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1. Introduction

In solid state physics, the drift-di�usion equations are today the most widely used
model to describe semiconductor devices. The drift-di�usion models describe the 
ow
of electrons in the conduction band of the semiconductor material and of holes (or
defect electrons) in the valence band of the crystal, in
uenced by the electric �eld.
Mathematically, they form a system of parabolic equations for the electron density n
and the hole density p and the Poisson equation for the electric potential V :

@n
@t

−∇ · (∇r(n)− n∇V )= − R(n; p); (1)

@p
@t

−∇ · (∇r(p) + p∇V )= − R(n; p); (2)

�V = n− p− C(x) in QT =
× (0; T ); (3)
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where 
⊂Rd (1≤d≤ 3) is the (bounded) domain occupied by the semiconductor
crystal. Here, C =C(x) denotes the doping pro�le (�xed charged background ions)
characterizing the semiconductor under consideration, r(s) is the pressure function,
and R(n; p) the recombination–generation rate. The process of transfering an electron
of the conduction band of the semiconductor into the lower energetic valence band
is called recombination of electron–hole pairs. The inverse process, i.e. the transfer
of a valence electron to the conduction band is termed generation of electrons and
holes. If recombination of electron–hole pairs exceeds generation then R(n; p)¿0, in
the opposite case we have R(n; p)¡0.
In the standard drift-di�usion model, it holds

r(s)= s and R(n; p)= q(n; p)(np− n2i );
where q(n; p) is a positive function and ni= ni(x)¿0 is the so-called intrinsic den-
sity [23]. The standard model can be derived from Boltzmann’s equation under the
assumption that the semiconductor device is in the low injection regime (i.e. for small
absolute values of the applied voltage). It is shown in [19] that in the high injection
regime, the di�usion terms ∇r(n), ∇r(p) are no longer linear, and the function r(s)
has to be taken as

r(s)= s�; �= 5
3 :

With this pressure function, Eqs. (1) and (2) become of degenerate type, and solutions
may exist for which n=0 or p=0 holds locally (so-called vacuum solutions).
The function r can be interpreted in the language of gas dynamics. We assume that

the particles behave – thermodynamically spoken – as ideal gas such that the gas law
r= nT holds (T denotes the particle temperature). In the isothermal case T =const. the
pressure turns out to be linear: r(n)= n. In the isentropic case, however, the temperature
(only) depends on the concentrations. Then T (n)= n2=3 holds for particles without spin
in adiabatic and hence for isentropic states [9], which implies r(n)= n5=3. (Similar for
the holes.)
The equations are supplemented with physically motivated boundary conditions. The

boundary @
 consists of two disjoint subsets �D and �N . The carrier densities and the
potential are �xed at �D (Ohmic contacts), whereas �N models the union of insulating
boundary segments:

n= nD; p=pD; V =VD on �D; (4)

∇r(n) · �=∇r(p) · �=∇V · �=0 on �N ; (5)

where � denotes the exterior normal vector of @
 which is assumed to exist a.e.
We assume that the densities at time t=0 are known:

n(0)= nI ; p(0)=pI in 
: (6)

The standard (low injection) model has been mathematically and numerically in-
vestigated in many papers (see [23, 24] and references therein). The existence and
uniqueness of weak solutions have been shown. The isentropic (high injection) model
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is analyzed in [10, 13, 16, 18–20]. The existence of weak solutions (satisfying ∇r(n),
∇r(p)∈L2 and n; p∈L∞) has been proved. The uniqueness of solutions is shown in
some special situations [10, 11, 18, 20]. For the derivation of the model we refer to
[19, 21, 25].
In this paper we present results concerning the temporal and spatial localization of

the vacuum sets {n=0}, {p=0}. The results can be summarized as follows:
1. Finite speed of propagation. If there are vacuum sets initially then there are vacuum
sets for small t¿0:

meas{n(0)= 0}¿0; meas{p(0)= 0}¿0
=⇒ meas{n(t)= 0}¿0; meas{p(t)= 0}¿0:

This property shows that the speed of propagation of the support of n and p is
�nite.

2. Waiting time. Under some structure condition on R(n; p) and some “
atness” con-
dition on n(0)= nI , there is no dilatation of the initial support:

{n(0)= 0}⊂{n(t)= 0} for small t¿0:

3. Formation of vacuum. Under some structure condition on R(n; p) there exists a
T0¿0 such that there is vacuum for t¿T0, even if the initial densities are positive:

meas{n(t)= 0}¿0:
The proof of these results which are formulated below is based on a local energy

method for free boundary problems. The idea of the method is to introduce an energy
functional (usually given by the norm in the natural energy spaces associated to the
equations) and to derive a di�erential inequality for the energy functional. From this
inequality the desired qualitative properties of the solutions can be deduced.
The energy method that we use has two principal features. First, it is a local method,

i.e. it operates in subsets of the corresponding domain without need of global informa-
tions like boundary conditions or boundedness of the domain. Secondly, it has a very
general setting, allowing to consider, for instance, problems in any space dimension
or with coe�cients depending on the space or time variable. The energy method that
we use does not need any monotonicity assumption on the nonlinear functions and it
requires no comparison principle.
The method has been introduced by Antontsev [1] and developed by D��az and V�eron

[12] and by Antontsev et al. [2–6] for parabolic equations of degenerate type. The
energy methods have been extended to equations of arbitrary order [7] and have been
applied to equations or systems of equations [8, 22, 14, 18]. We also refer to [5] for an
overview of the existing literature.
We now turn to the precise formulation of the localization results. The last result is

only valid if the local energy of the density is small enough. The local energy Dn(P)
of n in a domain P⊂QT =
× (0; T ) is de�ned by

Dn(P)=En(P) + Cn(P) + bn(P);
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Fig. 1. Localization of the vacuum sets.

where

En(P)=
∫
P
|∇n�(x; �)|2 dx d�;

Cn(P)=
∫
P
n(x; �)�+� dx d�;

bn(P)= sup
s∈(t̃; t)

∫
P∩{�=s}

n(x; s)�+1 dx;

with t̃; t¿0, and �∈ (0; 1) is a constant to be precised below.
Denote by Ws;p(X ) the space Ws;p(0; T ;X ) if X is a Banach space. Furthermore,

introduce V= {u∈H 1(
) : u=0 on �D}. In the following we assume that
r(s)= s�; �¿1;

and that there exists a solution (n; p; V ) to Eqs. (1)–(6) satisfying

n; p∈L∞(QT ) ∩ H 1(0; T ;V∗);

r(n); r(p)∈L2(0; T ;H 1(
));
V ∈L∞(0; T ;H 1(
)):

The existence of a solution with these regularity properties is shown in [10, 20]. We
have the following theorems (also see Fig. 1).

Theorem 1.1 (Finite speed of propagation). Let x0∈
; 0¡�0¡dist(x0; @
) and T¿0.
Assume that

nI =0; pI =0 in B�0 (x0)

and

R(u; v)(u� + v�)≥−�R(u�+1 + v�+1) for all u; v≥ 0; (7)



5

with �R≥ 0 hold. Then there exist T1¿0 and a non-increasing function � satisfying
�(�)¿0; 0≤ �¡T1; and �(0)= �0 such that

n(x; t)= 0; p(x; t)= 0 for a.e. x∈B�(t)(x0); t ∈ (0; T1):
For the next theorems we need a stronger condition on R(n; p):

R(u; v)≥ bu� for all u; v≥ 0; b¿0; �+ �¡2: (8)

Theorem 1.2 (Waiting time). Let x0 ∈
; 0¡�0¡�1¡dist(X0; @
) and T¿0. Assume
that Eq. (8) and∫

B�(x0)
n�+1I ≤ �0(�− �0)
+ (9)

for 0¡�¡�1 hold; where �0¿0 and


=
d(�− 1) + 2(�+ 1)

�− 1 ¿1:

(Recall that d≥ 1 is the space dimension.) Then there exist �1¿0 and T2 ∈ (0; T )
such that if �0≤ �1 then

n(x; t)= 0 in B�0 (x0)× (0; T2):

Theorem 1.3 (Formation of vacuum). Let x0 ∈
 and T¿0. Assume that Eq. (8)
holds. Then there exist M¿0; T3 ∈ (0; T ); and 
; �∈ (0; 1) such that if Dn(QT )≤M
then

n(x; t)= 0 for a.e. x∈B�(t)(x0); t ∈ (T3; T );
where �(t)= 
(t − T3)�.

The proofs of these theorems are presented in Section 2. The di�culties in proving
the above results are due to the coupling of Eqs. (1)–(3) and in particular, due to
the drift terms div(n∇V ), −div(p∇V ). Indeed, the electric �eld −∇V induces (or
prevents) a 
ow of electrons or holes in some direction in
uencing the support of the
densities.
Condition (8) which is also needed in [6] is almost optimal in the following sense.

Let R(u; v)≤ bu� for all u; v≥ 0 satisfying � + �¿2, and let the initial and boundary
densities be strictly positive in 
, 
× (0;∞), respectively. Then, choosing �≥ 1 (such
that �¿1), there exists a solution (n; p; V ) to Eqs. (1)–(6) satisfying

n(t)¿0; p(t)¿0 in 
; 0¡t¡∞
(see [20]). In this situation, no vacuum occurs.
The three localization results are illustrated by numerical examples in one space

dimension in Section 3. For the discretization we use an exponentially �tted mixed �nite
element method as in [17]. Modeling a one-dimensional forward biased pn junction
diode, the presented properties can be veri�ed.
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2. Proofs of the main results

For the proofs of Theorems 1.1–1.3 we have to estimate the local energies in the
domain

P= {(x; �) ∈ Rd × [0;∞): |x − x0| ≤ r(�); � ∈ (t̃; t)};
where t̃; t ∈ [0; T ], t̃¡t, x0 ∈
, and r ∈C1(t̃; t). In this section, r always denotes a
radius (function). Since the pressure function r(s) is taken to be s� and does not
appear in this section, there should be no confusion of the meaning of r. The lateral
surface of P is given by

@lP= {(x; �): |x − x0|= r(�); � ∈ (t̃; t)};
and the outer unit normal �=(�x; ��) of P has the components

�x =
ex√

1 + r ′(�)2
; ��=

−r ′(�)√
1 + r ′(�)2

;

where ex is the unit vector in the direction of �x. We choose the parameters t̃, t and
the function r(�) as follows:
(1) Theorem 1.1: P is a truncated cone with r(�)= � − M�, 0¡�¡�≤ �0, 0¡�¡t

and M¿0.
(2) Theorem 1.2: P is a cylinder B�(x0)× (0; �) with 0¡�≤ �0 and 0¡�¡T .
(3) Theorem 1.3: P is a paraboloid with r(�)= 
(�− t)�, t¡�¡T and 
; � ∈ (0; 1).

Proof of Theorem 1.1. Using local elliptic regularity theory (cf., e.g., [15]) and noting
that n; p∈L∞(B�0 (x0)), we see that ∇V ∈L∞(B�0 (x0)× (0; T )). Let

M = ‖∇V‖0;∞; B�0 (x0)×(0;T ); � ∈ (0; �0); t1 = �=2M;

and consider the cone

P=P(�; t)= {(x; �): x∈Br(x0); � ∈ (0; t)};
where �∈ (�; �0), t ∈ (0; t1), and r= r(�; �)= �−M�. For almost all � and � it holds∫

P
n∇V · ∇n� dx d� = �

�+ 1

∫
P
∇V · ∇n�+1 dx d�

= − �
�+ 1

∫
P
�Vn�+1 dx d�+

�
�+ 1

∫
@lP
(∇V · �x)n�+1 d� d�;

and therefore, using the local integration by parts formula (see Lemma A.1 of the
appendix):

1
�+ 1

∫
P∩{�=t}

n(t)�+1 dx +
∫
P
|∇n�|2 dx d�

≤ 1
�+ 1

∫
P∩{�=0}

n(0)�+1 dx +
∫
@lP
(∇n� · �x)n� d� d�
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− 1
�+ 1

∫
@lP
(�� +∇V · �x)n�+1 d� d�− �

�+ 1

∫
P
�Vn�+1 dx d�

−
∫
P
R(n; p)n� dx d�

= I1 + · · ·+ I5: (10)

Since n(0) vanishes in B�0 (x0), we have I1 = 0. For the estimate of I2 observe that
in spherical coordinates with center x0 (cf. [6, 12])

@En
@�
(�; t) =

@
@�

∫
P
|∇n�|2 dx d�= @

@�

∫ t

0

∫ r(�; t)

0

∫
Sd−1

|∇n�|2r̃ d−1 d! dr̃ d�

=
∫
@lP

|∇n�|2 d� d�:

Hence

I2≤
(∫

@lP
|∇n�|2

)1=2(∫
@lP
n2�
)1=2

=
(
@En
@�

)1=2
‖n�‖0;2; @lP:

We use the interpolation-trace Lemma A.2 (see the appendix) with p= q=2 and r=
s=1 + 1=�:

‖n�‖0;2; @Br ≤ c0(‖∇n�‖0;2; Br + r−�‖n�‖0;1+1=�; Br )�‖n�‖1−�0;1+1=�; Br
; (11)

where

�=
d(�− 1) + (�+ 1)
d(�− 1) + 2(�+ 1) ∈ (0; 1); �=

2(�+ 1) + d(�− 1)
2(�+ 1)

¿1: (12)

By the de�nition of r, we have

r−�=(�−M�)−�≤ (�−Mt1)−�=(2=�)�:
Thus, applying H�older’s inequality with exponent 1=� and setting K1 = c20 max(1;
(2=�)�), we obtain∫ t

0
‖n�‖20;2; @Br d�≤ 2K1

∫ t

0
(‖∇n�‖20;2; Br + ‖n�‖20;1+1=�; Br )�‖n�‖2(1−�)0;1+1=�; Br

d�

≤ 2K1
(∫ t

0
‖∇n�‖20;2; Br d�+

∫ t

0
‖n�‖20;1+1=�; Br d�

)� (∫ t

0
‖n�‖20;1+1=�; Br d�

)1−�

≤ 2K1t1−�(En(�; t) + t1bn(�0; t1)(�−1)=(�+1)bn(�; t))�bn(�; t)2�(1−�)=(�+1);
where

bn(�; t)= sup
�∈(0; t)

∫
Br(�; �)(x0)

n(x; �)�+1 dx:
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This yields

‖n�‖0;2; @lP ≤K2t (1−�)=2(En(�; t) + bn(�; t))�=2bn(�; t)�(1−�)=(�+1)

≤K2t (1−�)=2(En(�; t) + bn(�; t))�;

where K22 = 2K1 max(1; t1bn(�0; t1)
(�−1)=(�+1)) and

�=
�
2
+

�
�+ 1

(1− �)∈ ( 12 ; 1):

We conclude

I2≤K2t (1−�)=2
(
@En
@�

)1=2
(En(�; t) + bn(�; t))�:

Thanks to the special structure of r= r(�; �) and the de�nition of M , we have

�� +∇V · �x = M +∇V · ex√
1 +M 2

≥ 0;

so that I3≤ 0. Furthermore,

I4≤K3
∫
P
n�+1 dx d�;

where K3 = (�=(�+ 1))‖�V‖0;∞; QT .
For p we get an analogous inequality to Eq. (10) and similar estimates involving

the local energies Ep and bp de�ned by

Ep(�; t)=
∫
P(�; t)

|∇p�|2 dx d�; bp(�; t)= sup
�∈(0; t)

∫
Br(�; �)(X0)

p(x; �)�+1 dx:

Therefore, we have the estimate

1
�+ 1

∫
Br(x0)

(n(t)�+1 + p(t)�+1) dx +
∫
P
(|∇n�|2 + |∇p�|2) dx d�

≤K4t (1−�)=2
((

@En
@�

)1=2
(En + bn)� +

(
@Ep
@�

)1=2
(Ep + bp)�

)

+K3

∫
P
(n�+1 + p�+1) dx d�−

∫
P
R(n; p)(n� + p�) dx d�;

where

K24 = 2K1 max(1; t1bn(�0; t1)
(�−1)=(�+1); t1bp(�0; t1)(�−1)=(�+1)):

Introduce

E=En + Ep; b= bn + bp:
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Employing the assumption on R(n; p) gives

1
�+ 1

∫
Br(x0)

(n(t)�+1 + p(t)�+1) dx + E(�; t)

≤ 2K4t(1−�)=2
(
@E
@�

)1=2
(E + b)� + (K3 + �R)

∫
P
(n�+1 + p�+1) dx d�

≤ 2K4t(1−�)=2
(
@E
@�

)1=2
(E + b)(�; t)� + tK5b(�; t);

with K5 =K3 +�R. Since the right-hand side of the above inequality in non-decreasing
in t, we can write

(E + b)(�; t)≤ 2(�+ 1)K4t(1−�)=2
(
@E
@�

)1=2
(b+ E)� + (�+ 1)K5tb:

Choosing t¡t2 = min(t1; (2(�+ 1)K5)−1), we get

b+ E≤ 4(�+ 1)K4t(1−�)=2
(
@E
@�

)1=2
(b+ E)� (13)

and

E(�; t)2(1−�)≤ (b+ E)(�; t)2(1−�)≤K6t1−� @@�E(�; t);

where K6 = 16(�+ 1)2K24 . Integrating this di�erential inequality for E in (�; �0) gives
(note that �¿ 1

2 )

E(�; t)2�−1≤E(�0; t)2�−1 − K−1
6 t�−1(�0 − �):

Let

�̃(t)= �0 − K6t1−�E(�0; t)2�−1:

Then �̃(0)= �0 and �̃ is non-increasing. Choose T1 ∈ (0; t2) such that �̃(T1)¿�. Then,
for t ∈ (0; T1) and �∈(�; �̃(t)],

E(�; t)2�−1 ≤ E(�̃(t); t)2�−1

≤ E(�0; t)2�−1 − K−1
6 t�−1(�0 − �̃(t))= 0:

Thus (see (13)), for �= �̃(t),

n(x; t)=p(x; t)= 0 for a.e. t ∈ (0; T1); x∈B�̃(t)(x0):

The conclusion follows.
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The proof of Theorem 1.3 contains an estimate used in the proof of Theorem 1.2
and is therefore given before.

Proof of Theorem 1.3. We take the paraboloid

P=P(t)= {(x; �): x∈Br(x0); �∈(t; T )};

where t∈(0; T ), r= r(�; t)= 
(� − t)�, 
; �∈ (0; 1). Choose 
¿0 small enough such
that 2
max(1; T )≤ dist(x0; @
). Then r(�; t)≤ 
T�≤ dist(x0; @
)=2 and Br(�; t)(x0)⊂!
for some domain !⊂⊂
, for t ∈ (0; T ) and �∈ (t; T ). We get from Eq. (10)

1
�+ 1

∫
P∩{�=T}

n(T )�+1 dx +
∫
P
|∇n�|2 dx d�

≤ 1
�+ 1

∫
P∩{�=t}

n(t)�+1 dx +
∫
@lP
(∇n� · �x)n� d� d�

− 1
�+ 1

∫
@lP
(�� +∇V · �x)n�+1 d� d�− �

�+ 1

∫
P
�Vn�+1 dx d�

−
∫
P
R(n; p)n� dx d�

= I1 + · · ·+ I5:

Since meas(P∩{�= t})= 0, I1 = 0 holds. For the estimate of I2 we proceed as follows:

I2≤
(∫

@lP

∣∣∣∣@r@t
∣∣∣∣ |∇n�|2 d� d�

)1=2(∫
@lP

∣∣∣∣@r@t
∣∣∣∣
−1

|�x|n2� d� d�
)1=2

:

Taking into account |�x| ≤ 1 and (with spherical coordinates (r̃; !))

−dEn
dt
(t) =− d

dt

∫ T

t

∫ r(�; t)

0

∫
Sd−1

|∇n(�)�|2r̃ d−1 d! dr̃ d�

=
∫ r(t; t)

0

∫
Sd−1

|∇n(t)�|2r̃ d−1 d! dr̃

−
∫ T

t

@r
@t
(�; t)

∫
Sd−1

|∇n(�)�|2r̃ d−1 d!|r̃ = r(�; t) d�

=
∫
@lP

∣∣∣∣@r@t
∣∣∣∣ |∇n�|2 d� d�;

we obtain

I2≤ 1√

�

(
− dEn
dt

)1=2(∫ T

t
|�− t|1−�

∫
@Br(x0)

n2� d� d�
)1=2

:
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Using the interpolation-trace inequality (11), the boundary integral can be estimated
by


�
∫
@lP

∣∣∣∣@r@t
∣∣∣∣
−1

|�x|n2� d� d� ≤
∫ T

t
|�− t|1−�

∫
@Br(x0)

n2� d� d�

≤ c20
∫ T

t
|�− t|1−�max(1; r−2��)(‖∇n�‖0;2; Br(x0) + ‖n�‖0;1+1=�; Br(x0))2�

×‖n�‖2(1−�)0;1+1=�; Br(x0)
d�

≤K1(t)
(∫ T

t
‖∇n�‖20;2; Br(x0) d�+

∫ T

t
‖n�‖20;1+1=�; Br(x0) d�

)�

×
(∫ T

t
‖n�‖20;1+1=�; Br(x0) d�

)1−�
;

where we have used H�older’s inequality with exponent 1=�, the inequality (a+ b)2≤
2(a2 + b2) and the de�nition

K1(t)= 2c20

−2�� sup

�∈ (t; T )
max(|�− t|1−�; |�− t|1−�−2���):

The constant K1(t) is �nite if we choose �≤ 1=(1 + 2��). Furthermore, K1(t)≤K22 def=
2c20


−2��max(T 1−�; T 1−�−2���). Therefore

√

�

(∫
@lP

∣∣∣∣@r@t
∣∣∣∣
−1

|�x|n2� d� d�
)1=2

≤K2
(∫

P
|∇n�|2 dx d�+

∫ T

t

(∫


n�+1 dx

)2�=(�+1)
d�

)�=2

×
[∫ T

t

(∫


n�+1 dx

)2�=(�+1)](1−�)=2

≤K2(En(t) + (T − t)bn(m; T )(�−1)=(�+1)bn(r; t))�=2
×(T − t)(1−�)=2bn(r; t)�(1−�)=(�+1)

≤K2(T − t)(1−�)=2 max(1; (T − t)bn(m; T )(�−1)=(�+1))�=2
×(En(t) + bn(r; t))�=2bn(r; t)�(1−�)=(�+1)

≤K3(En(t) + bn(r; t))�;

where

bn(t)= bn(r; t)= sup
�∈ (t; T )

∫
Br(�; t)(x0)

n(�)�+1 dx;
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m= 
max(1; T ), �= �=2 + �(1− �)=(�+ 1)∈ ( 12 ; 1), and

K3 =K2T (1−�)=2 max(1; Tbn(m; T )(�−1)=(�+1))�=2:

We conclude

I2≤ K3√

�

(
− dEn(t)

dt

)1=2
(En(t) + bn(r; t))�:

Now we estimate the integral I3. Here we need the assumption on R(n; p). Since
�V ∈L∞(QT ), we get, by elliptic theory, the interior regularity V ∈L∞(0; T ;W 2; q(!))
for all q¡∞. (Recall that !⊂⊂
.) Hence, M = ‖∇V‖L∞(0; T ;C0(!)) is �nite. Then

I3 ≤ 1
�+ 1

∫ T

t

∫
@Br(x0)

(|��|+ |∇V | · |�x|)n�+1 d� d�

≤ (1 +M)
∫ T

t

∫
@Br(x0)

n�+1 d� d�

= (1 +M)
∫ T

t
‖n�‖1+1=�0;1+1=�; @Br(x0)

d�: (14)

Let �∈(1+�=�; 2=�); since �+�¡2 by assumption (8), the interval is non-empty. We
apply the interpolation-trace Lemma A.2 (see the appendix) with q=1 + 1=�, p=2,
s=1 + �=� and r= �:

‖n�‖0;1+1=�; @Br(x0)≤ c0(‖∇n�‖0;2; Br(x0) + r−�̃‖n�‖0;1+�=�;Br(x0))�̃‖n�‖1−�̃0; �; Br(x0)
;

where

�̃=
2�
�+ 1

d(�+ 1− ��) + ��
d�(2− �) + 2�� ∈ (0; 1); �̃=

2(�+ �) + d(�− �)
2(�+ �)

¿1:

We use H�older’s inequality with exponent Q=(1 − �)=(1 + � − ��)¿1 for the last
norm:

‖n�‖0; �; Br(x0) =
(∫

Br(x0)
n(�+�)(�+1−��)=(1−�)n(�+1)(��−�−�)=(1−�) dx

)1=�

≤
(∫

Br(x0)
n�+� dx

)1=�Q (∫
Br(x0)

n�+1 dx
)1=�Q′

;

where Q′=Q=(Q − 1), and the inequality (a+ b)2≤ 2(a2 + b2) to get∫
@Br(x0)

n�+1 dx = ‖n�‖1+1=�0;1+1=�; @Br(x0)

≤ 2c1+1=�0

[∫
Br(x0)

|∇n�|2 dx + r−2�̃
(∫

Br(x0)
n�+� dx

)2�=(�+�)]�̃(�+1)=2�
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×
(∫

Br(x0)
n�+� dx

)(1−�̃)(�+1)=��Q (∫
Br(x0)

n�+1 dx
)(1−�̃)(�+1)=��Q′

≤2c1+1=�0 max(1; r(�; t)−�̃�̃(�+1)=�)max

[
1;
(∫

Br(x0)
n�+� dx

)2�=(�+�)−1]�̃(�+1)=2�

×
(∫

Br(x0)
|∇n�|2 dx +

∫
Br(x0)

n�+� dx
)�̃(�+1)=2�

×
(∫

Br(x0)
n�+� dx

)(1−�̃)(�+1)=��Q (∫
Br(x0)

n�+1 dx
)(1−�̃)(�+1)=��Q′

≤ K4(�)
(∫

Br(x0)
|∇n�|2 dx +

∫
Br(x0)

n�+� dx
)�1 (∫

Br(x0)
n�+1 dx

)�2
;

where

K4(�) = 2c
1+1=�
0 max(1; r(�; t)−�̃�̃(�+1)=�)

×max
[
1;
(∫

Br(x0)
n(�)�+� dx

)�̃(�−�)(�+1)=(2�(�+�))]

and

�1 =
�̃(�+ 1)
2�

+
(1− �̃)(�+ 1)

��Q
¡1; �2 =

(1− �̃)(�+ 1)
��Q′ ¿0: (15)

For future reference we note that, since �¡2,

�1 + �2 =
�d(2− �) + ��+ 2
�d(2− �) + ��+ �¿1: (16)

Integrating the above estimate for n�+1 over (t; T ) gives∫
@lP
n�+1 d� d�≤

∫ T

t
K4(�)

(∫
Br(x0)

|∇n(�)�|2 dx +
∫
Br(x0)

n(�)�+� dx
)�1

×
(∫

Br(x0)
n(�)�+1 dx

)�2
d�:

Since �1¡1, we can employ H�older’s inequality with exponent 1=�1 to get∫
@lP
n�+1 d� d�≤ (T − t)�2bn(r; t)�2

(∫ T

t
K4(�)1=(1−�1) d�

)1−�1
(En(t) + Cn(t))�1 :

(17)

The integral with K4(�) is well de�ned if∫ T

t
r(�; t)−�̃�̃(�+1)=(�(1−�1)) d�¡∞:
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Choosing �¡�(1− �1)=(�̃�̃(�+ 1))

−� �̃�̃(�+ 1)
�(1− �1)¿− 1;

holds and the integral converges. Thus,

K5
def=
(∫ T

t
K4(�)1=(1−�1) d�

)1−�1
¡∞;

holds and K5 depends also on the L∞ norm of n in !×(0; T ). Using Young’s inequality
with exponent 1=�1 gives

b�2n (En + Cn)
�1 = (En + Cn)�1b�1(�1+�2−1)n · b(1−�1)(�1+�2)n

≤ �1(En + Cn)b�1+�2−1n + (1− �1)b�1+�2n

≤ (En + Cn)b�1+�2−1n + b�1+�2n

= b�1+�2−1n (En + Cn + bn):

Recall that �1+�2−1¿0 (see Eq. (16)). This estimate and the inequality (17) concludes
the estimate of I3 (see Eq. (14)):

I3 ≤ (1 +M)
∫
@lP
n�+1 d� d�

≤K5(1 +M)(T − t)�2bn(r; t)�1+�2−1(En(t) + Cn(t) + bn(r; t)):
More generally, we have proven the following result: Let P be given by

P= {(x; �): |x − x0| ≤ r(�); �∈ (t̃; t)}:
Then it holds∫

@lP
n�+1 d� d�≤c(t − t̃ )�2 max

[
1;
(∫ t

t̃
r(�)−�3 d�

)1−�1]
b�1+�2−1n (En + Cn + bn);

(18)

where c¿0 only depends on the L∞(0; T ;C0(!)) norm of ∇V and the L∞(!×(0; T ))
norm of n, on 
, �, � and d. Furthermore, �1 and �2 are given by Eq. (15), and

�3 =
�̃�̃(�+ 1)
�(1− �1) : (19)

We need this result in the proof of Theorem 1.2.
It remains to estimate the integrals I4 and I5:

I4 + I5 ≤ ‖�V‖0;∞; !×(0; T )
∫
P
n�+1 dx d�− �R

∫
P
n�+� dx d�

≤K6(T − t)bn(r; t)− �RCn(t);
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where K6 = ‖�V‖0;∞; !×(0; T ). Therefore, we have shown that

1
�+ 1

∫
Br(T; t)(x0)

n(T )�+1 dx +
∫
P
|∇n�|2 dx d�+ �R

∫
P
n�+� dx d�

≤ K3√

�

(
− dEn
dt

)1=2
(En + bn)� + K5(1 +M)(T − t)�2b�1+�2−1n (En + Cn + bn)

+K6(T − t)bn:
Since the right-hand side of this inequality is non-decreasing in T , we can replace the
left-hand side by

1
�+ 1

bn(t) + En(t) + �RCn(t):

Then, taking �¿0 small enough, setting t∗= T − �, and using bn(r; t)≤K , where K is
the global energy, we get for t ∈ (t∗; T ),

1
2

(
1

�+ 1
bn + En + �RCn

)
≤ K3√


�

(
− dEn
dt

)1=2
(En + Cn + bn)�: (20)

Thus

E2(1−�)n ≤ (En + Cn + bn)2(1−�)≤K7
(
− dEn
dt

)
;

where the constant

K27
def=

2K3√

�min(1; �R; (�+ 1)−1)

¿0

is independent of t. Integrating this di�erential inequality in (0; t) with t ∈ (t∗; T ) gives

En(t)2�−1≤En(0)2�−1 − t
K7

≤K2�−1 − t∗

K7
≤ 0

if K2�−1≤ t∗=K7. Recall that �¿ 1
2 . We conclude

En(t)2�−1 = 0 for t∈(t∗; T );
and (see Eq. (20)), for some T2∈(t∗; T ),

n(x; �)= 0 for a.e. |x − x0| ≤ 
(�− T2)�; �∈ (T2; T ):
This proves the theorem.

Proof of Theorem 1.2. We consider the cylinder

P=P(�; t)=B�(x0)× (0; t);
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with �∈(�; �1), t∈(0; T ), and �∈(0; �0). Taking into account ��=0 and the hypotheses
(8) and (9), we get from Eq. (10):

1
�+ 1

∫
B�(x0)

n(t)�+1 dx +
∫
P
|∇n�|2 dx d�+ �R

∫
P
n�+� dx d�

≤ �0
�+ 1

∫
B�(x0)

(�− �0)
+ dx +
∫ t

0

∫
@B�(x0)

(∇n� · �x)n� d� d�

− 1
�+ 1

∫ t

0

∫
@B�(x0)

(∇V · �x)n�+1 d� d�− �
�+ 1

∫
P
�Vn�+1 dx d�

= I1 + · · ·+ I4: (21)

As in the proof of Theorem 1.1 we get the estimate

I2≤
(
@En
@�

)1=2
‖n�‖0;2; @lP ≤K2t(1−�)=2

(
@En
@�

)1=2
(En + bn)�;

where

K22 = 2c
2
0 max(1; �

−2�)max(1; Tbn(�0; T )(�−1)=(�+1))

and �∈ ( 12 ; 1) (see the proof of Theorem 1.1 for the de�nition of c0¿0 and �¿0).
From (18) we conclude

I3 ≤M
∫
@lP
n�+1 d� d�

≤Mct�2 max(1; (T�−�3 )1−�1 )bn(�0; T )�1+�2−1(En + Cn + bn)(�; t);
where M = ‖∇V‖L∞(0; T ;C0(B�0 (x0)))

, c¿0 does not depend on � or t, and �1, �2, �3¿0
are given by Eqs. (15) and (19). Note that �1¡1 and �1 + �2¿1. Thus

I3≤K3t�2 (En + Cn + bn);
where K3 =Mcmax(1; (T�

−�3
0 )1−�1 )bn(�0; T )�1+�2−1.

Finally, the integral I4 is estimated by

I4≤K4tbn;
with K4 = ‖�V‖0;∞; B�0 (x0)×(0; T ). Therefore, we obtain from Eq. (21)

1
�+ 1

∫
B�(x0)

n(t)�+1 dx + En(�; t) + �RCn(�; t)

≤ �0K5(�− �0)
+ + K2t(1−�)=2
(
@En
@�

)1=2
(En + bn)(�; t)�

+K3t�2 (En + Cn + bn)(�; t) + K4tbn(�; t);



17

where K5 =meas(B�0 (x0)). Since the right-hand side is non-decreasing in t, we can
replace the left-hand side by

1
�+ 1

bn(�; t) + En(�; t) + �RCn(�; t):

Choosing t¿0 small enough, we get

(bn + En + Cn)≤ 2K6K5�0(�− �0)
+ + 2K6K2t(1−�)=2
(
@En
@�

)1=2
(En + bn)�;

where K−1
6 = min(1; �R; (� + 1)−1). By Young’s inequality with exponent 1=�¿1 we

get

(1− �)(bn + En + Cn)≤ 2K6K5�0(�− �0)
+ + (1− �)K7
(
@En
@�

)1=2(1−�)
;

where K7 = (2K6K2T (1−�)=2)1=(1−�). Therefore, setting K8 = (2K5K6=(1− �))2(1−�),

En(�; t)2(1−�)≤K8�2(1−�)0 (�− �0)2
(1−�)+ + K2(1−�)7
@En
@�
(�; t);

where �∈ (�; �1). Now we can apply the following lemma (cf. [3,4,6,13] for a proof):

Lemma 2.1. Let �∈ (0; 1); �0; �0; �¿0; 0≤ �¡�0; and let �∈C0([�; �0 + �]× [0; T ])
be a non-negative function; non-decreasing in both variables and satisfying �(�0 +
�; 0)=0 and

�(�; t)�≤K @�
@�
(�; t) + �0(�− �0)�=(1−�)+

for � ∈ [�; �0 +�]; t ∈ [0; T ]. Then there exist �1¿0 and t∗ ∈ (0; T ) such that if �0¡�1
then

�(�0; t)= 0 for t ∈ (0; t∗):

We �nish the proof of the theorem before proving the above lemma. Since � def=
2(1−�)¡1 and 2
(1−�)= �=(1− �), the assumptions of the lemma are satis�ed and
we conclude the existence of �1¿0 and T2 ∈ (0; T ) such that for all �0 ∈ (0; �1)

En(�; t)= 0 for �∈ [0; �0]; t ∈ [0; T2];
that means, n(x; t)= 0 for x∈B�0 (x0), t ∈ (0; T2). This proves the theorem.

3. Numerical examples

We present numerical examples which illustrate the properties of the vacuum sets
{n=0} and {p=0} proved in the previous section, namely (i) �nite speed of propa-
gation, (ii) waiting time, and (iii) formation of vacuum.
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We use the following formulation in one space dimension:

@tn− @x(@x(n5=3)− n@xV )=− R(n; p);

@tp− @x(@x(p5=3) + p@xV )=− R(n; p);

�2@xxV = n− p− C in (0; 1)× (0; T )

with initial and boundary conditions

n(0; t)= n0; p(0; t)=p0; V (0; t)=V0;

n(1; t)= n1; p(1; t)=p1; V (1; t)=V1;

n(x; 0)= nI (x); p(x; 0)=pI (x); x∈ (0; 1):

The equations are in dimensionless form (see the papers [17, 19] for details of the
scaling). The constant �¿0 is called the (scaled) Debye length. We take the numerical
value �2 = 1:6× 10−3. The doping pro�le is given by

C(x)=

{
−1 if 0¡x¡0:7;

+1 if 0:7¡x¡1:

This choice of parameter and functions corresponds to a silicon pn-junction diode of
length L=10−3 cm with the moderate doping concentration |C|=1015 cm−3 (see [19]).
The above system is numerically solved by using an exponentially �tted mixed �nite

element method for the discretization with respect to the space variable and an explicit
Euler method for the discretization with respect to the time variable (see [17]).

Example 1. We take the boundary values

n0 = 0; p0 = 1; V0 =− 2:5;

n1 = 1; p1 = 0; V1 =− 3:75:

In semiconductor simulation, the boundary values are usually chosen such that (i)
the total space charge −n + p + C vanishes at the Ohmic contacts x=0 and x=1,
(ii) the boundary densities are in thermal equilibrium and the boundary potential is
the superposition of the thermal equilibrium value and the applied potential [23]. The
above values satisfy these conditions with an applied voltage of U =1:0V . Thus, we
are modeling a forward biased pn diode. We neglect in this example recombination–
generation e�ects: R(n; p)= 0 (see Examples 2 and 3 for non-vanishing R(n; p)).
The initial densities are shown in Figs 2 and 3. In Fig. 2 the temporal evolution of

the hole density p is depicted. Initially, there is a vacuum region for p consisting of
the interval [0:2; 1:0]. For increasing t¿0, the vacuum set becomes smaller and �nally,
it becomes trivial (i.e. only p(1; t)= 0) after some time. A similar behavior can be
observed for the electron density in Fig. 3. This shows the �nite speed of propagation
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Fig. 2. Example 1: hole density, R(n; p)= 0.

of the support of p and n (see Theorem 1.1). In Fig. 4 the electron density is shown
for small values of time. Here, the vacuum set for n becomes larger for small time
(t=0:01), and later (t=0:05), the size of the vacuum set is decreasing. This illustrates
the waiting time property even in the absence of recombination–generation e�ects (see
Theorem 1.2).

Example 2. We use the same boundary values as in the �rst example but di�erent
initial functions (see Fig. 5). In this example, we study the e�ects of the recombination–
generation term. We choose

R(n; p)= cR(np)�:

From Fig. 5, where cR=0, we see that the vacuum set for the electrons is trivial (i.e.
only n(0; t)= 0) for su�ciently large time. At t=4:0 the electron density has almost
reached the stationary state. If cR=1 and �=0:2 there are (non-trivial) vacuum sets
for n for su�ciently large time, e.g. t≥ 0:7 (see Fig. 6). This example shows the
property of formation of vacuum due to the presence of a strong recombination term
(see Theorem 1.3). Note that the assumption �+�¡2 is satis�ed. (The hole density is
positive in the region where n=0.) Choosing cR=1 and �=0:5, there are no vacuum
solutions for n for t≥ 0:7 (Fig. 7). In this situation the condition � + �¡2 is not
satis�ed.
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Fig. 3. Example 1: electron density, R(n; p)= 0.

Fig. 4. Example 1: electron density, R(n; p)= 0.
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Fig. 5. Example 2: electron density, R(n; p)= 0.

Example 3. For the last example we choose initial conditions such that n(x; 0) and
p(x; 0) are strictly positive. Therefore, we use di�erent boundary values than in
Examples 1 and 2:

n0 = 1; p0 = 2; V0 = − 5
2 (

3
√
4− 1);

n1 = 2; p1 = 1; V0 = − 5
2 (

3
√
4− 1)− 25

4 :

Here the total space charge vanishes, but the boundary functions are not in thermal
equilibrium. Again, for vanishing recombination–generation, the vacuum sets {n(t)= 0}
are empty for all t≥ 0 (Fig. 8). If cR=5 and �=0:1, there exists t0¿0 such that the
vacuum sets for n(t) have positive measure for all t larger than t0 (Fig. 9). In this
situation, it holds �+�¡2. In Fig. 10 the electron density in the case cR=5 and �=0:6
is presented. The condition � + �¡2 is not satis�ed, the vacuum sets are empty for
all time. For t=2, the solution is close to the steady state. However, if we choose
cR=10 and �=0:6, there are vacuum solutions for t≥ 2 (Fig. 11), although it holds
� + �¿2. The recombination e�ects are so strong that vacuum occurs. This does not
contradict the non-vacuum result mentioned in Section 1 since this result is only valid
for �≥ 1.
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Fig. 6. Example 2: electron density, R(n; p)= (np)0:2.

Fig. 7. Example 2: electron density, R(n; p)= (np)0:5.
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Fig. 8. Example 3: electron density, R(n; p)= 0.

Fig. 9. Example 3: electron density, R(n; p)= 5(np)0:1.



24

Fig. 10. Example 3: electron density, R(n; p)= 5(np)0:6.

Fig. 11. Example 3: electron density, R(n; p)= 10(np)0:6.
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Appendix

In this appendix we present two technical lemmas which are used in the proofs of
Theorems 1.1–1.3. The �rst lemma is a local integration by parts:

Lemma A.1. Assume that P⊂QT . Then for almost all t̃; t ∈ [0; T ]; t̃¡t;∫
P
(∇n� − n∇V ) · ∇n� dx d�−

∫
@lP
(∇n� − n∇V ) · �xn� d� d�

≤ 1
�+ 1

∫
P∩{�=t̃ }

n(t̃)�+1 dx − 1
�+ 1

∫
P∩{�=t }

n(t)�+1 dx− 1
�+ 1

∫
@lP
n�+1�� d� d�

−
∫
P
R(n; p)n� dx d� (22)

holds.

By using spherical coordinates and Fubini’s theorem, it can be seen that the integrals
over @lP are well de�ned for almost all r(�). A similar inequality holds for the hole
density p. The proof is a straightforward extension of the proof of the local integration
by parts formula in [12].
The second technical tool is an interpolation-trace lemma.

Lemma A.2. Let B=BR(x0)⊂Rd be a ball of radius R¿0 and center x0 and let
u∈W 1;p(B) with 1¡p¡∞. Then

‖u‖0; q; @B≤ c0(‖∇u‖0; p; B + R−�‖u‖0; s; B)�‖u‖1−�0; r; B; (23)

where c0¿0 is independent of u and R; 1≤ s¡∞;
1≤ q¡p(d− 1)

d− p ; 1≤ r¡ dp
d− p if p¡d;

1≤ q; r¡∞ if p=d;

1≤ q; p≤∞ if p¿d;

and the exponents are given by

�=
p
q
qd− r(d− 1)
p(d+ r)− dr ∈ (0; 1); �=

ps+ d(p− s)
ps

¿1:

The proof can be found in [5]. In the case q=p and s= r the lemma is proved
in [12].
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