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1. The model

The Boussinesq system of hydrodynamics equations [4, 18], arises from a zero-order
approximation to the coupling between the Navier–Stokes equations and the thermody-
namic equation [17]. The presence of density gradients in a uid leads to the conver-
sion of gravitational potential energy into motion through the action of buoyant forces.
Density di�erences are induced, for instance, by gradients of temperature arising by
nonuniform heating of the uid. In the Boussinesq approximation of a large class of
ow problems thermodynamical coe�cients such as viscosity, speci�c heat and thermal
conductivity, can be assumed constant leading to a coupled system with linear second-
order operators in the Navier–Stokes and heat equations (see, e.g., [9–11, 15, 21]).
However, there are some uids like lubricants or some plasma ow for which this is
no longer an accurate assumption (see, e.g. [9, 14, 19]). In this situation the following
system of quasilinear equations must be considered [17]:

ut + (u · ∇)u − div(�(�)D(u)) +∇p=F(�);
div u=0; (1)

C(�)t + u · ∇C(�)−�’(�)= 0;
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where u is the velocity �eld of the uid, � the temperature, p the pressure, �(�) the
viscosity of the uid, F(�) the buoyancy force, D(u) :=∇u +∇uT,

C(�) :=
∫ �

�0
C(s) ds and ’(�) :=

∫ �

�0
�(s) ds;

with C(�) and �(�) being the speci�c heat and thermal conductivity of the uid,
respectively. Assuming, as usual, C¿0 then C is inversible, and so �=C−1( ��) for
some real argument ��. Then we can de�ne the functions

�’( ��) :=’ ◦ C−1( ��); F( ��) :=F ◦ C−1( ��); ��( ��) := � ◦ C−1( ��):

Substituting these expressions in Eq. (1) and omitting the bars we get the following
formulation of the Boussinesq system:

ut + (u · ∇)u − div(�(�)D(u)) +∇p=F(�);
div u=0; (2)

�t + u · ∇�−�’(�)= 0:

We briey comment on some interesting features that characterize this model. There
are two paradigmatic situations: the fast and the slow heat di�usion. These cases math-
ematically correspond to the singular or degenerate character of the heat equation which
may occur according to the relative behavior of C and �. This was already pointed out
in [6]. The main goal of this paper is to improve the results presented in [6]. To state
our main results recall that since C and � are nonnegative, their primitives C and ’
are nondecreasing functions. Suppose that a perturbation of a constant temperature �0
causes a small gradient of temperature between the boundary (higher temperature) and
the interior (lower temperature) in a neighborhood, and assume that the behavior of C
and ’ near �0 can be approximate as

C(s) ∼ c1(s− �0) + c2(s− �0)p; ’(s) ∼ k1(s− �0) + k2(s− �0)q

for s¿�0, with p; q¿0. From Eq. (1) we have that

�’′(C(s))=’′(s)(C−1)′(C(s))=
’′(s)
C′(s)

=
k1 + k2q(s− �0)q−1

c1 + c2p(s− �0)p−1
:

Therefore, when s→ �0 (and then C(s)→ 0) we get one of the following behaviors of
�’′ close:
(i) if p; q¿1 then �’′(0)= k1=c1,
(ii) if 1¿q¿p either q¿1¿p then limC(s)→ 0 �’

′(C(s))= 0,
(iii) if p¿1¿q either 1¿p¿q then limC(s)→ 0 �’

′(C(s))=+∞.
In the �rst case both linear parts in the above decomposition of C and ’ dominate: this
case arises, for instance, when conductivity and speci�c heat are taken as constants,
leading to the classical heat equation with a linear di�usion term. In the other two
cases the nonlinear parts dominate and this leads to two di�erent situations:

• If p¡q: The speci�c heat dominates over the conductivity, i.e., when temperature
approaches �0 the uid stores more heat and this is worstly conducted. We shall
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prove that a front of temperature �= �0 arises. This type of phenomenon is known
as slow di�usion: heat spends a positive time to spread over the neighborhood.

• If p¿q: The opposite e�ect arises: the conductivity dominates over the speci�c heat.
In this case the phenomenon is called fast di�usion. We shall prove that, in fact,
� = �0 in the whole domain when the time is large enough.

In [7] we studied the well posedness of system (2) together with suitable initial
and boundary conditions under suitable assumptions on the data including the cases
of degenerate and singular parabolicity of the heat equation. This enforced, for well-
known reasons, the introduction of a notion of weak solution for the heat equation.
In which respect to the Navier–Stokes equations, we followed the usual variational
approach, already introduced by Leray [16], based on the consideration of the notion
of weak solution for the Navier–Stokes equations holding in divergence free functional
spaces (denoted with the subindex �). More precisely, we considered the following
problem:

ut + (u · ∇)u − div(�(�)D(u))=F(�) in QT :=
× (0; T );
�t + u · ∇�−�’(�)= 0 in QT ;

u=0 and ’(�)=’D in �T := @
× (0; T );
u(x; 0)= u0(x) and �(x; 0)= �0(x) for x∈
;

(3)

with 
⊂RN (N =2; 3) a bounded domain and T arbitrarily �xed. Besides, we assumed
the following regularity on the auxiliary data: u0 ∈L2�(
); �0 ∈L∞(
); �0≥ 0 and
’D ∈L2(0; T ;H 1(
))∩H 1(0; T ; L2(
)).

De�nition (Weak solution). The pair (u; �) is said to be a weak solution of Eq. (3)
if:
(i)

u∈L2(0; T ;W 1;2
� (
))∩L∞(0; T ; L2�(
));

’(�)∈’D + L2(0; T ;H 1
0 (
)) and �∈L∞(QT ):

(ii) u(0)= u0 and for any test function w∈W 1;2
� (
)∩LN

� (
) it holds∫


(ut · w+ (u · ∇)u · w+ �(�)Du: ∇w)=

∫


F(�) · w a:e: t ∈ (0; T ); (4)

(iii) �t ∈L2(0; T ;H−1(
)) and for any test functions �∈L2(0; T ;H 1
0 (
)) and

∈L2(0; T ;H 1
0 (
))∩W 1;1(0; T ; L2(
)), with  (T )= 0, it holds

∫ T

0
〈�t ; �〉+

∫ T

0

∫


(∇’(�)− �u) · ∇�=0 (5)

and ∫ T

0
〈�t ;  〉+

∫ T

0

∫


(�− �0) t =0: (6)
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In [7] we proved that under the assumptions

’∈C([0;∞))∩C1((0;∞)); ’(0)= 0; ’ nondecreasing;

F∈C0;1loc ([0;∞);RN );

�∈C0;1loc ([0;∞)) and satis�es 0¡m0≤ �(s)≤m1 ∀s∈ [0;∞)
and if �′ 6=0 and F′ 6=0 then ’−1 is H �older continuous of exponent �;

there exists a weak solution of Eq. (3). Besides, if N =2, � is constant and either
’−1 ∈C0;1loc ([0;∞)) or

’′(0)= 0; ’′(s)¿0 and ’′′(s)¿0 if s¿0 and ∇�∈L2(QT )

then the solution is unique. In this paper we shall show that, under suitable assumptions
on the data, spatial or time localization of the temperature component of any weak
solution occurs.

2. Spatial localization

In this section we present results concerning the existence and spatial localization of
free boundaries (boundary of sets where {�=0}) for problem (3), more precisely, the
�nite speed of propagation and the waiting time properties (see Theorems 2.1 and 2.2
below). It is well known that solutions to porous medium type equations exhibit the
property of �nite speed of propagation (compactly supported solutions) when the initial
data vanishes in some part of the domain. The usual way to show that this property
holds relies in the existence of a comparison principle for the problem and the use
of special subsolutions that already enjoy the property. However, this method is very
sensible to perturbations in the problem and it fails in its application when subsolutions
are hard to �nd (for instance, when coe�cients depend on space and time variables
or when space dimension is greater than one) or when, simply, a comparison principle
does not hold (systems of equations, in general). In this situation more general methods
(although less accurate) must be considered.
The method we use is based on a local energy method for free boundary problems

(see [1, 8]). The idea is to introduce an energy functional (usually given by the norms
in the natural energy spaces associated to the problem) and to deduce a di�erential
inequality for the energy functional. From this inequality the desired qualitative property
of the solutions can be obtained. This method has two principal features. Firstly, it is a
local method, i.e., it operates in subsets of the corresponding domain without need of
global information like boundary conditions or boundedness of the domain. Secondly,
it has a very general setting, allowing to consider, for instance, systems of equations
in any space dimension or with coe�cients depending on the space and time variables.
This method does not need any monotonicity assumption on the nonlinearities and
it requires no comparison principle to hold. In return, however, it only provides a
qualitative insight into the problem but not valuable quantitative estimates.
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In this paper we introduce a variation of this energy method intended to handle the
transport term present in the heat equation. Intuitively, this term should not a�ect the
existence and properties of the free boundary but its location, moving it in the direction
of the characteristics associated to the velocity �eld. This approach improves previous
results when a transport term is present in the equation (see [2,8]) and can be regarded
as a generalization of the method. It is also straightforward to apply to other properties
like the shrinking of the support or the formation of dead cores (see [2, 12]). Finally,
it also facilitates the study of these properties in systems of equations coupled, among
others, through transport terms (see [12]).
In this section we assume that ’(s) := sm. Given a weak solution (u; �) of Eq. (3) we

perform the change of unknown �̂ := �m. Writing q := 1=m; introducing the expression
of �̂ in the second equation of Eq. (3) and omitting the hats we are led to the following
form of the heat equation:

(�q)t + u · ∇�q −��=0:

In order to de�ne the (local) characteristics associated to u we must assume certain
regularity on this vectorial �eld, namely u∈L∞(0; T ;C0;1(
)). Since u= 0 in @
 we
can extend u by zero to all RN to get u∈L∞(0; T ;C0;1(RN )). It is well known that
under this regularity, the vectorial function � given as a solution of the problem

@�
@t
(x; t)= u(�(x; t); t) in !× (0; T );

�(x; 0)= x in !; (7)

with !⊂RN , is uniquely de�ned with the regularity �∈C1( �!× (0; T )).
In the following we shall suppose that the initial data �0 vanishes in some ball B�0

of radius �0, centered in x0 and compactly imbedded in 
. Then the following property
is a consequence of the continuity of � and of �(·; 0)≡ Identity:

there exist t̂ and �1¿�0 such that if t¡t̂ and �¡�1 then �(B�; t)⊂
: (8)

We �rst state the result on the �nite speed of propagation and waiting time property
along the characteristics:

Theorem 2.1. Suppose that q¡1 and �0≡ 0 in B�0 . Then there exists a t∗ ∈ (0; t̂ )
and a continuous function r(�) de�ned in (0; t∗), with r(0)= �0 such that any second
component of a weak solution of Eq. (3) satis�es

�(x; t)≡ 0 a:e: in {(x; t): x∈ �(Br(t); t); t ∈ (0; t∗)}:
Besides, if the initial data satis�es the following atness condition:∫

B�

|�0|q+1 dx ≤ �0(�− �0)
1=(1−�)
+ a:e: �¡�1 (9)

for some �0¿0 and with �¡1 given by Eq. (26) then there exists a t∗ ∈ (0; t̂ ) such
that

�(x; t)≡ 0 a:e: in {(x; t): x∈ �(B�0 ; t); t ∈ (0; t∗)}:
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Let us briey comment here some extensions of this result. First, with respect to the
structural assumptions on the heat equation we only need to assume a structure of the
type

(|�|q−1�)t + div(u|�|q−1�)− divA(x; t; �;∇�) + B(x; t; �)=f(x; t) (10)

with u and A vectorial �elds and B a scalar function satisfying

M1|�|r ≤ A(x; t; s; �) · � ≤ M2|�|r for r¿1

sB(x; t; s) ≥ m3|s|p+1 for p¿0

‖u(x; t)‖L∞(QT ) ≤ M4;

‖div u(x; t)‖L∞(QT ) ≤ M5 or div(u(x; t)) ≥ 0;

∀(x; t; s; �)∈
×R+×R×RN and for some positive constants Mi. In this situation, if
m3 = 0 (resp. m3¿0), q¡r− 1 (resp. p¡q ≤ r− 1) and f(x; t)= 0 in �(B�0 × (0; T ))
then the result on �nite speed of propagation still holds. If, in addition, instead of
Eq. (9) we assume

∫
B�

|�0|q+1 dx+
∫
B�

|f|q=(q+1) ≤ �0(�− �0)
1=(1−�)
+ a:e: �¡�1;

then the result on existence of a waiting time also holds. The second kind of extension
that can be performed is related to other properties of the free boundary, for instance,
the formation of a dead core:

Suppose that m3¿0, and f≡ 0. Assume that

p¡q ≤ r − 1 and 1 + p ≤ q
r

r − 1 :

Then if the global energy is small enough there exist constants t∗ ∈ (0; t) and
�¿0 such that any second component of a weak solution of Eq. (3) satis�es

�(x; t)≡ 0 a:e: in {(x; t): x∈ �(Br(�) ; �); �∈ (t∗; T )};

with r(�) := (�− t∗)�.

The proofs of these results follow the line of [2] in combination with the proof of
Theorem 2.1 (see [12] for more details).
Finally, we state a result on �nite speed of propagation for which weaker require-

ments on the regularity of the velocity �eld are needed (see [13]). More precisely, we
shall assume only that u∈L∞

� (QT ). Although in this case we cannot properly de�ne
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the characteristics associated to u, the boundedness of the velocity �eld still allows us
to use similar ideas than above.

Theorem 2.2. Suppose that q¡1 and that �0≡ 0 in B�0 . Then there exist a t∗¿0
and a nonnegative function r(�) de�ned in (0; t∗), with r(0)= �0, such that any
second component of a weak solution of Eq. (3) satis�es

�(x; t)≡ 0 a:e: in {(x; t): x∈Br(t); t ∈ (0; t∗)}:

Theorems 2.1 and 2.2 improve previous results in the literature of scalar di�erential
equations when the transport term u is nontrivial (see [2, 6, 8]). Moreover, as far as
we know, properties like the formation of a dead core in systems or scalar equations
containing a transport term do not seem to have been treated till the date.

2.1. Proofs of Theorems 2.1 and 2.2

In the proof of both theorems we shall use special test functions to localize the
natural energies associated to the problem in suitable sets of the form

P≡P(�; t) := {(x; �)∈RN × R+: x∈ �(BR; �); �∈ (0; t)}; (11)

with BR the ball of RN centered in the origin and of radius R≡R(�; �), for certain non-
negative arguments �; �, and with �(·; �) given by Eq. (7). We introduce the temporal
sections of P

P(s) :=P ∩ {�= s}⊂RN ; s∈ (0; t); (12)

so P=
⋃

s∈(0; t) P(s), and the lateral boundary of P

@lP := {(x; �)∈RN × R+: x∈ @�(BR; �); �∈ (0; t)};
so the parabolic boundary of P is given by @P=P(0) ∪ P(t) ∪ @lP. We recall here
some basic properties related with this collection of sets (see, e.g., [12]). If (nt ; nx) is
the unitary outward normal vector to P then it holds

nt + w · nx = − @R
@�
det

D�
Dx

(13)

and for any integrable function g it holds

d
d�

∫
P(�; t)

g(x; �) dx d�=
∫
@lP(�; t)

dR
d�

g(x; �) dx d�; (14)

where we used that being �(·; �) a di�eomorphism we have @�(BR; �)= �(@BR; �). In
this domain we consider the local energy functions de�ned by

E(�; t) :=
∫
P

|∇�(x; �)|2 and b(�; t) := ess sup
�∈(0; t)

∫
P(�)

|�(x; �)|q+1: (15)
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Next, we shall show how the local energies come into our problem. If � is the second
component of any weak solution of Eq. (3) we choose the following test function in
Eqs. (5) and (6):

�P(�(x; t)) := �(x; t) if (x; t)∈P;

�P(�(x; t)) := 0 otherwise:

In [8] it is proven by truncature and regularization techniques that �P is an admissible
test function. After applying the divergence theorem we get

q
q+ 1

∫
@P
(�q+1nt + �q+1u · nx) dx d�+

∫
P

|∇�|2 dx d�=
∫
@P

�∇� · nx dx d�:

Using the decomposition @P=P(0) ∪ P(t) ∪ @lP and taking into account that nt =1
and nx =0 in P(t) and that nt = − 1 and nx =0 in P(0), we obtain

q
q+ 1

∫
P(t)

|�(t)|q+1 dx+
∫
P

|∇�|2 dx d�

6
∫
@lP

|∇�| |�| |nx| dx d�− q
q+ 1

∫
@lP

|�|q+1(nt + w · nx) dx d�

+
q

q+ 1

∫
P(0)

|�0|q+1 dx := j1 + j2 + j3: (16)

The proofs of the theorems share a common scheme: �rstly we perform estimates
of the terms ji of Eq. (16) by using well-known inequalities, like H�older, Young
and Poincar�e’s, together with the use of an interpolation-trace inequality (see [8]) that
allows us to deduce a di�erential inequality for the local energy E. Secondly, a direct
integration of such an inequality leads to the desired result.
We start with the proof of Theorem 2.2. Notice that for this result we do not need

to consider the characteristics associated to u and therefore � must be regarded as the
identity.

Proof of Theorem 2.2. We proceed in two steps:
Step 1. We consider the domain of integration in Eq. (16) as the collection of

truncated cones given by

P(�; t) := {(x; �): x∈BR; �∈ (0; t)};
with R≡R(�; �) := �− �u; u := ‖u‖L∞(QT ); �∈ I := (tu+ �; �0] and t¡t1 := (�0 − �)=u.
Notice that I is nonempty since, by construction, tu+ �¡�0. We begin by estimating
the term j1. On one hand, the function �→ ∫

@lP
|∇�|2 is well de�ned for a.e. �∈ I

because of the regularity �∈L2(0; T ;H 1(
)). We can use H�older’s inequality to get

j1 ≤
(∫

@lP
|�|2

)1=2(∫
@lP

|∇�|2
)1=2

: (17)
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On the other hand, by Eq. (14) we have @E=@�=
∫
@lP

|∇�|2 a.e. �∈ I , and from
Eq. (17) we get

j1 ≤ ‖�‖L2(@lP(�))
(
@E
@�
(�; t)

)1=2
: (18)

Taking into account that @lP=
⋃

�∈(0; t) @P(�), with @P(�)≡ @BR, and applying the
interpolation-trace inequality (see [8]) we obtain

‖�‖L2(@P(�)) ≤ C1(‖∇�‖L2(P(�)) + R−�‖�‖Lq+1(P(�)))
‖�‖1−

Lq+1(P(�)); (19)

with C1¿0 an universal constant and with

 :=
2N − (q+ 1)(N − 1)

2(N + q+ 1)− N (q+ 1)
∈ (0; 1) and � := 1 +

N (1− q)
2(q+ 1)

:

Notice that since �∈ I

R(�)−� ≤
(
min

�∈(0; t)
(�− u�)

)−�

≤ �−�:

De�ning L :=C1 max{1; �−�} and integrating expression (19) in (0; t) we obtain
∫ t

0
‖�‖2L2(@P(�)) ≤ L

∫ t

0
(‖∇�‖L2(P(�)) + ‖�‖Lq+1(P(�)))

2‖�‖2(1−)
Lq+1(P(�)) d�

and thanks to the inequality (a + b)2≤ 2(a2 + b2) and to H�older’s inequality with
exponent 1= we obtain

∫ t

0
‖�‖2L2(@P(�)) ≤ 4L2

(∫ t

0
‖∇�‖2L2(P(�)) + ‖�‖2Lq+1(P(�))

)(∫ t

0
‖�‖2Lq+1(P(�))

)1−

:

(20)

Using that q¡1 and that b is nondecreasing with respect to �, and substituting the
expressions of energies given in Eq. (15) we obtain

(∫ t

0
‖�‖1=2L2(@P(�)

)1=2

≤ 2Lt(1−)=2(E(�; t) + tb(�0; t)2=(q+1)−1b(�; t))=2b(�; t)(1−)=(q+1);

and therefore, de�ning

K0(t) := 2Lt(1−)=2 max{1; t1b(�0; t1)2=(q+1)−1}; (21)

we get

(∫ t

0
‖�‖2L2(@P(�))

)1=2
≤K0(t)(b(�; t) + E(�; t))�;
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with

� :=

2
+
1− 
q+ 1

¡1: (22)

We conclude from Eq. (17) that

j1≤K0(t)
(
@E(�; t)

@�

)1=2
(b(�; t) + E(�; t))�: (23)

Finally, by assumption, j3 = 0 and the estimate of j2 is simple because the choice of
the domain of integration. Indeed we have by Eq. (13) (remind that �= identity) that

nt + u · nx = ‖u‖L∞ + u · nx ≥ 0
and therefore j2≤ 0.
Step 2. We get from Eq. (16) that

2M
(∫

P(t)
|�|q+1 + E(�; t)

)
≤K0(t)

(
@E(�; t)

@�

)1=2
(b(�; t) + E(�; t))�; (24)

with M = q=2(q+1). Since functions E; b and @E=@� are nondecreasing in time Eq. (24)
remains valid if we change

∫
P(t) |�|q+1 by b(�; t) and 2M by M . We get

M (b(�; t) + E(�; t))≤K0(t)
(
@E(�; t)

@�

)1=2
(b(�; t) + E(�; t))�

and therefore

M 2(b(�; t) + E(�; t))� ≤K 2(t)
@E(�; t)

@�
a:e: �∈ I; (25)

with

� := 2(1− �); (26)

� given by Eq. (22) and

K(t) :=
K0(t)
M

=
C1
M
max{1; ��}1=2 max{1; t1M 2=(q+1)−1}t(1−)=2: (27)

Due to the crucial assumption q¡1 we have that �¡1 and a direct integration of
Eq. (25) in (�; �0) with �∈ I leads to

E1−�(�; t)≤E1−�(�0; t)− K−2(t)(�0 − �): (28)

We de�ne

z(t) := �0 − K 2(t)E1−�(�0; t); t¿0:

Notice that z(0)= �0 because limt→0 E
1−�(�0; t)t1−=0 (here we used the de�nition

of K given in Eq. (27) and that z(t) is continuous and decreasing with limt→∞ z(t)=
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−∞). Therefore z(t) has an unique positive zero that we denote by t0. With this
de�nition of z(t) we have that if t ∈ (0; t∗) for some t∗ ∈ (0;min{t̂; t0}] and �∈ (ut +
�; z(t)) then Eq. (28) implies that E(�; t)≡ 0. Notice that the interval (ut + �; z(t)) is
nonempty if

�0¿K 2(t)E1−�(�0; t) + ut + �;

that we can ensure by taking t∗; � small enough. Finally, from the de�nition of E(�; t)
we deduce that �(x; t)≡ 0 if |x| ≤ �−ut≤ z(t)−ut := r(t), with r(0)= �0 and r(t)¿0
in (0; t∗).

Proof of Theorem 2.1. The proofs of both assertions of this theorem are very like the
previous proof, but taking advantage of the possibility of de�ning the characteristics
associated to u. We shall only prove the waiting time property being the proof of the
�nite speed of propagation a straightforward modi�cation of the former.
Step 1. We consider the domain of integration given by

P≡P(�; t) := {(x; �): x∈ �(BR; �); �∈ (0; t)}; (29)

with � de�ned as the unique solution of Eq. (7), R(�)≡ � with �∈ (�0; �1) and t ∈ (0; t̂ )
with t̂ given by Eq. (8). Using Eq. (14) and H�older’s inequality we can estimate j1
as in Eq. (17):

j1 ≤
∫
@lP

|u| |∇u| |nx| ≤
(∫

@lP
|∇u|2

)1=2(∫
@lP

|u|2|nx|2
)1=2

≤
(
@E
@�

)1=2(∫
@lP

|u|2
)1=2

; (30)

where we used that |nx| ≤ 1. Since � is a di�eomorphism, the interpolation-trace in-
equality remains valid for the same exponents  and � although with, in general, a
di�erent universal constant C1 depending on the Jacobian determinant of � (see [12]):

‖�‖L2(@P(�))≤C1(‖∇�‖L2(P(�)) + �−�‖�‖Lq+1(P(�)))
‖�‖1−

Lq+1(P(�)):

Now, in the same way as in the previous proof we arrive at the estimate

j1≤K0(�; t)
(
@E
@�
(�; t)

)1=2
(b(�; t) + E(�; t))�; (31)

with � given by Eq. (22) and K0 given by Eq. (21) but with L replaced by L(�) :=
C1 max{1; �−�}. Applying Young’s inequality with exponent 1=� to Eq. (31) we have
that for all �¿0

j1≤C�K
1=(1−�)
0

(
@E(�; t)

@�

)1=�
+ �(b(�; t) + E(�; t)); (32)
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with C�= ��=(�−1) and � := 2(1− �). The estimate of j2 follows directly from Eq. (13)
and the choice of the domain of integration (involving a transformation along the
characteristics de�ned by u). We have

nt + u · nx =−dR
d�
det

D�
Dx

≡ 0;

because R does not depend on �. Therefore j2≡ 0. Finally, by assumption, j3≤ �0(�−
�0)

1=(1−�)
+ .
Step 2. As in step 2 of the previous proof, we take M = q=2(q + 1) and �nd from

Eq. (16) that

M
2
(b(�; t) + E(�; t))≤C�K

1=1−�
0 (�; t)

(
@E(�; t)

@�

)1=�

+�(b(�; t) + E(�; t)) + �0(�− �0)
1=(1−�)
+ ; (33)

with �∈ (�0; �1) and t ∈ (0; t̂ ). Taking �¡M=4 and rising both sides of Eq. (33) to the
power � leads to

E(�; t)� ≤ Ĉ1(t)
@E(�; t)

@�
+ Ĉ2(�− �0)

�=(1−�)
+ ; �∈ (�0; �1); t ∈ (0; t̂ ); (34)

with

Ĉ1(t) := c
(
4C�

M
max

�∈(�0 ; �1)
K1=1−�
0 (�; t)

)�
=: c̃t1−; Ĉ2 := c

(
4C��0
M

)�

and c the constant of the inequality (a+ b)� ≤ c(a� + b�). Notice that we again have
the equivalency q¡1⇔ �¡1. To conclude we construct an upper bound for E that
will imply the result. We consider the problem

z�(�)= c̃t1−
∗

dz
d�
(�) + Ĉ2(�− �0)

�=(1−�)
+ in �∈ (�0; �1);

z(�1)≥E(�1; t∗);

where t∗ is still to be chosen. The function z(�) :=A(�−�0)
1=(1−�)
+ solves the problem

if we choose the positive constant A such that

A�=
c̃t1−

∗
1− �

A+ Ĉ2 and A≥E(�1; t∗)(�1 − �0)−1=(1−�): (35)

It is not di�cult to check the existence of such a constant A ful�lling Eq. (35) for t∗
small enough when we impose the additional restriction A�¿Ĉ2. By the monotonicity
of the problem we conclude that E(�; t)≤ z(�) in �∈ (�0; �1), t ∈ (0; t∗) and therefore
E(�0; t)= z(�0)= 0 in t ∈ (0; t∗), from where the assertion follows.
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3. Time localization

The property of time localization or extinction in �nite time in evolution problems
is associated to parabolic singularity and it may appear both in linear and nonlinear
problems (see, e.g. [5] and the references therein). The techniques to study this prop-
erty are similar to those used to prove the existence of free boundaries in parabolic
degenerated equations, being the method of comparison the most successful because of
the accuracy in the information obtained. As we already commented, certain kind of
problems with general coe�cients or in which the comparison principle fails to hold
are no more tractable with this technique and other more general methods, like energy
methods, have to be applied. We introduce more precisely the notion of extinction of
�nite time for problem (3) we shall deal with:

De�nition 3.1. Given a weak solution (u; �) of Eq. (3), we say that � has the extinction
in �nite time property if there exists an instant tf¿0 such that �(· ; t)= 0 a.e. in 

for all t≥ tf.

In problem (3) extinction in �nite time occurs when the heat conduction is fast, that
is related to the class of functions ’ with global Lipschitz continuous inverse (and
other additional properties), and it is a global property of solutions, i.e., a property
that involves the structure of the di�erential equation as well as the behavior of the
auxiliary conditions that solutions satisfy.
In the previous section we showed that the properties of localization in space of the

support of solutions of Eq. (3) are local and therefore independent of the auxiliary
data and of the boundedness or unboundedness of the domain. On the contrary, since
the property of localization in time is global, it could be expected that the behavior of
solutions is di�erent when the domain under consideration is bounded or unbounded.
And this is the case. For instance, for equations of the type

�t −�’(�)= 0 in RN × (0;∞) (36)

with ’(s) := |s|m sign(s), the property holds if 0¡m¡(N − 2)=N and N ≥ 3 with the
initial data in L�+1(RN )∩L1(RN ) for some suitable � depending on m [3]. How-
ever, this same equation in a bounded domain has the extinction property if 0¡m¡1.
More precisely, a su�cient condition for the occurrence of this property in solu-
tions of Eq. (3) (and therefore for Eq. (36) when u= 0) is given in the following
theorem.

Theorem 3.1. Let (u; �) be a weak solution of problem (3) with boundary data sat-
isfying ’D ≡ 0 a.e. on �T . Assume that

’′(s)≥ csm−1 with m∈ (0; 1) (37)

and c¿0. Then � has the extinction in �nite time property.
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Proof. The proof follows closely the one given in [3]. The idea is to use �p, for
a suitable p, as a test function for the second equation of problem (3). Doing this
formally we obtain

d
dt

∫


�p+1 +

∫


u · ∇�p+1 +

p+ 1
p

∫


∇’(�) · ∇�p = 0; (38)

and by Eq. (37) and the fact that the velocity �eld is free divergence we get

d
dt

∫


�p+1 +

4cp
p+ 1

∫


|∇�(p+m)=2|2≤ 0: (39)

Sobolev’s theorem implies∫


|∇�(p+m)=2|2 = ‖�(p+m)=2‖2H 1

0 (
)
≥C(q;
)‖�(p+m)=2‖2Lq(
);

with q∈ [1; 2∗], and 2∗ the critical Sobolev’s exponent of the imbedding H 1(
)⊂
L2∗(
). When q=2(p+ 1)=(p+ m) we have∫



|∇�(p+m)=2|2≥C(q;
)‖�(t)‖p+m

Lp+1(
): (40)

q∈ [1; 2∗] holds if 2(p+1)=2∗−p≤m≤p+2. Since m¡1, the upper bound is trivially
satis�ed meanwhile the lower bound holds whenever we take p≥ (2− 2∗m)=(2∗ − 2).
Notice that in the case of 
 :=RN Sobolev’s theorem is only valid for q=2∗ forcing
to take p=(2− 2∗m)=(2∗ − 2) and therefore limiting the range of m to that given in
[3]. Gathering Eqs. (39) and (40) we deduce

d
dt
‖�(t)‖p+1Lp+1(
) + C‖�(t)‖p+m

Lp+1(
)≤ 0;

with C := 4cpC(q;
)=(p+1). De�ning E(t) := ‖�(t)‖p+1Lp+1(
) and � = (p+m)=(p+1),
we formulate the above inequality into the problem

dE
dt
(t) + CE(t)� ≤ 0;

E(0) = ‖�0‖p+1Lp+1(
) :=E0≥ 0;
(41)

and, because of the crucial assumption m¡1 we have that �¡1. The solution of the
di�erential equation associated to Eq. (41) is an upper bound for any solution of the
di�erential inequality. A direct integration shows that any solution of Eq. (41) must
therefore satisfy

E(t)≤ (E1−�
0 − C(1− �)t)1=(1−�)

+ ;

and then E(t) = 0 for t≥ tf :=E1−�
0 =C(1− �), from where the assertion follows.

This formal proof can be made rigorous, as in [3], by using techniques of semigroup
theory. We �rst approximate u∈L∞(0; T ; L2�(
))∩L2(0; T ;W 1;2

� (
)) by a sequence
un ∈C∞(0; T ;C∞

� (
)) and consider the equation

�t + un · ∇�−�’(�) = 0 in QT ; (42)
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with ’(�) = 0 in �T and �(x; 0) = �0(x)∈L∞(
). We introduce the iteration v0 := �0
and vi+1 ∈L∞(
) given by

vi+1 − vi
�

+ un; i+1 · ∇vi+1 −�’(vi+1) = 0; (43)

with �¿0 and un; i+1(x) := un(x; �(i + 1)). Multiplying Eq. (43) by vpi+1, using that
viv

p
i+1≤ (1=(p+ 1))(vp+1i − pvp+1i+1 ) and integrating on 
 yields

1
p+ 1

1
�

∫


(vp+1i+1 − vp+1i ) + C

(∫


vp+1i+1

)(p+m)=(p+1)

≤ 0; (44)

where we used Sobolev’s theorem and that div un; i+1 = 0. De�ning E(t) :=
∫

 �p+1(t),

with � the semigroup solution of Eq. (42) (that does exist, see. e.g. [20]), we deduce
like in [3] that when i→∞ and �→ 0 Eq. (44) implies

−
∫ T

0
E(t) ′(t) + c

∫ T

0
E(t)� (t)≤ 0 for all  ∈C∞

0 (0; T ); (45)

with � := (p+m)=(p+ 1), from where Eq. (41) follows in the sense of distributions.
Finally, since Eqs. (44) and (45) are independent of un a density argument allows us
to conclude.
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