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Abstract. We study the uniqueness of solutions of a semilinear elliptic problem
obtained from an inverse formulation when the nonlinear terms of the equation
are prescribed in a general class of real functions. The inverse problem arises in
the modeling of the magnetic confinement of a plasma in a Stellarator device. The
uniqueness proof relies on &r°-estimate on the solution of an auxiliary nonlocal
problem formulated in terms of the relative rearrangement of a datum with respect
to the solution.
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1. Introduction
The main goal of this paper is to study the uniqueness of the solution of a two-dimensional

free boundary problem modeling the magnetic confinement of a plasma in a Stellarator
device. The model consists of a second-order partial differential equation of elliptic type,
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obtained from the three-dimensional ideal MHD system by Hender and Carreras [9] by
using toroidal averaging arguments and a suitable system of coordinates: the Boozer
vacuum flux coordinates [3]. This problem has recently been studied by Diaz [4] who
introduced the following formulation in the form offeee boundary problem. L& be

an open, bounded, regular sefRf, and let

A >0, F, >0, a,beL®Q), b>0 ae.inQ.

Giveny < 0, the problem is to find € H1(Q) N L>(R) andF e C° (R; [0, o)) such
thatF (s) = F, foranys < 0, F2 ¢ V\/li'c""(R), and(u, F) satisfies the followingnverse
problem;

2

—Au=aF(u) + (%) (u) + Abuy in Q,

(P1) u=y onoag2,

2 /
0:/ <<F—) (u)+ku+b)dx, vVt € (—oo, ess supl],
{u>t} 2

where, for the sake of simplicity in the exposition, we have replaced the second-order
symmetric uniformly elliptic operatof given in [9] by the Laplace operator and we
have taken the pressure term eque(pr)ui. In what follows we refer to the family of
integral identities stated i(?,) as theStellarator Condition.

In order to determine the unknown functién the above problem was reformulated
by Diaz in [5] using the notion ofelative rearrangement. It was proved there that if
(u, F) is a solution of(P,) such thau € U c C°(2), where

U={ueW?P(Q), forany 1< p < co and meas{ €  : Vu(x) = 0} = 0},

thenu satisfies the following uncoupletbnlocal problem:

uy 1/2
—Au= a[Ff—ZA/ ob*u(|u>a|)do:|
0

+
4+ auy[b —by(u > uX)] inQ,
u=y onog2,

(PnL)

and necessarilfF = F, on (—oo,

U [l e ] with

1/2

t
Fu(t) := | F2 — 2x/ obu(u > a|)d0i| ,
0 +

where|u > t| denotes meds € Q : u(x) > t}, u, represents the decreasing rearrange-
ment ofu, andb,, is the relative rearrangementlofvith respect tas (the definition of
both notions are recalled in the next section).

The existence ofi € U, a solution of(PyL), was proved by Diaz and Rakotoson
[7], [8] under some additional assumptionsaanda. They also proved that if € I/
is a solution of(Py.) and we defind=, € CO((—oo, U, [|L~@)] : [0, +00)) by

1/2

t
Fut) := |:FU2 — ZA/ ob.(u > o)) d0i| , Yt < Ul 1)
0 +
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then(u, Fy) is a solution of(P;) assuming thalE, (t) > O foranyt € (—oo, [[uy|lL=w)]-
Notice that without loss of generality we can prolonggieo (||u || «(g), +00) in such
away thatF, € C°(R : [0, +00)) andF?2 € Wier°(R).

In this paper we consider the question of the uniqueness of solutid@)afinder
the following special conditions: givefu,, F), (uy, F) solutions of(P)) (i.e., having
a common second component) withe U/, i = 1, 2, find assumptions of implying
thatu; = u,. The special structure of the equation®f) makes it reasonable to assume
the function(F2)’ is locally Lipschitz continuous (i.eF? € W2 (R)). Notice that,
obviously, this assumption is stronger than conditith e W (R) included in the
definition of the solution ofP,) and that neither imply the local Lipschitz continuity of
F since it is not known a priori whether the property

F2ui(x)) >0 ae. xeQ, i=1,2, 2)

holds or not. Notice also that necessafly= F,, = F, on (—oo, m] (wherem :=
min{supu; }) and that

(F2)'(t) = =2t b (Jup > t))  ae. te (—oo, [Uitlli=l. (3)

Moreover, if for instancen = supui, thenF,, can be prolongated t6-co, M], with
M = max{supu;} (= supu in this case) by means &f,, and this prolongation still
verifies the requirements,, € C%((—oc, M] : [0, 00)) andF2 € Wi (—o0, M).

The A-dependence in (3) is the motivation for formulating the conditieh e
WZ2(R) in the following quantitative terms:

I(F2t) — (F2()] < AKjt —f],  vt,f e (=00, M], (4)

for some positive constamt independent of.. Our uniqueness result can be stated in
the following terms:

Theorem 1. Let (up, F), (U, F) be solutions of P) with F € C° (R; [0, c0)) and
F2 e W2 (R) satisfying(4). Then there exists a positive constarsiich that if. < §,

loc
then necessarily U= u,.

We point out that ib is a positive constant then, for afly, F) solution of(P,) with
u € U, we have that

(F2)(t) = —2at,b ae. te (oo, |upllx@]

and so assumption (4) holds trivially with = 2b (see Remark 2 for other comments
on (4)).
One of the main steps of the proof of Theorem 1 is to show that & ¢/ andx
is small enough, then (2) holds and the Lipschitz constari o (—oo, M] is also
small (Theorem 2). As a consequence, we can apply a general uniqueness criterion for
semilinear problems (Lemma 3) implying that necessarily= u,. In order to prove (2)
we first obtain somé *°-estimates on; in terms of the parametér (Lemma 1). The
proof of (2) also uses the characterizatién= F, given in (1) and some properties of
the relative rearrangement. We also give another unigueness result (Theorem 3) under
the conditiona > 0 in € but assuming a sharper bound onSome final remarks are
given at the end of the paper.
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2. Some Properties of the Solutions of Py ): Lipschitz Continuity of F,

We start by recalling the notion of the relative rearrangement of a function with respect
to another function introduced by Mossino and Temam in [12]. We need to recall some
previous well-known notions.

Definition 1. Letu: @ — R be a Lebesgue measurable function. Hmribution
function of uis defined by

my(t) ;== meagx € Q : ux) >t} (= |u > t)) forany teR.

The generalized inverse of, is called thedecreasing rearrangement ofamd is denoted
by u,, i.e.,u,: (0,]|22]) - R with u,(s) = inf{t e R: my(t) < s}.

Now we recall the notions of relative rearrangement: ket € L(Q2) and define
the functionw: [0, |2|]] — R by

/ v(x) dx if Ju=u.(s)|=0,

w(s) = { e S—Mmu(Us(9)

/ v(X) dX—i—/ (Vo) (@) doif Ju=u.(s)| #0.
{u>u.(s)} 0

Herev,, .. ., denotes the restriction afto the setP, (u,(s)) wherePy(t) = {x € @ :

u(x) =t} and(v,, ., )« represents its decreasing rearrangement. It was proved in [12]
thatifu e LY(Q) andv € LP(RQ) for some 1< p < +o0, thenw € WP(0, |22|) and
Idw/ds||Le,10) < IVILrg)-

Definition 2. Thefunctiordw /dsis called theelative rearrangement of with respect
to u and is denoted by,,.

The main conclusion of this section is the following:

Theorem 2. There exists a positive constaht= §(a, b, F,, y, Q) such that ifA <
8, then, for any (u, F) solution of (P)) with u € U, necessarily the function F is
strictly positive and Lipschitz continuous 6Roo, U ||~ ]. In addition,the Lipschitz
constant of F can be taken as decreasing to zero wh¢ro.

The proof of Theorem 2 relies on some lemmata.

Lemma l. There exists a constant;C= C;(1), increasing inx, also depending on
F,, b, and 2, and satisfying thalim, o C1(1) < +o00, such that

sgpu(X) < CiMlallz) + 1yl )

for any (u, F) solution of(P)) with u € U.

Proof.  To obtain (5) we first estimatu — y ||| «q,- We assume thafu, [|L~q) >
0 (otherwise(P)) becomes a linear problem with = F, and the result is trivial).
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Multiplying the equation of P)) by u — y we obtain, after integrating by partsdr that

2 /
/|V(u—y)|2dx=/(aF(u)+ <F—) (u)+xbu+>(u—y)dx
Q Q 2

=/aF(u)(u—y)dx+/z(u—y)dx,
Q Q

where

2

z=2(X) = (7) (UX)) + Ab)u, (x).

By Fubini’s theorem

/z(u—y)dx:/ ds/ z(x) dx,
Q h {yeQ:u(y)—y>s}

wherem = influ(x) —y : x € Q}. Since{x € Q:u(X) —y > s} ={x € Q:uXx) >
y + s}, using the Stellarator Condition iP,) we have

/ Zu—y)dx=0
Q
and hence
/ [V(u—9y)2dx = / aF(u)(u—y)dx.
Q Q
Moreover, asl — y € Hol(Q), we can use Poincaré and Holder inequalities to get

/(u—y)zdxs P(Q)Z/ V(U — y)Pdx < P(Q)Zf aF(U)(U — ) dx
Q Q Q

1/2 1/2
< P(Q)z{/(aF(u))zdx} {/(u—y)zdx} ,
Q Q

where P(Q2) is the Poincaré constant f&@. From the characterization & = F,
mentioned in the Introduction (see also Proposition 1 of [8]) it is easy to seé& thwat
decreasing and sB(u) < F,. Thus, using thay < 0 we arrive at

luillize) < U= P)sllz < F P(Q)2||a||L2(sz)' (6)

The next step is to obtain dr’-estimate forAu. As uis also a solution of Py, ), we
get that

/ |Au2dx = /(aF(u))zdx+A2/ u2 (b — by (lu > ux))?dx
Q Q Q

+ ZA/ aFWwu,[b — by (ju > ux)h]dx.
Q
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Using the well-known estimatg, || ~(q,, < IIbll_~, we obtain

/ |AuZdx < (FyllallLz)? + @ADL Ut llz@)?
Q
+ 4rF, llall Lz 1Dl L @) Ut Nl L2g)-

In a last step, from (6) and the above estimate, we deduce that

/ |A(U — y>|2dx=/ |aul2dx < Cllall 2,
Q Q
where
C = F2[2x|bllL~(e) P*(2) + 1]*.
Therefore
IAU = P)llLae) < VCllallLzg)-

Now, by the Agmon—Douglis—Nirenberg regularity result, there exists another constant
T () such thal|yr [|nz) < T(Q)|AV L2 for anyy € HZ(2) N H}(K2). Moreover,
by the Sobolev Embedding Theorem

Sslszu = ullee < U= Y)liLe@) + 7]
= SEQ)U—=plinze + 1y
for some positive constai®(2). Then if we defineS(Q) := S(Q)T(2) we have
supu < S@)IAU =)l + 17|
< S@VClallze + Iyl -
Therefore (5) holds and the const&it(1) can be taken as
C1(d) = S F,[22PX(Q)[|b]| L~ + 11. O

The second ingredient of the proof of Theorem 2 is the following:

Lemma 2. Letue U be any solution ofPy). Assume that

supu Ry 1

< —F
1/2 1/2 °

Q bl % g A

()

Then the function fdefined by(1) is strictly decreasing o0, ||, ||| ~q,]. Moreovey
F, is strictly positive and Lipschitz continuous ¢aoo, ||u;||L=)]. More precisely

A Uil A A
Fu®) = Ful®] = =@ i bllt =l Yt e (=00, Juslim@]:
u

(Jlut]] LM(Q))
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Proof. We recall that ifw € & andv € LP(Q) (for somep € [1, o0]), then

f{w:w*(s)](v/|vwl) dF

.e. 0,2
Jiw=uey@/IVwh dT e s O

Usew (S) =

(see, e.g., [12] and [14]). This implies thatif> 0 a.e.s € , thenv,,, > 0 a.e. in
(0, 122]). Now define the functios,: R — [0, co) by

t
Gy(t) = Fv2 - ZA/ sh.(Ju > s|)ds forany te (0, Uyl =)l
0

We deduce thab, (t) is a strictly decreasing function as a consequence of the positivity of
the integral terms. Therefore tife (0, ||u; ||L~(g)] then, taking into account assumption
(7) and that|b,yllL=(q,) < |IbllL=), we conclude that

t
Gu(t) = F2 - 2x||b||Lm<m/ sds
0
F 2
> F2 — ||b||L~ <7) _
AN EE

This proves thaF,(t) > 0ift € (0, [[u||L~)] - Furthermore, it, f € (0, ||| =]
and, for instancé > t, then
o) — Fahl — Fat) — F2) _ 21 [} obyu(u > (Af|)d0
Fut) + Fu(®) Fu(®) + Fu(t)
)\”b”LO“(Q)(f2 - tz) < ||u+||L0°(Q)
2Ru(lusllii~) — Fullulli=)

Al L) (E — ). O

Proof of Theoren2. LetA > 0 be such that

ACiWlallzg + v < % (8)
bl %,

Then if (u, F) is any solution of(P)) with u € ¢/ we conclude from Lemma 1 that
satisfies (7). By the results of [8] we know thais also a solution ofPy.) and that
F = F, on(—oo0, ||uy| =] Thus, if (8) holds we can apply Lemma 2 and we deduce
the first part of Theorem 2 since the left-hand side in inequality (8) is a continuous
function of A vanishing forh = 0 and so (8) holds fax small enough. Finally, if we use
the decreasing functioB®,, introduced in the proof of Lemma 2, applying Lemma 1, we
have that

Fu(lutllis@) = [Gullugll=@)]™?
> [F2 = AlbllL~(@ (CiM [1allLz@) + [¥ D2
Again using Lemma 1 we conclude that
IFu®) — Fu® =t —f|  forany t.fe (—oo, [upllL~@]. 9)
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where
A(Ci)llallLz) + [y DIIbllL~ (o)
Kk(A) = 10
[F2 — AllbllL~@)(Ci(M)all Lz + 1y DZ]Y? (10)
and so
[\I?’(l) k(A) =0,
which ends the proof of Theorem 2. |

Remark 1. The strict positivity of functionF, was already proved in Lemma 25 of

[8], under a different hypothesis on the data and for some special solutigRg,0f (the

ones constructed in the proof of the existence of solutionggf)). An L*°-estimate

for such a special class of solutions was also given in [8] (see Lemma 24) under an
additional assumption om

3. Onthe Uniqueness of Solutions ofP,) When F Is Prescribed

The uniqueness of solutions @) whenF is prescribed can be proved in different ways
under the assumption (4) farsmall enough. Indeed, thanks to Theorem 2 we know that
the whole right-hand side of the equation(®) is a Lipschitz continuous function on

u such that its Lipschitz constant decreases to ze#oJa®. Then the conclusion can be
obtained with the help of an easy technical result:

Lemma 3. Consider the problem

{—Au =f(x,u;2)  inQ, (11)

U=¢  0Nnog,

whereQ is a bounded domain &\, ¢ € H(RQ), A is a positive constangnd the real
function f satisfies

[T(X ta) — F(X, to; M) < JAHX) [ty — to] (12)

forallty, t, € R, a.e x € , and for allA > 0. Assume that J is continuou3(0) = 0,
and J(A) > 0if A > 0, and that H is an a.epositive function of L(2), withr > N/2.
Then,if

J) < pa, (13)

with w1 the first eigenvalue of

(14)

—Aw = pHX)w in Q,
w=0 onog,

problem(11) has,as sucha unique nontrivial solution in F(<2).
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Proof. Although several uniqueness results of this type are consequences of fixed point
theorems (see [10] and the references therein) a direct proof can be obtained as follows:
Suppose that there exist two solutions of (Li1) € HX(Q). SetU = u — v. ThenU
satisfies

—AU = &(x; MU inQ,
{U =0 onos, (15)
where
f(x,u; A) — f(x,v; 1) )
B(x: A) = 100 — v if UX)#£0,
0 if UXx)=0.

From the assumptions it is straightforward to see thaix; A)| < J(A)H(X). Then,
multiplying (15) byU, using the assumptions dnandJ and the characterization of the
first eigenvalue of the\ operator we obtain that necessatily= 0. O

Proof of Theoreni. It suffices to check that the assumptions of Lemma 3 are fulfilled.
We setf (x, t; 1) = a(x)F (t)+ (F?/2) (t) +Ab(X)t,. In order to check the assumptions
on f we define

it ui(x) # ua(x),
it u(X) = ux(x),

U (X) — U2(X)

FUu1(x)) — F(u2(x))
01(X) =

it ur(x) # ua(x),
it uy(X) = ux(x),

(F2/2)" (ur(x)) — (F?/2)" (u2(x))
%R(X) = Uz (X) — Uz(X)

if up(X) # uz(x),
if  uy(X) = ux(x),

U1+ (X) — Uz4(X)
h(X) '=1{ u(x) — uz(x)

and finally
D(x; A) = aX)g1(X) + G(x) + Ab()h(x).
We prove that
| (x; M) < IWH(X), (16)

with J andH satisfying the conditions of Lemma 3. We have that

[®(x; M) < [a()] 91()] + [920X)] + Ab(x) a.e. xeq.
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Sincelh(x)| < 1, from hypothesis (4), we get thatifsatisfies (8), thefr is decreasing
and so

|®(x; )| < |aX)||gr(X)]| + A (g + b(x)) ae xeQ.

If we suppose, forinstance, that: + || «q) < Uz+[lL~(q), thenF (Ui (X)) — F (uz2(x)) =
Fu, (U1(X)) — Fy,(uz2(x)). From (8) we know that inequalities (9) and (10) hold (see the
proof of Theorem 2). Then we deduce that

|P(x; M =< [a(X)|x () + 2 (g + b(X)> ae. XxeqQ,

and inequality (16) is verified with
J(A) :=max{r, k(A)} a7
and

H(x) = max{|a(x)| , g + b(x)} . (18)

The conclusion of Theorem 1 follows by takingsmall enough so that (8) and (13)
hold. O

Another uniqueness result, under a sharper bound oan be obtained by a different
technique assuming a sign condition on the coefficgent

Theorem 3. Assume a> 0on Q and Iet(ul, F), (uy, F) be as in Theoren with F
satisfying(4). Then there exists > 0 (with § depending on the second eigenvalue of
problem(14) and with H given by18)) such that if.. < &, then necessarily U= u..

Proof. We follow a technique similar to the one of Puel [13]. Welset= u; — u,. We
proceed in two steps. First we show thhhas a definite sign it and later we obtain
a contradiction to this fact. So we claim thatdoes not change its sign {. If it does,
we define the subsets

={xeQ:UX)>0} and Q_:={xeQ:UX) <0}
and choose > 0 such that the function defined by

~ . Jux if x e Q,
V)= {aU(x) ifxeQ,

is orthogonal in the weighted spat:éI () to the first eigenvectow; of (14), i.e.,

—fmleH dx
[y UwiHdx *
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Notice thatU e HZ (). Then, ifu, is the second eigenvalue of (14), by definition

|Vy|? dx

N )
ey v e [ ymnax —o}.

o = min{

Therefore

- Jo IVU [2dx

Ha = foU2Hdx

Multiplying by U, in (15) and integrating by parts we obtain that
/ IVUI2dx= [ [ag + g»+ AbhlU?dXx,
Qy Q.

and an analogous equality is obtained3n. Using that

/|VU|2dx:[ |VU|2dx+a2/ |IVU|? dx
Q Qy Q

and assuming (8) we obtain
0= [ (na= 202 HOdx (19)
Q

where J(1) is given by (17). Therefore inequality (19) leads to a contradiction if we
assume

JV) < uo. (20)

Now, asU does not change its sign, we can assume without lost of generality thad
in Q,i.e., thatu; > u,in Q. If we integrate the equation ¢P)) satisfied byu;, u,, apply
the Divergence Theorem, and assume (8) then, by Theordmstrictly decreasing
on (0, lui4llL~(e)) and by the Stellarator Condition stated(#) we obtain

—/ Vu; - ndrl’ =—/ Auldx=/aFu1(u1)dx
Q2 Q Q
</aFu1(u2):—/ AU, dXx
Q Q

= —/ Vus -ndT,
Q2

wheren is the outward normal t€2. Finally, we have three cases to consider: If none
of the solutions has a null positive part thenuas= v, on 92 andu; > uy in £, this
implies thatVuy - n < Vu, - n on 92 leading to a contradiction. If both solutions have
null positive part, then the conclusion is obvious because the protigrbecomes
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linear. Finally, in the case in which one of the solutions has a null positive part but the
other does not (and ag > u, it has to beu,, = 0), then

f Fu,(u1) dx = / Fu, (U1) dx+/ Fy, (up) dx < F, €]
Q {u1 <0}

{u;>0}
Z/ Ful(UZ) dX1
Q
arriving again at a contradiction. Hence, the conclusion follows takiemall enough
such that (8) and (20) hold. O

Remark 2. Asu e U then

Joy 0/ 1VU)) AT

F2) = —2at, by, t) = —2at, e T
(FD b (ju > t)) hfw(t)(1/|Vu|) ar

where
o®) ={xeQ:bXx)=bhby(u=>tD}.

Then, as mentioned in the Introductionbifs a positive constar(IFuz)/ = —-2xt,band
so assumption (4) holds with = 2b. Moreover, in general, the Lipschitz continuity of
(Fuz)’ is related to the Lipschitz continuity of the functiogis> b,(s) andt — |u > t|.

In arecent paper, Diaz et al. [6] (see their Lemma 4) have shown thatH1(2), Ab
L>*(R),b= BonaR, andb(x) > Ba.ex € 2, for some constar®, then the function
s — b,(s) is Lipschitz continuous (recall th& c R?). The Lipschitz regularity of
t — |u > t| is more delicate and remains open as far as we know.

Remark 3. Although in [5] and [8] the problem is formulated in a more complicated
framework, we have preferred to simplify it for the sake of clarity in the exposition.
Nevertheless, all the calculus involved in this article can be extended to that case. To do
this it suffices to replaca by the uniformly elliptic operatof given in [9],€2 by the ball
centered in the origin of radiuR, the Cartesian coordinates= (x3, xp) by the polar
Boozer coordinateép, 6), the functional spaces defined in this article (in terms of the
Lebesgue measudx) by their analogous weighted functional spaces (using the measure
o dp do), the usual relative rearrangement by the weighted relative rearrangement, the
estimates in terms q‘@z |V(u — y)|? dx by the coerciveness property 6fthe Poincaré
and Holder inequalities by its weighted versions and, finally, the Agmon-Douglas—
Nirenberg theorem by its corresponding version on weighted functional spaces.

We also remark that the pressure term can be generalized 6 ‘afunction p(u)
such that O< p/(u) < Auy onR,.

Remark 4. The requirement on the smallness jofs physically expected. As the
parametek represents the ratio between the particle pressure and the magnetic pressure,
a large value ofiwould give rise to the so-called magnetic islands (the plasma splits

in several disconnected toroidal volumes) which mathematically corresponds to the
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bifurcation of the branch of solutions. This was proved mathematically in the case of
confinement of a plasma in a Tokamak device by Schaeffer [16]. For general expositions
on the Tokamak case see, e.g., [1], [2], [11], [14], [15], [17], [18], and their references.
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