mention one of the results obtained for the spatial localization for solutions of 
the Boussinesq system. 
THEOREM 3.2 Assume 

for some m E (l,oo) (3.15) 
and c2 > 0. Let (u,0) be any solution of (1.7). Assume u locally Lipschitz continuous in QT- Then 
8 satisfies the finite speed of propagation property. 

We shall give a sketch of the proof. First we introduce the change of unknown <p(8) := v and we
write ·1/J := ip-1. Then v satisfies the following equation: 

i:,(v) t + u · 'v0(v) - 6v = 0. 
We define the characteristics of the flow by 

{ �X(x, t) = u(X(x, t), t)dt X(x,O) = x. 
in (0, T), 
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Multiplying (formally) by v(x, t), fort> 0 fixed and integrating over the set

Bp (xo)t := { y E IB.N : y X(x, t) for some x E Bp(x0)}

we get

where
\Jr(s) := s'lj;(s) { 'lj;(u)du.

Notice that (3.15) implies that 'll(s)? csP+l with p := ¾,. From the Reynolds Transport Lemma

1 
f)

dl f) 
'lj;(v(y,t)) dy == -d 1/J(v(y,t)) dy

Bp(Xo), t t Bp(xo), 

Thus, integrating in (0, t)

f \Jf(v(y,t))dy+ t f jVvj2 dy= {
1 

f vv'v•v+ f \Jr(v(y,O))dy.
lap(x.o), lo lap(x.0), lo laBp(xo), 1Bp(x.o), 

Defining the energies

b(p,t)

and using that

we prove that

By the Holder inequality

fJE

dp (p, t) f lv'vl2 for a.e. p > o.
laBp(xo)t 

Using a variant of the interpolation-trace trace inequality obtained in [7] we get

where I<(t) is a superlinear positive funtion oft,

and

"'= w/2 + (1 w)/(p+ 1), 

w 
N(l-p)+p+l 

N(l - p) + 2p+2· 

Gathering the different estimates we obtain

b + E � I< ( �!) 112 (b + E)"'
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and by the Young's inequality 

f)E 1 12 b + E 5c f.: ( 8;) 1 (b + E) 1 l/3 
where /3 := 2(1 - i..:) E (0, 1). It is important to remark here that i;, > 1/2 if and only if p < 1. 
Therefore the arguments that follow can only be applied if p < 1. This is the point in the reasoning 
where the degeneracy of the nonlinearity ,pis essential. A direct integration of this inequality shows 
that E(p, t) = 0 for (p, t) such that p:; p0- l((t)E1 -/3(p0, T) from which we conclude that v(x, t) = 0 
on Bp(x0)1 fort E (0, t•) with t• ;:::;; K- 1

( El--;;o, T) ).
REMARK A more detailed exposition containing more general assumptions on u, a._-; well as the waiting 
time property, will be published elsewhere. 
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