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Abstract. We study the uniqueness of solutions of a semilinear elliptic problem
obtained from an inverse formulation when the nonlinear terms of the equation
are prescribed in a general class of real functions. The inverse problem arises in
the modeling of the magnetic confinement of a plasma in a Stellarator device. The
uniqueness proof relies on anL∞-estimate on the solution of an auxiliary nonlocal
problem formulated in terms of the relative rearrangement of a datum with respect
to the solution.
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1. Introduction

The main goal of this paper is to study the uniqueness of the solution of a two-dimensional
free boundary problem modeling the magnetic confinement of a plasma in a Stellarator
device. The model consists of a second-order partial differential equation of elliptic type,
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obtained from the three-dimensional ideal MHD system by Hender and Carreras [9] by
using toroidal averaging arguments and a suitable system of coordinates: the Boozer
vacuum flux coordinates [3]. This problem has recently been studied by Dı́az [4] who
introduced the following formulation in the form of afree boundary problem. LetÄ be
an open, bounded, regular set ofR2, and let

λ > 0, Fv > 0, a, b ∈ L∞(Ä), b > 0 a.e. in Ä.

Givenγ < 0, the problem is to findu ∈ H1(Ä)∩ L∞(Ä) andF ∈ C0 (R; [0,∞)) such
thatF(s) = Fv for anys ≤ 0, F2 ∈ W1,∞

loc (R), and(u, F) satisfies the followinginverse
problem:

(PI )


−1u = aF(u)+

(
F2

2

)′
(u)+ λbu+ in Ä,

u = γ on ∂Ä,

0=
∫
{u>t}

((
F2

2

)′
(u)+ λu+b

)
dx, ∀t ∈ (−∞, ess supu],

where, for the sake of simplicity in the exposition, we have replaced the second-order
symmetric uniformly elliptic operatorL given in [9] by the Laplace operator and we
have taken the pressure term equal to(λ/2)u2

+. In what follows we refer to the family of
integral identities stated in(PI) as theStellarator Condition.

In order to determine the unknown functionF , the above problem was reformulated
by Dı́az in [5] using the notion ofrelative rearrangement. It was proved there that if
(u, F) is a solution of(PI) such thatu ∈ U ⊂ C0(Ä), where

U = {u ∈ W2,p(Ä), for any 1≤ p <∞ and meas{x ∈ Ä : ∇u(x) = 0} = 0},
thenu satisfies the following uncouplednonlocal problem:

(PNL)


−1u = a

[
F2
v − 2λ

∫ u+

0
σb∗u(|u > σ |) dσ

]1/2

+
+ λu+[b − b∗u(|u > u(x)|)] in Ä,

u = γ on ∂Ä,

and necessarilyF = Fu on (−∞, ∥∥u+‖L∞(Ä)
]

with

Fu(t) :=
[

F2
v − 2λ

∫ t+

0
σb∗u(|u > σ |) dσ

]1/2

+
,

where|u > t | denotes meas{x ∈ Ä : u(x) > t}, u∗ represents the decreasing rearrange-
ment ofu, andb∗u is the relative rearrangement ofb with respect tou (the definition of
both notions are recalled in the next section).

The existence ofu ∈ U , a solution of(PNL), was proved by Dı́az and Rakotoson
[7], [8] under some additional assumptions ona andλ. They also proved that ifu ∈ U
is a solution of(PNL) and we defineFu ∈ C0((−∞, ‖u+‖L∞(Ä)] : [0,+∞)) by

Fu(t) :=
[

F2
v − 2λ

∫ t+

0
σb∗u(|u > σ |) dσ

]1/2

+
, ∀t ≤ ‖u+‖L∞(Ä) , (1)
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then(u, Fu) is a solution of(PI) assuming thatFu(t) > 0 for anyt ∈ (−∞, ‖u+‖L∞(Ä)].
Notice that without loss of generality we can prolongateFu to (‖u+‖L∞(Ä),+∞) in such
a way thatFu ∈ C0(R : [0,+∞)) andF2

u ∈ W1,∞
loc (R).

In this paper we consider the question of the uniqueness of solutions of(PI) under
the following special conditions: given(u1, F) , (u2, F) solutions of(PI) (i.e., having
a common second component) withui ∈ U , i = 1,2, find assumptions onF implying
thatu1 = u2. The special structure of the equation of(PI)makes it reasonable to assume
the function(F2)′ is locally Lipschitz continuous (i.e.,F2 ∈ W2,∞

loc (R)). Notice that,
obviously, this assumption is stronger than conditionF2 ∈ W1,∞

loc (R) included in the
definition of the solution of(PI) and that neither imply the local Lipschitz continuity of
F since it is not known a priori whether the property

F2(ui (x)) > 0 a.e. x ∈ Ä, i = 1,2, (2)

holds or not. Notice also that necessarilyF = Fu1 = Fu2 on (−∞,m] (wherem :=
min{supui }) and that

(F2
ui
)′(t) = −2λt+b∗ui (|ui > t |) a.e. t ∈ (−∞, ‖ui+‖L∞(Ä)]. (3)

Moreover, if for instancem = supu1, thenFu1 can be prolongated to(−∞,M ], with
M := max{supui } (= supu2 in this case) by means ofFu2 and this prolongation still
verifies the requirementsFu2 ∈ C0((−∞,M ] : [0,∞)) andF2

u2
∈ W1,∞

loc (−∞,M).
The λ-dependence in (3) is the motivation for formulating the conditionF2 ∈

W2,∞
loc (R) in the following quantitative terms:

|(F2(t))′ − (F2(t̂))′| ≤ λK |t − t̂ |, ∀t, t̂ ∈ (−∞,M ], (4)

for some positive constantK independent ofλ. Our uniqueness result can be stated in
the following terms:

Theorem 1. Let (u1, F), (u2, F) be solutions of(PI) with F ∈ C0 (R; [0,∞)) and
F2 ∈ W2,∞

loc (R) satisfying(4). Then there exists a positive constantδ such that ifλ < δ,
then necessarily u1 ≡ u2.

We point out that ifb is a positive constant then, for any(u, F) solution of(PI)with
u ∈ U , we have that

(F2
u )
′(t) = −2λt+b a.e. t ∈ (−∞, ‖u+‖L∞(Ä)]

and so assumption (4) holds trivially withK = 2b (see Remark 2 for other comments
on (4)).

One of the main steps of the proof of Theorem 1 is to show that ifui ∈ U andλ
is small enough, then (2) holds and the Lipschitz constant ofF on (−∞,M ] is also
small (Theorem 2). As a consequence, we can apply a general uniqueness criterion for
semilinear problems (Lemma 3) implying that necessarilyu1 = u2. In order to prove (2)
we first obtain someL∞-estimates onui in terms of the parameterλ (Lemma 1). The
proof of (2) also uses the characterizationF = Fu given in (1) and some properties of
the relative rearrangement. We also give another uniqueness result (Theorem 3) under
the conditiona > 0 in Ä but assuming a sharper bound onλ. Some final remarks are
given at the end of the paper.
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2. Some Properties of the Solutions of(PNL): Lipschitz Continuity of Fu

We start by recalling the notion of the relative rearrangement of a function with respect
to another function introduced by Mossino and Temam in [12]. We need to recall some
previous well-known notions.

Definition 1. Let u: Ä → R be a Lebesgue measurable function. Thedistribution
function of uis defined by

mu(t) := meas{x ∈ Ä : u(x) > t} (= |u > t |) for any t ∈ R.

The generalized inverse ofmu is called thedecreasing rearrangement of uand is denoted
by u∗, i.e.,u∗: (0, |Ä|)→ R with u∗(s) = inf{t ∈ R : mu(t) < s}.

Now we recall the notions of relative rearrangement: Letv, u ∈ L1(Ä) and define
the functionw: [0, |Ä|] → R by

w(s) =


∫
{u>u∗(s)}

v(x) dx if |u = u∗(s)| = 0,∫
{u>u∗(s)}

v(x) dx+
∫ s−mu(u∗(s))

0
(v|Pu(u∗(s)) )∗(σ ) dσ if |u = u∗(s)| 6= 0.

Herev|Pu(u∗(s)) denotes the restriction ofv to the setPu(u∗(s)) wherePu(t) := {x ∈ Ä :
u(x) = t} and(v|Pu(u∗(s)) )∗ represents its decreasing rearrangement. It was proved in [12]
that if u ∈ L1(Ä) andv ∈ L p(Ä) for some 1≤ p ≤ +∞, thenw ∈ W1,p(0, |Ä|) and
‖dw/ds‖L p(0,|Ä|) ≤ ‖v‖L p(Ä).

Definition 2. The functiondw/dsis called therelative rearrangement ofvwith respect
to u and is denoted byv∗u.

The main conclusion of this section is the following:

Theorem 2. There exists a positive constantδ = δ(a, b, Fv, γ,Ä) such that ifλ <
δ, then, for any (u, F) solution of (PI) with u ∈ U , necessarily the function F is
strictly positive and Lipschitz continuous on(−∞, ‖u+‖L∞(Ä)]. In addition,the Lipschitz
constant of F can be taken as decreasing to zero whenλ ↓ 0.

The proof of Theorem 2 relies on some lemmata.

Lemma 1. There exists a constant C1 = C1(λ), increasing inλ, also depending on
Fv, b, andÄ, and satisfying thatlimλ↓0 C1(λ) < +∞, such that

sup
Ä

u(x) ≤ C1(λ)‖a‖L2(Ä) + |γ | (5)

for any(u, F) solution of(PI) with u ∈ U .

Proof. To obtain (5) we first estimate‖u− γ ‖L∞(Ä). We assume that‖u+‖L∞(Ä) >

0 (otherwise(PI) becomes a linear problem withF ≡ Fv and the result is trivial).
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Multiplying the equation of(PI) by u−γ we obtain, after integrating by parts inÄ, that∫
Ä

|∇(u− γ )|2 dx =
∫
Ä

(
aF(u)+

(
F2

2

)′
(u)+ λbu+

)
(u− γ ) dx

=
∫
Ä

aF(u)(u− γ ) dx+
∫
Ä

z(u− γ ) dx,

where

z= z(x) :=
(

F2

2

)′
(u(x))+ λb(x)u+(x).

By Fubini’s theorem∫
Ä

z(u− γ ) dx =
∫ ∞

m̂
ds
∫
{y∈Ä:u(y)−γ>s}

z(x) dx,

wherem̂ = inf{u(x)− γ : x ∈ Ä}. Since{x ∈ Ä : u(x)− γ > s} = {x ∈ Ä : u(x) >
γ + s}, using the Stellarator Condition in(PI) we have∫

Ä

z(u− γ ) dx = 0

and hence∫
Ä

|∇(u− γ )|2 dx =
∫
Ä

aF(u)(u− γ ) dx.

Moreover, asu− γ ∈ H1
0 (Ä), we can use Poincaré and Hölder inequalities to get∫

Ä

(u− γ )2 dx ≤ P(Ä)2
∫
Ä

|∇(u− γ )|2 dx ≤ P(Ä)2
∫
Ä

aF(u)(u− γ ) dx

≤ P(Ä)2
{∫

Ä

(aF(u))2 dx

}1/2{∫
Ä

(u− γ )2 dx

}1/2

,

where P(Ä) is the Poincaré constant forÄ. From the characterization ofF = Fu

mentioned in the Introduction (see also Proposition 1 of [8]) it is easy to see thatF is
decreasing and soF(u) ≤ Fv. Thus, using thatγ < 0 we arrive at

‖u+‖L2(Ä) ≤ ‖(u− γ )+‖L2(Ä) ≤ FvP(Ä)2‖a‖L2(Ä). (6)

The next step is to obtain anL2-estimate for1u. As u is also a solution of(PNL), we
get that∫

Ä

|1u|2 dx =
∫
Ä

(aF(u))2 dx+ λ2
∫
Ä

u2
+(b− b∗u(|u > u(x)|))2 dx

+ 2λ
∫
Ä

aF(u)u+[b − b∗u(|u > u(x)|)] dx.
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Using the well-known estimate‖b∗u‖L∞(Ä∗) ≤ ‖b‖L∞(Ä) we obtain∫
Ä

|1u|2 dx ≤ (Fv‖a‖L2(Ä))
2+ (2λ‖b‖L∞(Ä)‖u+‖L2(Ä))

2

+ 4λFv‖a‖L2(Ä)‖b‖L∞(Ä)‖u+‖L2(Ä).

In a last step, from (6) and the above estimate, we deduce that∫
Ä

|1(u− γ )|2 dx =
∫
Ä

|1u|2 dx ≤ C‖a‖L2(Ä),

where

C = F2
v [2λ‖b‖L∞(Ä)P

2(Ä)+ 1]2 .

Therefore

‖1(u− γ )‖L2(Ä) ≤
√

C‖a‖L2(Ä).

Now, by the Agmon–Douglis–Nirenberg regularity result, there exists another constant
T(Ä) such that‖ψ‖H2(Ä) ≤ T(Ä)‖1ψ‖L2(Ä) for anyψ ∈ H2(Ä)∩ H1

0 (Ä). Moreover,
by the Sobolev Embedding Theorem

sup
Ä

u ≤ ‖u‖L∞(Ä) ≤ ‖(u− γ )‖L∞(Ä) + |γ |
≤ S(Ä)‖(u− γ )‖H2(Ä) + |γ |

for some positive constantS(Ä). Then if we definêS(Ä) := S(Ä)T(Ä) we have

sup
Ä

u ≤ Ŝ(Ä)‖1(u− γ )‖L2(Ä) + |γ |

≤ Ŝ(Ä)
√

C‖a‖L2(Ä) + |γ | .
Therefore (5) holds and the constantC1(λ) can be taken as

C1(λ) = Ŝ(Ä)Fv[2λP2(Ä)‖b‖L∞(Ä) + 1].

The second ingredient of the proof of Theorem 2 is the following:

Lemma 2. Let u∈ U be any solution of(PNL). Assume that

sup
Ä

u <
Fv

‖b‖1/2L∞(Ä)

1

λ1/2
. (7)

Then the function Fu defined by(1) is strictly decreasing on(0,‖u+‖L∞(Ä)]. Moreover,
Fu is strictly positive and Lipschitz continuous on(−∞, ‖u+‖L∞(Ä)]. More precisely

|Fu(t)− Fu(t̂)| ≤
‖u+‖L∞(Ä)

Fu(‖u+‖L∞(Ä))
λ‖b‖L∞(Ä)|t − t̂ |, ∀ t, t̂ ∈ (−∞, ‖u+‖L∞(Ä)].
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Proof. We recall that ifw ∈ U andv ∈ L p(Ä) (for somep ∈ [1,∞]), then

v∗w(s) =
∫
{w=w∗(s)}(v/|∇w|) d0∫
{w=w∗(s)}(1/|∇w|) d0

a.e. s ∈ (0, |Ä|)

(see, e.g., [12] and [14]). This implies that ifv > 0 a.e.s ∈ Ä, thenv∗w > 0 a.e. in
(0, |Ä|). Now define the functionGu: R→ [0,∞) by

Gu(t) := F2
v − 2λ

∫ t

0
sb∗u(|u > s|) ds for any t ∈ (0,‖u+‖L∞(Ä)].

We deduce thatGu(t) is a strictly decreasing function as a consequence of the positivity of
the integral terms. Therefore, ift ∈ (0,‖u+‖L∞(Ä)] then, taking into account assumption
(7) and that‖b∗u‖L∞(Ä∗) ≤ ‖b‖L∞(Ä), we conclude that

Gu(t) ≥ F2
v − 2λ‖b‖L∞(Ä)

∫ t

0
s ds

≥ F2
v − λ‖b‖L∞(Ä)‖u+‖2L∞(Ä)

≥ F2
v − λ‖b‖L∞(Ä)

(
Fv

(λ‖b‖∞)1/2
)2

= 0.

This proves thatFu(t) > 0 if t ∈ (0,‖u+‖L∞(Ä)] . Furthermore, ift, t̂ ∈ (0,‖u+‖L∞(Ä)]
and, for instancêt > t , then

|Fu(t)− Fu(t̂)| = F2
u (t)− F2

u (t̂)

Fu(t)+ Fu(t̂)
= 2λ

∫ t̂
t σb∗u(|u > σ |) dσ

Fu(t)+ Fu(t̂)

≤ λ‖b‖L∞(Ä)(t̂2− t2)

2Fu(‖u+‖L∞(Ä))
≤ ‖u+‖L∞(Ä)

Fu(‖u+‖L∞(Ä))
λ‖b‖L∞(Ä)(t̂ − t).

Proof of Theorem2. Letλ > 0 be such that

λ1/2[C1(λ)‖a‖L2(Ä) + |γ |] < Fv

‖b‖1/2L∞(Ä)

. (8)

Then if (u, F) is any solution of(PI) with u ∈ U we conclude from Lemma 1 thatu
satisfies (7). By the results of [8] we know thatu is also a solution of(PNL) and that
F = Fu on(−∞, ‖u+‖L∞(Ä)]. Thus, if (8) holds we can apply Lemma 2 and we deduce
the first part of Theorem 2 since the left-hand side in inequality (8) is a continuous
function ofλ vanishing forλ = 0 and so (8) holds forλ small enough. Finally, if we use
the decreasing functionGu introduced in the proof of Lemma 2, applying Lemma 1, we
have that

Fu(‖u+‖L∞(Ä)) = [Gu(‖u+‖L∞(Ä))]
1/2

≥ [F2
v − λ‖b‖L∞(Ä)(C1(λ)‖a‖L2(Ä) + |γ |)2]1/2 .

Again using Lemma 1 we conclude that

|Fu(t)− Fu(t̂)| ≤ κ(λ)|t − t̂ | for any t, t̂ ∈ (−∞, ‖u+‖L∞(Ä)], (9)
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where

κ(λ) := λ(C1(λ)‖a‖L2(Ä) + |γ |)‖b‖L∞(Ä)

[F2
v − λ‖b‖L∞(Ä)(C1(λ)‖a‖L2(Ä) + |γ |)2]1/2

(10)

and so

lim
λ↓0

κ(λ) = 0,

which ends the proof of Theorem 2.

Remark 1. The strict positivity of functionFu was already proved in Lemma 25 of
[8], under a different hypothesis on the data and for some special solutions of(PNL) (the
ones constructed in the proof of the existence of solutions of(PNL)). An L∞-estimate
for such a special class of solutions was also given in [8] (see Lemma 24) under an
additional assumption onb.

3. On the Uniqueness of Solutions of(PI) When F Is Prescribed

The uniqueness of solutions of(PI)whenF is prescribed can be proved in different ways
under the assumption (4) forλ small enough. Indeed, thanks to Theorem 2 we know that
the whole right-hand side of the equation of(PI) is a Lipschitz continuous function on
u such that its Lipschitz constant decreases to zero asλ ↓ 0. Then the conclusion can be
obtained with the help of an easy technical result:

Lemma 3. Consider the problem{−1u = f (x, u; λ) in Ä,
u = ϕ on ∂Ä,

(11)

whereÄ is a bounded domain ofRN , ϕ ∈ H1(Ä), λ is a positive constant,and the real
function f satisfies

| f (x, t1; λ)− f (x, t2; λ)| ≤ J(λ)H(x) |t1− t2| (12)

for all t1, t2 ∈ R, a.e. x ∈ Ä, and for allλ > 0. Assume that J is continuous,J(0)= 0,
and J(λ) > 0 if λ > 0, and that H is an a.e. positive function of Lr (Ä), with r > N/2.
Then,if

J(λ) < µ1, (13)

withµ1 the first eigenvalue of{−1w = µH(x)w in Ä,
w = 0 on∂Ä,

(14)

problem(11)has,as such,a unique nontrivial solution in H1(Ä).
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Proof. Although several uniqueness results of this type are consequences of fixed point
theorems (see [10] and the references therein) a direct proof can be obtained as follows:
Suppose that there exist two solutions of (11)u, v ∈ H1(Ä). SetU = u − v. ThenU
satisfies{−1U = 8(x; λ)U in Ä,

U = 0 on∂Ä,
(15)

where

8(x; λ) =


f (x, u; λ)− f (x, v; λ)
u(x)− v(x) if U (x) 6= 0,

0 if U (x) = 0.

From the assumptions it is straightforward to see that|8(x; λ)| ≤ J(λ)H(x). Then,
multiplying (15) byU , using the assumptions onf andJ and the characterization of the
first eigenvalue of the1 operator we obtain that necessarilyU ≡ 0.

Proof of Theorem1. It suffices to check that the assumptions of Lemma 3 are fulfilled.
We setf (x, t; λ) = a(x)F(t)+(F2/2)′(t)+λb(x)t+. In order to check the assumptions
on f we define

g1(x) :=


F(u1(x))− F(u2(x))

u1(x)− u2(x)
if u1(x) 6= u2(x),

0 if u1(x) = u2(x),

g2(x) :=

(
F2/2

)′
(u1(x))−

(
F2/2

)′
(u2(x))

u1(x)− u2(x)
if u1(x) 6= u2(x),

0 if u1(x) = u2(x),

h(x) :=


u1+(x)− u2+(x)
u1(x)− u2(x)

if u1(x) 6= u2(x),

0 if u1(x) = u2(x),

and finally

8(x; λ) = a(x)g1(x)+ g2(x)+ λb(x)h(x).

We prove that

|8(x; λ)| ≤ J(λ)H(x), (16)

with J andH satisfying the conditions of Lemma 3. We have that

|8(x; λ)| ≤ |a(x)| |g1(x)| + |g2(x)| + λb(x) a.e. x ∈ Ä.
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Since|h(x)| ≤ 1, from hypothesis (4), we get that ifλ satisfies (8), thenF is decreasing
and so

|8(x; λ)| ≤ |a(x)| |g1(x)| + λ
(

K

2
+ b(x)

)
a.e. x ∈ Ä.

If we suppose, for instance, that‖u1+‖L∞(Ä) ≤ ‖u2+‖L∞(Ä), thenF(u1(x))−F(u2(x)) =
Fu2(u1(x))− Fu2(u2(x)). From (8) we know that inequalities (9) and (10) hold (see the
proof of Theorem 2). Then we deduce that

|8(x; λ)| ≤ |a(x)|κ(λ)+ λ
(

K

2
+ b(x)

)
a.e. x ∈ Ä,

and inequality (16) is verified with

J(λ) := max{λ, κ(λ)} (17)

and

H(x) = max

{
|a(x)| , K

2
+ b(x)

}
. (18)

The conclusion of Theorem 1 follows by takingλ small enough so that (8) and (13)
hold.

Another uniqueness result, under a sharper bound onλ,can be obtained by a different
technique assuming a sign condition on the coefficienta.

Theorem 3. Assume a> 0 onÄ and let(u1, F), (u2, F) be as in Theorem1 with F
satisfying(4). Then there existŝδ > 0 (with δ̂ depending on the second eigenvalue of
problem(14)and with H given by(18))such that ifλ < δ̂, then necessarily u1 ≡ u2.

Proof. We follow a technique similar to the one of Puel [13]. We setU := u1−u2.We
proceed in two steps. First we show thatU has a definite sign inÄ and later we obtain
a contradiction to this fact. So we claim thatU does not change its sign inÄ. If it does,
we define the subsets

Ä+ := {x ∈ Ä : U (x) > 0} and Ä− := {x ∈ Ä : U (x) < 0}

and chooseα > 0 such that the function defined by

Ũ (x) :=
{

U (x) if x ∈ Ä+,
αU (x) if x ∈ Ä−,

is orthogonal in the weighted spaceL2
H (Ä) to the first eigenvectorw1 of (14), i.e.,

α =
− ∫

Ä+
Uw1H dx∫

Ä−
Uw1H dx

.
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Notice thatŨ ∈ H1
0 (Ä). Then, ifµ2 is the second eigenvalue of (14), by definition

µ2 = min

{ |∇ψ |2 dx∫
Ä
ψ2H dx

: ψ ∈ H1
0 (Ä),

∫
Ä

ψw1H dx = 0

}
.

Therefore

µ2 ≤
∫
Ä
|∇Ũ |2 dx∫

Ä
Ũ2H dx

.

Multiplying by U+ in (15) and integrating by parts we obtain that∫
Ä+
|∇U |2 dx =

∫
Ä+

[ag1+ g2+ λbh]U2 dx,

and an analogous equality is obtained inÄ−. Using that∫
Ä

|∇Ũ |2 dx =
∫
Ä+
|∇U |2 dx+ α2

∫
Ä−
|∇U |2 dx

and assuming (8) we obtain

0≥
∫
Ä

(µ2− J(λ))HŨ2 dx, (19)

where J(λ) is given by (17). Therefore inequality (19) leads to a contradiction if we
assume

J(λ) < µ2. (20)

Now, asU does not change its sign, we can assume without lost of generality thatU ≥ 0
inÄ, i.e., thatu1 ≥ u2 inÄ. If we integrate the equation of(PI) satisfied byu1, u2, apply
the Divergence Theorem, and assume (8) then, by Theorem 2,F is strictly decreasing
on (0,‖u1+‖L∞(Ä)) and by the Stellarator Condition stated in(PI) we obtain

−
∫
∂Ä

∇u1 · n d0 = −
∫
Ä

1u1 dx =
∫
Ä

aFu1(u1) dx

<

∫
Ä

aFu1(u2) = −
∫
Ä

1u2 dx

= −
∫
∂Ä

∇u2 · n d0,

wheren is the outward normal toÄ. Finally, we have three cases to consider: If none
of the solutions has a null positive part then, asu1 = v2 on ∂Ä andu1 ≥ u2 in Ä, this
implies that∇u1 · n ≤ ∇u2 · n on ∂Ä leading to a contradiction. If both solutions have
null positive part, then the conclusion is obvious because the problem(PI) becomes
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linear. Finally, in the case in which one of the solutions has a null positive part but the
other does not (and asu1 ≥ u2 it has to beu2+ ≡ 0), then∫

Ä

Fu1(u1) dx =
∫
{u1<0}

Fu1(u1) dx+
∫
{u1>0}

Fu1(u1) dx < Fv |Ä|

=
∫
Ä

Fu1(u2) dx,

arriving again at a contradiction. Hence, the conclusion follows takingλ small enough
such that (8) and (20) hold.

Remark 2. As u ∈ U then

(F2
u )
′ = −2λt+b∗u(|u > t |) = −2λt+

∫
ω(t)(b/ |∇u|) d0∫
ω(t)(1/ |∇u|) d0

,

where

ω(t) := {x ∈ Ä : b(x) = b∗u(|u > t |)} .

Then, as mentioned in the Introduction, ifb is a positive constant(F2
u )
′ = −2λt+b and

so assumption (4) holds withK = 2b. Moreover, in general, the Lipschitz continuity of
(F2

u )
′ is related to the Lipschitz continuity of the functionss→ b∗(s) andt → |u > t |.

In a recent paper, Dı́az et al. [6] (see their Lemma 4) have shown that ifb ∈ H1(Ä),1b ∈
L∞(Ä), b = B on∂Ä, andb(x) ≥ B a.e.x ∈ Ä, for some constantB, then the function
s → b∗(s) is Lipschitz continuous (recall thatÄ ⊂ R2). The Lipschitz regularity of
t → |u > t | is more delicate and remains open as far as we know.

Remark 3. Although in [5] and [8] the problem is formulated in a more complicated
framework, we have preferred to simplify it for the sake of clarity in the exposition.
Nevertheless, all the calculus involved in this article can be extended to that case. To do
this it suffices to replace1 by the uniformly elliptic operatorL given in [9],Ä by the ball
centered in the origin of radiusR, the Cartesian coordinatesx = (x1, x2) by the polar
Boozer coordinates(ρ, θ), the functional spaces defined in this article (in terms of the
Lebesgue measuredx) by their analogous weighted functional spaces (using the measure
ρ dρ dθ ), the usual relative rearrangement by the weighted relative rearrangement, the
estimates in terms of

∫
Ä
|∇(u− γ )|2 dx by the coerciveness property ofL, the Poincaré

and Hölder inequalities by its weighted versions and, finally, the Agmon–Douglas–
Nirenberg theorem by its corresponding version on weighted functional spaces.

We also remark that the pressure term can be generalized to anyC1 function p(u)
such that 0≤ p′(u) ≤ λu+ onR+.

Remark 4. The requirement on the smallness ofλ is physically expected. As the
parameterλ represents the ratio between the particle pressure and the magnetic pressure,
a large value ofλwould give rise to the so-called magnetic islands (the plasma splits
in several disconnected toroidal volumes) which mathematically corresponds to the
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bifurcation of the branch of solutions. This was proved mathematically in the case of
confinement of a plasma in a Tokamak device by Schaeffer [16]. For general expositions
on the Tokamak case see, e.g., [1], [2], [11], [14], [15], [17], [18], and their references.
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