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Abstract. A drift-diffusion model for semiconductors with nonlinear diffusion is considered.
The model consists of two quasilinear degenerate parabolic equations for carrier densities and the
Poisson equation for electric potential. We assume Lipschitz continuous nonlinearities in the drift
and generation-recombination terms.

Existence of weak solutions is proven by using a regularization technique. Uniqueness of solutions
is proven when either the diffusion term ϕ is strictly increasing and solutions have spatial derivatives
in L1(QT ) or when ϕ is non-decreasing and a suitable entropy condition is fullfilled by the electric
potential.
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1. Introduction. In solid state physics, drift-diffusion equations are today the
most widely used model to describe semiconductor devices. Drift-diffusion models de-
scribe the flow of electrons and holes in the conduction and valence band, respectively,
of semiconductor materials which are influenced by an electric field. Mathematically,
the problem is formulated in terms of a system of parabolic equations for the electron
and hole densities u, v, and the Poisson equation for the electric potential w which
together with physically motivated auxiliary conditions form the problem

ut − div (∇ϕ(u)− b(u)∇w) = F (u, v)
vt − div (∇ϕ(v) + b(v)∇w) = F (u, v)
−∆w = v − u+ C

 in QT := Ω× (0, T ),

∇ϕ(u) · ν = 0, ∇ϕ(v) · ν = 0, ∇w · ν = 0, on ΣN := ΓN × (0, T ),
ϕ(u) = ϕ(uD), ϕ(v) = ϕ(vD), w = wD, on ΣD := ΓD × (0, T ),
u(·, 0) = u0, v(·, 0) = v0, in Ω.

(1.1)

with Ω ⊂ IRN , 1 ≤ N ≤ 3, the bounded domain occupied by the semiconductor
crystal. Here, function C denotes the doping profile (fixed charged background ions)
characterizing the semiconductor under consideration, ϕ the pressure function, b(s)/s
the mobility of the particles, and F the recombination-generation rate. The boundary
∂Ω splits into two disjoint subsets ΓD and ΓN . Carrier densities and potential are
fixed at the Ohmic contacts, ΓD, whereas their fluxes are null on ΓN , the union of
insulating boundary segments.

The standard drift-diffusion model corresponds to linear functions ϕ and b, and
F (u, v) = q(u, v)(u2

i − uv), with q(u, v) a positive function and ui ≡ ui(x) > 0 the
so-called intrinsic density. The standard model can be derived from Boltzmann’s
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equation once assumed that the semiconductor device is in the low injection regime,
i.e. for small absolute values of the applied voltage. In [24] it is shown that in the high
injection regime diffusion terms are no longer linear. A useful choice for ϕ is then
ϕ(s) = sα for α = 5

3 and s ≥ 0. With this pressure function the parabolic equations
in (1.1) become of degenerate type and existence of solutions does not follow from
standard theory. In this paper we present results including both the low and high
injection cases.

Function ϕ may be interpreted in the language of gas dynamics. Assuming that
particles behave, thermodynamically speaking, as an ideal gas satisfying the law ϕ =
uθ , with θ the particle temperature, we obtain in the isothermal case a linear pressure
term. However, in the isentropic case [10] temperature depends on concentrations as
θ(u) = u2/3 and therefore ϕ(u) = u5/3.

The standard or low injection model has been mathematically and numerically
investigated in many papers, see [33], [34] and references therein. Existence and
uniqueness of weak solutions was shown.

The isentropic or high injection model for linear b and monotonic F , including the
non-Lipschitz continuous case, has been analyzed in [22]-[25] where existence of weak
solutions was proven. However, there is a lacking in results concerning the uniqueness
of solutions when the problem actually degenerates. Besides, there are no results for
general mobility functions.

As in the question of existence, the main difficulty to prove uniqueness of solutions
relies in the simultaneous presence of a transport term and a nonlinear degenerate
diffusion term. This kind of difficulty has already received the attention of many
authors and has been solved for scalar equations of the type

ut − div (∇ϕ(u) + b(u)e) = F (u),(1.2)

with e a prescribed vector field. The most successful technique developed to prove
uniqueness of solutions of (1.2) is based on the use of the test function sign+(u1−u2)
in the weak formulation of (1.2), being u1 and u2 two, a priori, possible solutions of
(1.2) in some sense. The core of the problem is to show that solutions have enough
regularity to define the sign function as an admissible test function. This justification
has been carried out by different means. One of them, introduced by Kruzhkov in
[28] to prove an L1 contraction property of entropy solutions of hyperbolic equations,
is based in doubling the time variable and performing a passing to the limit in which
these variables collapse. This technique has been applied to parabolic scalar equations,
see, e.g., [29], [9], [18], [19], [35], and also to certain systems of parabolic equations
coupled through reaction terms, but not through transport terms, see [36]. Notice
that when applying succesfully this technique, uniqueness is always obtained as a
by-product of a comparison principle. However, systems coupled through transport
terms does not exhibit, in general, a comparison property. Therefore, other means
have to be applied in order to give criteria to ensure uniqueness of solutions.

The outline of the paper is as follows. In Section 2 we present the assumptions on
the data and the notion of weak solution. Then we prove Theorem 2.1 of existence of
weak solutions by means of a regularization technique which involves the consideration
of a non-degenerate problem for which existence of solutions is proven by a fixed
point argument, see Theorem 2.2. In Section 3 we study the uniqueness of solutions
and present three results, see Theorems 3.1, 3.3 and 3.4. The first result covers the
situation in which diffusion dominates both transport and reaction. The second result
only needs ϕ non-decreasing, but an entropy type condition must hold for the electric
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field. Finally, the third result uses the assumption ∇u,∇v ∈ L1(QT ). We show that
this regularity is achieved, at least, for data smooth enough and in space dimension
one.

2. Existence of solutions. In this section we prove existence of weak solutions
of problem (1.1). The main result is Theorem 2.1 where we prove existence in the
most interesting case: when the parabolic equations of (1.1) are of degenerate type.
As we already mentioned, the transport terms div(b(u)∇w) and div(b(v)∇w) are the
main difficulty in the proof due to the fact that natural a priori estimates of problem
(1.1) are obtained in terms of ϕ(u) (with ϕ′(0) = 0) and their spatial derivatives
meanwhile transport terms contain b(u) and b(v) which, in general, are not bounded
by the former.

This difficulty leads us to consider an auxiliar non-degenerate problem for which
we obtain existence of weak solutions, see Theorem 2.2, and which allows us, by means
of techniques of regularization and passing to the limit, to prove the result for the
general formulation.

Before stating the first result we introduce a set of assumptions on the data as
well as the definition of weak solution of (1.1).
Assumptions on the data.
H1. Ω ⊂ IRN , N ≤ 3, is an open, bounded and connected set. The boundary of Ω,
∂Ω, is of class C1,1 and it splits in two disjoint components ΓD, with positive measure,
and ΓN , open in ∂Ω. We assume that for any function ψ satisfying ∆ψ ∈ Lq(Ω),

ψ = 0 on ΓD,
∇ψ · ν = 0 on ΓN ,

(2.1)

we have the regularity ψ ∈ W 2,q(Ω), for q ∈ [1,∞). Finally, we suppose T > 0 is
arbitrarily chosen.
Definition. A function f : IRn → IR is sublinear if there exists a positive constant
c such that

|f(s1, ..., sn)| ≤ c

(
1 +

n∑
i=1

|si|

)
, ∀ (s1, ..., sn) ∈ IRn.

H2. We assume

ϕ ∈ C([0,∞)) ∩ C1((0,∞)), ϕ′(0) = 0, ϕ non-decreasing,

F ∈ C0,1
loc ([0,∞)2 ; IR),(2.2)

b ∈ C1([0,∞)) is sublinear and satisfies

|b′(s)| ≤ c (1 + ϕ′(s)) , for all s ∈ [0,∞) ,(2.3)

and for some constant c > 0.
H3. The auxiliary data satisfy

u0, v0 ∈ L∞(Ω), u0 ≥ 0, v0 ≥ 0 in Ω,
ϕ(uD), ϕ(vD) ∈ L∞(0, T ;H1(Ω)) ∩ L∞(QT ) ∩H1(0, T ;L2(Ω)),
wD ∈ L∞(0, T ;W 2,∞(Ω)).
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Although physically C = C(x), we shall consider the more general case C = C(x, t)
under the assumption C ∈ L∞(QT ).
H4. If both F and b are nonlinear then we assume ϕ−1 ∈ C0,α([0,∞)), for some
α ∈ (0, 1).

We remark that the property assumed for problem (2.1) actually represents a
condition on the contact angles of the boundary segments ΓD and ΓN , see, e.g. [32].
In particular, if both components of the boundary are open and closed, so they do not
meet, then the assumption is a well known result, see, e.g. [41]. As stated in (2.2),
in this article we shall consider a Lipschitz continuous recombination-generation term
F . The case of a monotone F was already treated in [24] obtaining similar results on
the existence of weak solutions under somehow stronger conditions on ϕ and b. As
shown in [12], a monotone non-Lipschitz continuous recombination-generation term
may imply the formation of dead cores (sets where the components u, v of the solution
vanish even when the initial data are strictly positive) and play an important role in
applications through the phenomenon known as vacuum solutions, see [12].

We consider a notion of weak solution similar to that introduced in [1]:
Definition of weak solution. Set

V :=
{
z ∈ H1(Ω) : z = 0 on ΓD

}
,

and assume H1-H3. Then (u, v, w) is a weak solution of (1.1) if the following prop-
erties hold:
(i) u, v ∈ L∞(QT ), ϕ(u) ∈ ϕ(uD) + L2(0, T ;V), ϕ(v) ∈ ϕ(vD) + L2(0, T ;V) and
w ∈ wD + L2(0, T ;V) ∩ L∞(QT ).
(ii) ∫ T

0

〈ut, ζ〉+
∫ T

0

∫
Ω

(∇ϕ(u)− b(u)∇w) · ∇ζ =
∫ T

0

∫
Ω

F (u, v)ζ,∫ T

0

〈vt, ζ〉+
∫ T

0

∫
Ω

(∇ϕ(v)− b(v)∇w) · ∇ζ =
∫ T

0

∫
Ω

F (u, v)ζ,∫ T

0

∫
Ω

∇w · ∇ζ =
∫ T

0

∫
Ω

(v − u− C) ζ

(2.4)

for any test function ζ ∈ L2(0, T ;V) (notice that due to (2.2) F (u, v) ∈ L2(QT )).
(iii) ut, vt ∈ L2(0, T ;V ′) and the initial data are verified in the following sense:∫ T

0

〈ut, ζ〉+
∫ T

0

∫
Ω

(u− u0) ζt = 0,∫ T

0

〈vt, ζ〉+
∫ T

0

∫
Ω

(v − v0) ζt = 0,
(2.5)

for any test function ζ ∈ L2(0, T ;V) ∩W 1,1(0, T ;L2(Ω)) with ζ(T ) = 0.
Next we state the main result of this section:

Theorem 2.1. Assume H1-H4 and suppose that the auxiliary data satisfy

k ≥ u0, v0 ≥ m ≥ 0 in Ω and
ϕ(keλ0t) ≥ ϕ(uD), ϕ(vD) ≥ ϕ(me−λ1t) ≥ 0 in ΣD,

(2.6)

for some non-negative constants k,m, λ0, λ1. Then there exists λ ≥ 0, independent of
ϕ, such that problem (1.1) has a weak solution verifying

keλt ≥ u(·, t), v(·, t) ≥ me−λt ≥ 0 in Ω for a.e. t ∈ (0, T ),(2.7)
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u, v ∈ C([0, T ] ;V ′),
w ∈ L∞(0, T ;W 2,s(Ω)) for all s ∈ [1,∞).

(2.8)

Moreover, if ϕ ∈ C1([0,∞)) then√
ϕ′(u)∇u,

√
ϕ′(v)∇v ∈ L2(QT ).

The proof is based on the following previous result for the non-degenerate prob-
lem:

Theorem 2.2. Assume H1-H3 and let ϕ be sublinear and strictly increasing.
Suppose ϕ−1 Lipschitz continuous, F sublinear and auxiliary data satisfaying (2.6)
for some non-negative constants k,m, λ0, λ1. Then there exists λ ≥ 0, independent of
ϕ, such that problem (1.1) has a weak solution verifying (2.7), (2.8) and

u, v ∈ C([0, T ] ;L1(Ω)).

Proof of Theorem 2.2 is based on a fixed point technique. To define the fixed point
operator in Lp spaces we need, due to the lack of regularity of the term ∇b(u) ·∇w, to
uncouple problem (1.1) and to consider two auxiliary problems, see (2.13) and (2.14).
First we apply a fixed point argument to obtain the existence of solutions, (u, v), of
(2.13) and we show that this solution satisfies (2.7). Then, we solve problem (2.14)
and use again a fixed point argument to couple the whole system, obtaining in this
way a weak solution of (1.1) with the property (2.7). The additional regularity is
obtained by applying general results on Lp spaces, see [39].
Proof of Theorem 2.2
We start introducing some notation and an elementary consequence of Sobolev’s the-
orem: we shall write ‖·‖Lp := ‖·‖Lp(QT ) , ‖·‖Lp(Lq) := ‖·‖Lp(0,T ;Lq(Ω)) and

‖|f |‖ := ‖f‖L∞(L2) + ‖f‖L2(0,T ;V) .

Let 2∗ be the critical Sobolev exponent given by ∞, s ∈ [1,∞) or 6 if N = 1, 2, 3
respectively. Then we have that for all f ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;V) there exists
a positive constant c ≡ c(Ω) such that

‖f‖Lr ≤ c ‖|f |‖ , with 1 ≤ r < 4(1− 1
2∗

).(2.9)

Finally, c shall denote a positive constant independent of the relevant quantities of
the problem, like lims→0 ϕ

′(s) or infΩ u0, but which shall vary along the proof.
Step 1. Let T > 0, 0 < ρ < cρ, with cρ a positive constant to be fixed, and fix r such
that

3 < r < 4(1− 1
2∗

).(2.10)

Let p be an exponent satisfying the following restriction:

r

r − 2
< 3 < p < r,(2.11)

with r given by (2.10). Consider the set K ⊂ Lp(0, T ;W 2,p(Ω))∩L2(0, T ;V) given by

h ∈ K ⇔ ∆h ∈ L∞(QT ) and ‖∆h‖Lp + ‖∇h‖L2 ≤ ρ.(2.12)
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Clearly, K is convex. Moreover, since due to the choice of p we have 2 ≤ Np
N−p ,

it follows that ‖∆w‖Lp + ‖∇w‖L2 is a norm in Lp(0, T ;W 2,p(Ω)) ∩ L2(0, T ;V) and
therefore K is weakly compact in this space. These properties of K will be used later
to apply a fixed point argument. Given h ∈ K we introduce problems

ut − div (∇ϕ(u)− b(u)∇h) = F (u, v) in QT ,

vt − div (∇ϕ(v) + b(v)∇h) = F (u, v) in QT ,

∇ϕ(u) · ν = 0, ∇ϕ(v) · ν = 0, on ΣN ,

ϕ(u) = ϕ(uD), ϕ(v) = ϕ(vD), on ΣD,

u(·, 0) = u0, v(·, 0) = v0, in Ω

(2.13)

and 
−∆w = v − u− C in QT ,

w = wD on ΣD,

∇w · ν = 0 on ΣN ,

(2.14)

with similar notions of weak solutions as for problem (1.1).
Step 2. Definition of the fixed point operator for (2.13). Consider problems

ut −∆ϕ(u) = f in QT ,
ϕ(u) = ϕ(uD) on ΓD,
∇ϕ(u) · ν = 0 on ΓN,

u(·, 0) = u0 in Ω,

(2.15)

and 
vt −∆ϕ(v) = g in QT ,
ϕ(v) = ϕ(vD) on ΓD,
∇ϕ(v) · ν = 0 on ΓN,

v(·, 0) = v0 in Ω,

(2.16)

with f, g ∈ L2(QT ). Since these problems are uniformly parabolic we deduce, see
e.g. [30], the existence of a unique weak solution of (2.15) and (2.16) with the
regularity u, v ∈ Lr(QT ) ∩ C([0, T ];L1(Ω)), ϕ(u) ∈ ϕ(uD) + L2(0, T ;V), ϕ(v) ∈
ϕ(vD) + L2(0, T ;V), with r given by (2.10).

We introduce the set

K∗ :=
{
(f, g) ∈ L2(QT∗)× L2(QT∗) : ‖f‖L2 , ‖g‖L2 < R

}
, 0 < T ∗ ≤ T,

which is convex and weakly compact in L2(QT∗) × L2(QT∗), and the mapping Q :
K∗ → L2(QT∗)× L2(QT∗) given by

Q(f, g) := (F (u, v)− div(b(u)∇h), F (u, v) + div(b(v)∇h)) ,

with u, v solutions of (2.15), (2.16). It can be shown that, as a consequence of (2.3)
and the sublinearity of F and b, the operator Q is well defined. Notice also that a
fixed point of Q is a weak local solution of (2.13). To prove the existence of such a
point we search for R and T ∗ such that
(i) Q(K∗) ⊂ K∗, and
(ii) Q is weakly-weakly sequentially continuous in L2(QT∗)× L2(QT∗),
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which will allow us to apply the fixed point theorem of [4] to deduce the result.
Since problems (2.15) and (2.16) share the same structure we shall only work out the
properties satisfied by solutions of (2.15).
Step 3. A priori estimates for problems (2.15) and (2.16). Proof of Q(K∗) ⊂ K∗.
This last condition reads as

Iu := ‖F (u, v)−∇b(u) · ∇h− b(u)∆h‖L2 ≤ R.(2.17)

Taking ζ = ϕ(u)− ϕ(uD) as a test function for problem (2.15) we get∫
Ω

Φ(u(t)) +
∫

QT

|∇ϕ(u)|2 =
∫

Ω

Φ(u0)−
∫

QT

(u− u0)ϕ(uD)t +
∫

Ω

(u(t)− u0)ϕ(uD)

+
∫

QT

∇ϕ(u) · ∇ϕ(uD) +
∫

QT

f (ϕ(u)− ϕ(uD)) ,(2.18)

with Φ(s) :=
∫ s

0
ϕ(σ)dσ. Using ϕ−1 Lipschitz continuous and standard inequalities

we get from (2.18)

cϕ

(
‖u‖2L∞(L2) + ‖∇u‖2L2

)
≤ ‖Φ(u)‖L∞(L1) + ‖∇ϕ(u)‖2L2 ≤ Λ + ‖f‖2L2 ,(2.19)

with cϕ,Λ constants depending on the Lipschitz continuity constant of ϕ−1 and on
the auxiliary data, respectively. Using (2.9) and f ∈ K∗ we deduce

‖u‖Lr ≤ c ‖|u|‖ ≤ c (Λ +R) .(2.20)

Since r > 2 we have

‖u‖L2 ≤ A0(T ∗) ‖u‖Lr ≤ cA0(T ∗) (Λ +R) ,(2.21)

with A0(T ∗) := |QT∗ |
r−2
2r . Finally, since ϕ is sublinear we deduce the existence of a

continuous non-decreasing function η : (0,∞) → (0,∞) such that

‖∇ϕ(u)‖2L2 ≤ Λ + η(T ∗),(2.22)

with η(T ∗) → 0 as T ∗ → 0, see [16]. We are now ready to estimate the terms in
(2.17): F sublinear and (2.21) imply

‖F (u, v)‖L2 ≤ cA1(T ∗),(2.23)

with A1(T ∗) := A0(T ∗) (Λ + 2R) + |QT∗ |1/2. From (2.3), (2.22) and the regularity of
h we get

‖∇b(u) · ∇h‖L2 ≤ c ‖∇ϕ(u)‖L2 ‖∇h‖L∞ ≤ c (Λ + η(T ∗)) ‖∇h‖L∞ ,(2.24)

and since b is sublinear

‖b(u)∆h‖L2 ≤ ‖b(u)‖L2 ‖∆h‖L∞ ≤ cA2(T ∗) ‖∆h‖L∞ ,(2.25)

with A2(T ∗) := |QT∗ |
1
2 + |QT∗ |

r−2
2r (Λ +R). Gathering (2.23), (2.24) and (2.25) we

obtain

Iu ≤ cA1(T ∗) + c (Λ + η(T ∗)) ‖∇h‖L∞ + cA2(T ∗) ‖∆h‖L∞ ,
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and since we want Iu ≤ R, it is sufficient to make

cA1(T ∗) + c (Λ + η(T ∗)) ‖∇h‖L∞ + cA2(T ∗) ‖∆h‖L∞ ≤ R.(2.26)

Since A1, A2, η are non-decreasing continuous functions in IR+ , we have that, fixing
R such that

R > cA1(T ) + c (Λ(u0, ϕ(uD)) + η(T )) ‖∇h‖L∞(QT ) + cA2(T ) ‖∆h‖L∞(QT ) ,

inequality (2.26) is satisfied for all T ∗ ∈ [0, T ]. An identical argument allows us to get
Iv ≤ R. Therefore, we have proven the existence of R and T ∗, which can be taken as
T ∗ = T , such that Q(K∗) ⊂ K∗.

Step 4. Continuity of Q. Consider any sequence (fj , gj) ⊂ K∗ → (f, g) weakly in
L2(QT )× L2(QT ) and let us show

div(b(uj)∇h) → div(b(u)∇h) weakly in L2(QT ),
F (uj , vj) → F (u, v) weakly in L2(QT ),

with uj , vj , u, v solutions of (2.15), (2.16) corresponding to fj , gj , f, g, respec-
tively. By (2.20) we have ‖uj‖Lr ≤ c ‖|uj |‖ ≤ const., and from (2.15) we also deduce
‖ujt‖L2(0,T ;V′) ≤ const. Passing to a subsequence, if necessary, we obtain

uj → u weakly in Lr(QT ),
uj → u strongly in L2(QT ) and a.e. in QT ,
∇uj → ∇u weakly in L2(QT ),
ujt → ut weakly in L2(0, T ;V ′).

Since F is sublinear and uj , vj are bounded in Lr(QT ) it follows ‖F (uj , vj)‖Lr ≤
const. and then F (uj , vj) → F̃ in Lr(QT ) for some F̃ ∈ Lr(QT ). Continuity of F
together with pointwise convergence of uj , vj imply that F (uj , vj) → F (u, v) a.e. in
QT∗ , and therefore F̃ ≡ F (u, v). Hence, F (uj , vj) → F (u, v) strongly in Lr(QT ). A
similar argument shows that b(uj) → b(u) strongly in Lr(QT ). Finally, since r > 2 and
∇h ∈ L∞(QT ) we deduce div(b(uj)∇h) → div(b(u)∇h) weakly in L2(QT ). Hence, Q
is weakly-weakly sequentially continuous. By the fixed point theorem [4] we deduce
the existence of a weak solution (u, v) of (2.13) with the same regularity obtained for
the solutions of (2.15) and (2.16) when f, g ∈ L2(QT ) is assumed. Notice that the
solution found is global in time.
Step 5. Lower bound and L∞ regularity of u, v. We introduce in problem (2.13) the
change of unknowns U := ue−βt and V := ve−βt with β > 0. Then (U, V ) satisfies

Ut + βU − e−βtdiv
(
∇ϕ(eβtU)− b(eβtU)∇h

)
= F̂ in QT ,

Vt + βV − e−βtdiv
(
∇ϕ(eβtV ) + b(eβtV )∇h

)
= F̂ in QT ,

∇ϕ(eβtU) · ν = 0, ∇ϕ(eβtV ) · ν = 0, on ΣN ,

ϕ(eβtU) = ϕ(uD), ϕ(eβtV ) = ϕ(vD), on ΣD,

U(·, 0) = u0, V (·, 0) = v0, in Ω,

with F̂ := e−βtF (eβtU, eβtV ). To obtain the lower bound we compare U and V with
z(t) := me−(λ+β)t, for a suitable λ > λ1. By assumption, uD ≥ me−λ1t ≥ me−λt and
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then we can take Zu := min {U − z, 0} as test function obtaining∫
Ω

Zu (U − z)t −λ
∫

Ω

zZu + β

∫
Ω

Z2
u + e−βt

∫
Ω

∇ϕ(eβtU) · ∇Zu

= −e−βt

∫
Ω

Zu

[
∇b(eβtU) · ∇h+ b(eβtU)∆h

]
+e−βt

∫
Ω

ZuF (eβtU, eβtV ).

(2.27)

Since b is Lipschitz continuous (with constant Mb) by estimating∫
Ω

Zub
′(eβtU)∇Zu · ∇h ≤Mb

∫
Ω

|∇Zu|2 +Mb ‖∇h‖2L∞
∫

Ω

Z2
u

and ∫
Ω

Zub(eβtU)∆h =
∫

Ω

Zu

(
b(eβtU)− b(eβtz) + b(eβtz)

)
∆h

≤ ceβtMb ‖∆h‖L∞

(∫
Ω

Z2
u +

∫
Ω

z |Zu|
)

we obtain from (2.27)

d

dt

∫
Ω

Z2
u + λ′

∫
Ω

z |Zu|+ β′
∫

Ω

Z2
u ≤ e−βt

∫
Ω

ZuF (eβtU, eβtV ),(2.28)

with λ′ := λ − cMb ‖∆h‖L∞ , β′ := β −Mb ‖∇h‖2L∞ − cMb ‖∆h‖L∞ , where we used
−λZu = λ |Zu| . Since F is Lipschitz continuous we can use a similar argument to
show that

ZuF (eβtU, eβtV ) ≤ cZu

(
Zu + Zv + F (eβtz, eβtz)

)
,(2.29)

with Zv := min {V − z, 0}. Adding to (2.28) the similar estimate for V we get in the
right hand side of the resulting inequality the term

e−βt

∫
Ω

F (eβtU, eβtV ) (Zu + Zv) .(2.30)

Using (2.29) and the similar estimate for ZvF (eβtU, eβtV ) (2.30) may be estimated
as

e−βt

∫
Ω

F (eβtU, eβtV ) (Zu + Zv) ≤ c

∫
Ω

(
Z2

u + Z2
v + z |Zu|+ z |Zv|

)
.

Then, for β ≥Mb ‖∇h‖2L∞ + cMb ‖∆h‖L∞ + c and λ ≥ cMb ‖∆h‖L∞ + c we obtain

d

dt

∫
Ω

(
Z2

u + Z2
v

)
≤ 0,

from where the result follows. Notice that neither β nor λ depend on ϕ. Finally, the
estimate u, v ∈ L∞(QT ) is obtained using a similar technique and we omit therefore
the proof, see [20] for details.
Step 6. End of proof of existence of local solutions of (1.1). Let T̃ ∈ (0, T ] to be
fixed, K̃ defined by (2.12) with T replaced by T̃ , h ∈ K̃ and u, v be solutions of
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(2.15), (2.16) corresponding to h. Consider problem (2.14) in QT̃ . Since u, v, C ∈
L∞(QT̃ ) (2.14) has a unique solution w ∈ L∞(0, T̃ ,W 2,s(Ω))∩L2(0, T ;V) with ∆w ∈
L∞(QT̃ ). In particular, w ∈ Lp(0, T̃ ,W 2,p(Ω)) ∩ L2(0, T ;V). We define P : K̃ →
Lp(0, T̃ ,W 2,p(Ω))∩L2(0, T ;V) by P (h) = w, being w such solution. Notice that if w
is a fixed point for P then (u, v, w) is a local solution of (1.1). To prove the existence
of a fixed point we use the same technique than before, which consists on showing
(i) P (K̃) ⊂ K̃, i.e., ∆w ∈ L∞(QT ), and ‖∆w‖Lp + ‖∇w‖L2 < ρ and
(ii) P is weakly-weakly sequentially continuous in Lp(0, T̃ ,W 2,p(Ω)) ∩ L2(0, T ;V).
From (2.14):

‖∆w‖Ls ≤ ‖u‖Ls + ‖v‖Ls + ‖C‖Ls , for all s ∈ [1,∞].(2.31)

Multiplying the equation in (2.14) by w − wD and using Hölder and Poincaré’s in-
equalities we obtain

‖∇w‖L2 ≤ c (‖u‖L2 + ‖v‖L2 + ‖C‖L2 + ‖wD‖L2 + ‖∇wD‖L2) .(2.32)

From (2.31), (2.32) and p > 2 we get

‖∆w‖Lp + ‖∇w‖L2 ≤ c (‖u‖Lp + ‖v‖Lp + ‖C‖Lp + ‖wD‖L2 + ‖∇wD‖L2) .(2.33)

By (2.11) we have p < r and therefore

‖u‖Lp ≤ A(T̃ ) ‖u‖Lr ≤ cA(T̃ ) ‖|u|‖ ,(2.34)

with A(T̃ ) := |QT̃ |
rp

r−p . Assume that the estimate

‖|u|‖ ≤ G(ρ, T̃ )(2.35)

holds, with G continuous, bounded as a function of T̃ and increasing with respect to
ρ in an interval (0, cρ), with cρ > 0. We shall prove this estimate later on, see Step
7. Then, from (2.34) ‖u‖Lp ≤ cA(T̃ )G(ρ, T̃ ). A similar estimate holds for v. Since
C ∈ L∞(QT̃ ) and wD ∈ L∞(0, T ;H1(Ω)) we have ‖C‖Lp + ‖wD‖L2 + ‖∇wD‖L2 =
B0(T̃ ) for a non-decreasing continuous function B0 satisfying B0(0) = 0. From (2.33)
we deduce

‖∆w‖Lp + ‖∇w‖L2 ≤ A(T̃ )G(ρ, T̃ ) +B0(T̃ ),

and since we want to make ‖∆w‖Lp + ‖∇w‖L2 ≤ ρ, it suffices to find T̃ > 0 such that

A(T̃ )G(ρ, T̃ ) +B0(T̃ ) = ρ.

SinceG is bounded as a function of ρ and A(T̃ ), B0(T̃ ) ↓ 0 as T̃ ↓ 0 it is straightforward
to see that such T̃ exists, so (i) is satisfied.

To prove the continuity we consider a sequence hn ∈ K̃ such that hn → h
weakly in Lp(0, T̃ ;W 2,p(Ω)) ∩ L2(0, T ;V) and we show that wn → w weakly in
Lp(0, T̃ ;W 2,p(Ω))∩L2(0, T ;V), with wn, w solutions of (2.14) corresponding to hn, h.
Since hn ∈ K̃, ‖∆hn‖Lp+‖∇w‖L2 ≤ ρ < cρ, and then from (2.35) we get ‖|un|‖ , ‖|vn|‖
≤ G(cρ, T̃ ) ≤ const. Using (2.9) we also obtain ‖un‖Lr , ‖vn‖Lr ≤ const. Then un → u
weakly in Lr(QT̃ ), and similarly for vn. Since p < r we find ∆wn → ∆w weakly in
Lp(QT̃ ). From r > 2 we also have wn → w weakly in L2(0, T ;V). We deduce from
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the fixed point theorem [4] that P has a fixed point, (u, v, w), which is a weak local
solution of (1.1) in QT̃ with the regularity inherited from problems (2.13) and (2.14).
Moreover, since the estimates do not blow up when T̃ increases, see Step 7, we may
use a standard continuation argument to deduce that the solution is global in time.
Step 7. Estimating ‖|u|‖2 + ‖|v|‖2 of problem (2.13). Taking ϕ(u) − ϕ(uD) as test
function for (2.13) and reasoning as in (2.18) with f := F (u, v)− div(b(u)∇h) we get

‖Φ(u)‖L∞(L1) + ‖∇ϕ(u)‖2L2 ≤ Λ +
∫

QT̃

F (u, v) (ϕ(u)− ϕ(uD))(2.36)

+
∫

QT̃

b(u)∇h · ∇ (ϕ(u)− ϕ(uD)) ,

with Λ depending only on the auxiliary data. Since F is sublinear we again obtain
(2.23). Defining B(s) := b(s)ϕ(s) −

∫ s

0
b′(σ)ϕ(σ)dσ and using the sublinearity of ϕ

and b and (2.3) we get |B(s)| ≤ c(1 + |s|+ s2). Then∫
QT̃

b(u)∇h · (∇ϕ(u)−∇ϕ(uD)) = −
∫

QT̃

(B(u)−B(uD))∆h

−
∫

QT̃

(b(u)− b(uD))∇h · ∇ϕ(uD).

The first term is estimated as∫
QT̃

(B(u)−B(uD))∆h ≤ ‖B(u)−B(uD)‖Lp′ ‖∆h‖Lp

≤ c
(
|QT̃ |

1/p′ + ‖u‖2L2p′ + ‖uD‖2L2p′

)
‖∆h‖Lp .

Since h ∈ K̃, and 2p′ ≤ r due to the choice of p, see (2.11), we deduce ‖u‖L2p′ ≤
c ‖u‖Lr ≤ c ‖|u|‖ and therefore∫

QT̃

(B(u)−B(uD))∆h ≤ c
(
|QT̃ |

1/p′ + ‖uD‖2L2p′ + ‖|u|‖2
)
ρ.(2.37)

The second term is estimated as follows:∫
QT̃

(b(u)− b(uD))∇h · ∇ϕ(uD) ≤ ‖b(u)− b(uD)‖Lr(L2) ‖∇h‖Lp(L∞) ‖∇ϕ(uD)‖L2 .

Since p > N we have ‖∇h‖Lp(L∞) ≤ c ‖∆h‖L∞ . Using b sublinear, r > 2 and (2.10)-
(2.11) we obtain∫

QT̃

(b(u)− b(uD))∇h · ∇ϕ(uD) ≤ c ‖∇ϕ(uD)‖L2(2.38)

×
(
|QT̃ |

1/p′ + ‖uD‖Lr + ‖|u|‖
)
ρ.

We may obtain similar estimates from v−equation. Using ϕ−1 Lipschitz continuous
as in (2.19) we get from (2.36)-(2.38)

‖|u|‖2 + ‖|v|‖2 ≤ Λ1(ρ) + c3

(
‖|u|‖2 + ‖|v|‖2

) (
ρ+ ρ2

)
,
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with Λ1(ρ) := c1+c2ρ, and c1, c2, c3 depending on the norms of the auxiliary conditions
and on T̃ β , for some β > 0. Hence, defining G(ρ, T̃ ) := Λ1(ρ)√

1−c3(ρ+ρ2)
with ρ ∈ (0, cρ)

and cρ := min
{
1, 1

2c

}
we finish.

Now we can afford the
Proof of Theorem 2.1. The proof uses a regularization technique and Theorem 2.2.
In view of the constructive method that we shall use in one of the uniqueness results,
we consider two different regularizations of problem (1.1) depending on whether ϕ is
strictly increasing or only non-decreasing. In the first case we consider the following
perturbation of the auxiliary data ϕ(uDε) = ϕ(uD) + ϕ(εe−λ1t) on ΣD,

ϕ(vDε) = ϕ(vD) + ϕ(εe−λ1t) on ΣD,
u0ε = u0 + ε, v0ε = v0 + ε in Ω,

(2.39)

for some λ1 > 0, remaining the other auxiliary conditions the same, and we consider

ϕε(s) :=

 ϕ(εe−λT ) exp
{
µ(s− εe−λT )

}
si s < εe−λT ,

ϕ(s) si s ∈ [εe−λT , k],
ϕ′(k)s+ ϕ(k)− kϕ′(k) si s ≥ k,

(2.40)

with k an L∞ constant bound of the auxiliary data and µ := ϕ′(εe−λT )
ϕ(εe−λT )

. We have
ϕε ∈ C1([0,∞)), ϕε(0) > 0 and ϕ′ε > 0. It is straightforward to check that the
sequence of problems (1.1)ε corresponding to (2.39) and (2.40) satisfy the conditions
of Theorem 2.2. Finally, notice that ϕ and ϕε coincides in the range of uε, vε.

In the case in which ϕ is non-decreasing we consider, for each ε > 0, the regular-
ization given by ϕε(s) := ϕ(s) + εs and leave the auxiliary conditions unchanged. It
is easy to see that the requirements of Theorem 2.2 are satisfied, obtaining therefore
the existence of a sequence of solutions of (1.1)ε with the regularity and properties
stated in that theorem.
A priori estimates. In both cases we proceed in a similar way: we use ϕε(uε)−ϕ(uDε)
as a test function for the first equation in (1.1) and as in step 7 of the proof of Theorem
2.2, we obtain

sup
0≤t≤T

∫
Ω

Φ(uε(t)) +
∫

QT

|∇ϕ(uε)|2 + ε

∫
QT

|∇uε|2 ≤ C,(2.41)

with C independent of ε (because the L∞ bounds of uε, vε are independent of ϕε).
Using now ξ ∈ L2(0, T ;V) as a test function we get∣∣∣∣∣

∫ T

0

〈uεt, ξ〉V′,V

∣∣∣∣∣ ≤ ‖∇ϕε(uε)‖L2 ‖∇ξ‖L2 + ‖b(uε)‖L∞ ‖∇wε‖L2 ‖∇ξ‖L2

+ ‖F (uε, vε)‖L2 ‖ξ‖L2 ,

from where we deduce

‖uεt‖L2(0,T ;V′) ≤ c,(2.42)

with c independent of ε. A similar estimate holds for vε. From the third equation of
(1.1) we get

‖∆wε‖L∞(QT ) ≤ ‖vε − uε + C‖L∞(QT ) ≤ const.(2.43)
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Therefore, using estimates (2.41)-(2.43) and standard compactness results we can
extract subsequences (labeled again by ε) such that

uε→u weakly ∗ in L∞(QT ),
ϕ(uε) → ξ weakly in ϕ(uD) + L2(0, T ;V),
uεt → ut weakly in L2(0, T ;V ′),
ε1/2uε → 0 weakly in L2(0, T ;V),
wε→w weakly ∗ − weakly in L∞(0, T ;W 2,s(Ω)), for all s <∞.

(2.44)

From the compact imbedding L∞(Ω) ⊂ H−1(Ω) and Corollary 4 (p. 85) of [39] we
obtain

uε → u in C([0, T ],V ′).

Since ϕ is continuous and non-decreasing we have that −∆ϕ(·) is a maximal monotone
graph in L2(0, T ;V ′) and, therefore, it is strongly-weakly closed in such space (see,
e.g. [8]), from where we deduce

ξ = ϕ(u).(2.45)

Assume, now, H4. In order to pass to the limit on b(uε) and F (uε, vε) we shall
prove that uε → u strongly in Lq(QT ) for all q <∞. To do this we use a modification
of the arguments given in [17], [31] or [19]. Defining the space

H = {u ∈ L2/α(0, T ;Wα,2/α(Ω)), ut ∈ L2(0, T ;V ′)}.

By (2.41) and (2.42) we have that uε is uniformly bounded in H. Then, from the
compact imbedding H ⊂ L2/α(QT ) we deduce the existence of a subsequence of uε

such that

uε → u strongly in L2/α(QT ) and a.e. in QT .

This fact together with the weak ∗ convergence of uε to u in L∞(QT ) implies that
uε → u strongly in Lq(QT ) for all q <∞. And similarly for v.
Identification of the limit. Let ζ ∈ L2(0, T ;V) be a test function. By (2.44) and (2.45)
it is clear that∫ T

0

〈uεt, ζ〉 →
∫ T

0

〈ut, ζ〉 and
∫ T

0

∫
Ω

∇ϕ(uε) · ∇ζ →
∫ T

0

∫
Ω

∇ϕ(u) · ∇ζ.

From the pointwise convergence of uε, vε to u, v in QT , we get F (uε, vε) → F (u, v)
a.e. in QT , and since F is Lipschitz continuous we obtain

‖F (uε, vε)‖L2 ≤ c (‖uε‖L2 + ‖vε‖L2 + 1) ≤ const.,

so there exists F̃ ∈ L2(QT ) such that F (uε, vε) → F̃ weakly in L2(QT ). Lebesgue’s
theorem implies F̃ ≡ F (u, v), and therefore∫ T

0

∫
Ω

F (uε, vε)ζ →
∫ T

0

∫
Ω

F (u, v)ζ.

Similarly we obtain b(uε) → b(u) and b(vε) → b(v) strongly in Lq(QT ) for all q <∞.
Due to the compact imbedding L2(0, T ;W 2,2(Ω)) ⊂ L2(0, T ;V) we also have wε → w
strongly in L2(0, T ;V). We, finally, deduce∫

QT

b(uε)∇wε · ∇ζ →
∫

QT

b(u)∇w · ∇ζ.(2.46)
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So the limit, u, has been identified as the first component of a solution of (1.1). The
other components are handled in a very similar way and we skip therefore the proof.
In the case in which H4 does not hold, i.e., when both b and F are linear functions,
the passing to the limit is easier because we do not need to ensure the pointwise
convergence of uε, vε to u, v. In this situation the identification of the limit is just a
consequence of the weak convergences in (2.44) and (2.45). Finally, from [3], Theorem
2.2, we obtain the additional regularity√

ϕ′(u)∇u,
√
ϕ′(v)∇v ∈ L2(QT ).

To finish, notice that due to Theorem 2.2 we have that , for all ε > 0, (2.7) holds. We
then deduce that this property also holds in the limit ε→ 0.

The following regularity result will be used in the uniqueness section, see Theorem
3.4.

Corollary 2.3. In the conditions of Theorem 2.1, let ϕ ∈ C1([0,∞)) be strictly
increasing with ϕ′(0) = 0. Assume∫ s

0

b′(σ)2

ϕ′(σ)
dσ <∞ and

∫ s

0

b(σ)b′(σ)2

ϕ′(σ)
dσ <∞ for all s ∈ [0,∞).(2.47)

Then there exists a solution of problem (1.1) with the regularity given in Theorem 2.1
and

b(u), b(v) ∈ L2(0, T ;V).

Remark. Let ϕ(s) := sm and b(s) := sγ with m > 1, γ ≥ 1. If m < 2γ then (2.47)
is satisfied.

Proof. We consider the sequence of solutions (uε, vε, wε) of problems (1.1)ε

constructed as in proof of Theorem 2.1. Since uε ≥ cε we have that ψ(uε) − ψ(uDε)
is an admissible test function for any ε > 0. For simplicity, we suppose uD = 0 in ΣD

and therefore uDε = εe−λ1t. We have for the diffusion term∫
QT

∇ϕ(uε) · ∇(ψ(uε)− ψ(uDε)) =
∫

QT

ϕ′(uε)ψ′(uε)
b′(uε)2

|∇b(uε)|2 =
∫

QT

|∇b(uε)|2 ,

with ψ(s) =
∫ s

0

b′(σ)2/ϕ′(σ)dσ. For the drift term we get

∫
QT

b(uε)∇wε · ∇(ψ(uε)− ψ(uDε)) =
∫

QT

∇wε · ∇B(uε) =
∫

QT

(vε − uε + C)B(uε)

+
∫

ΣD

B(uDε)∇wε · ν,

with B(s) :=
∫ s

0

b(σ)ψ′(σ)dσ. For the time derivative term we obtain

∫
QT

uεt(ψ(uε)− ψ(uDε)) = ελ1

∫
QT

uεψ
′(uDε) +

∫
Ω

(G(uε(T ))−G(uε0))

−
∫

Ω

(uε(T )ψ(uDε(T ))− uε0ψ(uDε(0))) ,
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with G(s) :=
∫ s

0

ψ(σ)dσ. We have then∫
QT

|∇b(uε)|2 ≤
∫

Ω

G(uε0) + uε(T )ψ(uDε(T )) +
∫

QT

(vε − uε + C)B(uε)

+
∫

ΣD

B(uDε)∇wε · ν +
∫

QT

F (uε, vε)(ψ(uε)− ψ(uDε)).

Using the L∞(QT ) uniform bounds of uε, vε and property (2.47) we deduce∫
QT

|∇b(uε)|2 ≤ c for all ε > 0.

We find then by (2.44) that b(uε) → b(u) weakly in L2(0, T ;V), with u the first
component of a solution of (1.1). We may follow the same argument to deduce the
property for v.

Remark. The technique we have used is also applicable when F (u, v) is a maximal
monotone graph, see [15] for a likely system but without transport terms. We also
point out that functions ϕ(u) and ϕ(v) as well as b(u) and b(v) may be different as
long as they fulfill the assumptions given on the data.

3. Uniqueness of solutions. We present in this section three theorems on the
uniqueness question for problem (1.1) which share a duality technique in their proofs,
i.e., the searching of suitable test functions which allow to deduce the uniqueness
property.

The first result is obtained by using a technique introduced by Antontsev, Dı́az
and Domansky [2] for a system of two-phase filtration in porous medium. Here we
assume (b′(s))2 ≤ cϕ′(s), which holds in the case when diffusion and transport are
both linear or in the case in which they are degenerate in a suitable way. It is worth
noting that this type of condition also arises as sufficient condition to ensure the
existence of strong solutions of (1.2), see [6].

The second result uses a technique introduced by Rulla [37] to study the Stefan
problem with prescribed convection. In this case we only assume ϕ non-decreasing,
but an entropy type condition for the electric field on the Dirichlet boundary must
be introduced: ∇w · ν = 0 on ΣD. Conditions of this type are already classical in the
literature of hyperbolic equations, see [28], and they arise as natural conditions which
allow to select a unique solution (the so-called entropy solution) when uniqueness fails
for weak solutions.

Our last theorem applies to the case in which problem (1.1) has strong solutions
in the following sense: b(u), b(v) ∈ L1(0, T ;W), with

W :=
{
h ∈W 1,p(Ω) : h = 0 on ΓD

}
,(3.1)

and with p > N if N ≥ 2 and p = 1 if N = 1. To obtain this result we used a
method due to Kalashnikov [26] which consists of making a comparaison between an
arbitrary weak solution of (1.1) and the weak solution constructed as the limit of a
sequence of solutions of regularized problems, see proof of Theorem 2.1. Our result is
strongly based on the technique introduced by Dı́az and Kersner [13] to study a one
dimensional scalar equation.

In the sequel we shall assume that the component w of solutions is non-trivial in
the sense that ‖∇w‖L2(QT ) 6= 0. On the contrary, the system reduces to the equation
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ut−∆ϕ(u) = F (u, u−C), in fact simpler than (1.2) whichis , as we already mentioned,
well understood.

Theorem 3.1. Assume H1-H3 and suppose that there exists a constant M > 0
such that

(b′(s))2 ≤Mϕ′(s) for all s > 0(3.2)

and (
∂

∂si
F (s1, s2)

)2

≤Mϕ′(si), for all si > 0, i = 1, 2.(3.3)

Then problem (1.1) has a unique weak solution.
Proof. Suppose that (u1, v1, w1) and (u2, v2, w2) are two weak solutions of (1.1) and
define (u, v, w) := (u1−u2, v1−v2, w1−w2), Fi := F (ui, vi), i = 1, 2 and F̂ := F1−F2.
Then (u, v, w) satisfies

ut −∆ (ϕ(u1)− ϕ(u2)) + div (b(u1)∇w + (b(u1)− b(u2))∇w2) = F̂ ,

vt −∆ (ϕ(v1)− ϕ(v2))− div (b(v1)∇w + (b(v1)− b(v2))∇w2) = F̂ ,
−∆w + u− v = 0,

(3.4)

in QT , with auxiliary conditions
∇ϕ(ui) · ν = 0, ∇ϕ(vi) · ν = 0, ∇w · ν = 0 on ΣN ,

ϕ(ui) = ϕ(uD), ϕ(vi) = ϕ(vD), w = 0 on ΣD,

u(·, 0) = 0, v(·, 0) = 0 in Ω,
(3.5)

i = 1, 2. Taking smooth test functions ψ, ξ, η with homogeneous mixed boundary con-
ditions for problem (3.4)-(3.5), integrating by parts and adding the resulting integral
identities we obtain∫

Ω

ψ(T )u(T ) + ξ(T )v(T ) =
∫

QT

u (ψt +Au∆ψ + Bu · ∇ψ + η + Fu (ψ + ξ))

+
∫

QT

v (ξt +Av∆ξ −Bv∇ξ − η + Fv (ψ + ξ))

−
∫

QT

wdiv (b(u1)∇ψ − b(v1)∇ξ +∇η) ,(3.6)

with Az :=
∫ 1

0
ϕ′(sz1 + (1− s)z2)ds, Bz := ∇w2

∫ 1

0
b′(sz1 + (1− s)z2)ds for z = u, v

and Fu :=
∫ 1

0
∂F
∂u (su1 + (1 − s)u2, v1)ds with a similar definition for Fv. Notice that

since b ∈ C1([0,∞)), ui, vi ∈ L∞(QT ), F is Lipschitz continuous and ∇w2 ∈ L∞(QT )
we have that Bz, Fz are bounded in L∞(QT ), for z = u, v. We define the differential
operators

L1(ψ, ξ, η) := ψt +Aε
u∆ψ + Bu · ∇ψ + η + Fu (ψ + ξ) ,

L2(ψ, ξ, η) := ξt +Aε
v∆ξ −Bv · ∇ξ − η + Fv (ψ + ξ) ,

L3(ψ, ξ, η) := div (b(u1)∇ψ − b(v1)∇ξ +∇η) ,

with Aε
u := Au + ε and ε > 0, (and a similar definition for Aε

v) and set the following
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problem to choose the test functions:

L1(ψ, ξ, η) = u in QT ,

L2(ψ, ξ, η) = v in QT ,

L3(ψ, ξ, η) = 0 in QT ,

∇ψ · ν = ∇ξ · ν = ∇η · ν = 0 on ΣN ,

ψ = ξ = η = 0 on ΣD,

ψ(T ) = ξ(T ) = 0 in Ω.

(3.7)

Lemma 3.2. Problem (3.7) has a unique solution with the regularity of test
functions of (1.1), see (2.4) and (2.5). Moreover,

ψ, ξ, η ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

and there exists a positive constant C(T ) independent of ε such that

ε

∫
QT

(
|∆ψ|2 + |∆ξ|2

)
≤ C(T ).(3.8)

Continuation of proof of Theorem 3.1. Introducing in (3.6) the test functions provided
by Lemma 3.2 we get ∫

QT

(
u2 + v2

)
= ε

∫
QT

(u∆ψ + v∆ξ) .

Young’s inequality and (3.8) leads to∫
QT

(
u2 + v2

)
≤
√
ε

(∫
QT

(
u2 + v2

)
+ C(T )

)
.

Hence, taking the limit ε → 0, we conclude that u ≡ v ≡ 0 a.e. in QT , which also
implies w ≡ 0 a.e. in QT .
Proof of Lemma 3.2.
Step 1. A prori estimates. Multiplying the third equation of (3.7) by η and using the
regularity ui, vi ∈ L∞(QT ) and the continuity of b we get∫

Ω

|∇η|2 ≤ c0(T )
∫

Ω

(
|∇ψ|2 + |∇ξ|2

)
(3.9)

with c0(T ) ≥ 0. Thanks to (3.2) we can estimate∫
Ω

(Bu · ∇ψ) ∆ψ ≤ δ

∫
Ω

Aε
u |∆ψ|

2 +
M

δ

∫
Ω

|∇ψ|2 ,(3.10)

for δ > 0. A similar estimate holds, due to (3.3), for
∫

Ω

Fu (ψ + ξ) ∆ψ. Multiplying

the first equation of (3.7) by ∆ψ and using (3.10), the analogous expression for the
F term we obtain, for a suitable δ

−1
2
d

dt

∫
Ω

|∇ψ|2 +
∫

Ω

Aε
u |∆ψ|

2 ≤ c

(∫
Ω

(
|∇ψ|2 + |∇ξ|2

)
(3.11)

+
∫

Ω

|∇η|2 +
∫

QT

u2

)
.(3.12)



18 J.I. D́ıaz, G. Galiano and A. Jüngel

From the second equation of (3.7) we obtain a similar inequality for ξ which, being
added to (3.11) and taking into account that Aε

u, A
ε
v > ε and (3.9) allows us to deduce

−1
2
d

dt

∫
Ω

(
|∇ψ|2 + |∇ξ|2

)
+
ε

2

∫
Ω

(
|∆ψ|2 + |∆ξ|2

)
≤ c

(∫
Ω

(
|∇ψ|2 + |∇ξ|2

)
+
∫

Ω

(
u2 + v2

))
,(3.13)

with c(T ) independent of ε. On one hand, we deduce from Gronwall’s Lemma that∫
Ω

(
|∇ψ(t)|2 + |∇ξ(t)|2

)
≤ c1(T )eTc(T ),(3.14)

with c1(T ) independent of ε. Note that both c and c1 are increasing and uniformly
continuous functions of T . They just depend on norms of the data. On the other
hand, integrating (3.13) in (0, T ) and using (3.14) we obtain

ε

2

∫
QT

(
|∆ψ|2 + |∆ξ|2

)
≤ c2(T )eTc(T ),(3.15)

with c2(T ) independent of ε. So we deduced (3.8). Finally, from the third equation
of (3.7) we have that

∆η = ∇b(v1) · ∇ξ + b(v1)∆ξ −∇b(u1) · ∇ψ − b(u1)∆ψ,

and from (3.2) and the regularity
√
ϕ′(v1)∇v1 ∈ L2(QT ), see Theorem 2.1, we obtain∫

Ω

|∇b(v1)|2 =
∫

Ω

b′(v1)2 |∇v1|2 ≤ c

∫
Ω

ϕ′(v1) |∇v1|2 ≤ const.(3.16)

Hence, using Hölder and Young’s inequalities and estimates (3.9) and (3.16) we obtain
the L2(0, T ;H2(Ω) regularity of η.
Step 2. Existence of solutions of (3.7). We use fixed point argument. Consider the
set

K :=
{
h ∈ L2(0, T ∗;V) : ‖h‖L2(0,T∗;V) ≤ R

}
,

where T ∗ and R will be suitably chosen. K is convex and weakly compact in
L2(0, T ∗;V). We define Q : K ⊂ L2(0, T ∗;V) → L2(0, T ∗;V) by Q(η̂) := η, where η
is the unique solution of L3(ψ̂, ξ̂, η) = 0, being (ψ̂, ξ̂) the unique solution of{

L1(ψ̂, ξ̂, η̂) = u,

L2(ψ̂, ξ̂, η̂) = v,
(3.17)

with the same auxiliary conditions as in (3.7). Since u, v,∇η̂ ∈ L2(QT∗) we can justify
the a priori estimates in Step 1 and deduce that any solution of (3.17) satisfies

ψ̂, ξ̂ ∈ H1(0, T ∗;L2(Ω)) ∩ L∞(0, T ∗;H1(Ω)) ∩ L2(0, T ∗;H2(Ω)).(3.18)

Uniqueness of solutions of (3.17) follows from (3.18) and linearity of the differential
operators. Existence of solutions of (3.17) is proven by uncoupling the problem and
applying again a fixed point technique. Assume for the moment that such a solution
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exists and, therefore, it is unique and satisfies (3.18). We easily deduce that the
solution of L3(ψ̂, ξ̂, η) = 0 satisfies η ∈ L2(0, T ∗;H2(Ω)). Notice that if η̂ is a fixed
point of Q then (ψ̂, ξ̂, η̂) is a local solution of (3.7). To prove the existence of such a
fixed point we shall show
(i) Q(K) ⊂ K, for suitable R, T ∗ > 0,
(ii) Q is weakly-weakly sequentially continuous in L2(0, T ∗;V),
and apply the fixed point theorem [4]. (i) follows from the previous a priori estimates.
From (3.9) we find

‖η‖L2(0,T∗;V) ≤ c0(T ∗)
(∥∥∥ψ̂∥∥∥

L2(0,T∗;V)
+
∥∥∥ξ̂∥∥∥

L2(0,T∗;V)

)
,

and from (3.11) and the corresponding estimate for ξ we obtain∥∥∥ψ̂∥∥∥
L2(0,T∗;V)

+
∥∥∥ξ̂∥∥∥

L2(0,T∗;V)
≤ c1(T ∗) ‖η̂‖L2(0,T∗;V) e

cT∗ .

It follows that

‖Q(η̂)‖L2(0,T∗;V) ≤ c3(T ∗)ecT∗R.

Notice that, as we already mentioned, functions ci(T ∗) are uniformly continuous and
non.decreasing with ci(0) = 0 (they depend on the norms of the data in QT ) and
therefore we can take T ∗ small enough to obtain c3(T ∗)ecT∗ ≤ 1, deducing Q(K) ⊂ K.
In fact, these properties of ci imply the global existence (once the local existence is
proven). (ii) is a direct consequence of the linearity and regularity and we omit the
proof. This finishes the proof of the existence of a fixed point and, therefore, of a local
solution of (3.7). We already mentioned why, in fact, the solution is global. Finally,
the uniqueness of solutions is again a consequence of the linearity of the problem and
the regularity of the solution. To finish, notice that the proof of existence of solutions
of (3.17) may be performed in a similar way.

Following, we state the second result on uniqueness of solutions of (1.1). The
main feature of this theorem is that it allows to consider a nonlinear diffusion, ϕ,
not necessarily strictly increasing. However, we need to assume that an entropy type
condition on the electric field holds on the Dirichlet boundary.

Theorem 3.3. Assume H1-H3 and let b(s) = s. If

∇w · ν = 0 on ΓD × (0, T ),(3.19)

and

|F (s1, σ1)− F (s2, σ2)| ≤ c [(ϕ(s1)− ϕ(s2)) + (ϕ(σ1)− ϕ(σ2))] ,(3.20)

for all si, σi ≥ 0, i = 1, 2, then problem (1.1) has a unique solution in the class of
weak solutions such that

w ∈ L∞(0, T ;W 2,∞(Ω)).

Remark. The equality in (3.19) is a consequence of the different sign that transport
terms have in u and v-equations. Indeed, suppose that there exist two solutions
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(u1, ṽ, w1) and (u2, ṽ, w2). Then, under the conditions of Theorem 3.3, with the
equality sign in (3.19) replaced by ≥, uniqueness follows.
Proof of Theorem 3.3. As in proof of Theorem 3.1 we obtain the following identity∫

QT

utψ + vtξ =
∫

QT

(ϕ(u1)− ϕ(u2))∆ψ + u∇w2 · ∇ψ + uη

+
∫

QT

(ϕ(v1)− ϕ(v2))∆ξ − v∇w2 · ∇ξ − vη

−
∫

QT

wdiv (u1∇ψ − v1∇ξ +∇η)−
∫

QT

(F1 − F2) (ψ + ξ) .

We choose the test functions as solutions of the problem
−∆ψ(t) = u(t) in Ω,
−∆ξ(t) = v(t) in Ω,
−∆η(t) = div (v1(t)∇ξ(t)− u1(t)∇ψ(t)) in Ω,
∇ψ · ν = ∇ξ · ν = ∇η · ν = 0 on ΣN ,

ψ = ξ = η = 0 on ΣD,

(3.21)

for a.e. t ∈ (0, T ). Existence, uniqueness and regularity of solutions is a consequence
of the theory of linear elliptic equations. In particular, since u, v ∈ C([0, T ] ;V ′) we
deduce ψ, ξ ∈ C([0, T ] ;V). Then, u(·, 0) = v(·, 0) = 0 in Ω and the homogeneous
boundary conditions for ψ and ξ imply

∇ψ(·, 0) = ∇ξ(·, 0) = 0 in L2(Ω).(3.22)

Using these test functions we get

1
2

∫
Ω

(
|∇ψ(T )|2 + |∇ξ(T )|2

)
+
∫

QT

[u (ϕ(u1)− ϕ(u2)) + v (ϕ(v1)− ϕ(v2))]

=
∫

QT

∇w2 · (u∇ψ − v∇ξ)

+
∫

QT

[∇ (ψ − ξ) · ∇η − (F1 − F2) (ψ + ξ)] .

(3.23)

Now we perform the arguments to handle the terms involving u. The terms involving
v are similarly treated after a change of sign. Due to the choice of the test functions∫

QT

u∇w2 · ∇ψ = −
∫

QT

∆ψ∇w2 · ∇ψ.

As in [37], let us show that (3.19) implies

−
∫

QT

∆ψ∇w2 · ∇ψ ≤
1
2
‖w2‖L∞(W 2,∞)

∫
QT

|∇ψ|2 .(3.24)

Integrating formally by parts the left hand side of (3.24) we get∫
Ω

−∆ψ (∇w2 · ∇ψ) =
∫

Ω

∇ψ · ∇ (∇w2 · ∇ψ)−
∫

∂Ω

(∇w2 · ∇ψ) (∇ψ · ν) .(3.25)
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See [37] for a rigorous derivation of this identity. Using that ψ = 0 on ΓD implies
that ∇ψ has the same direction as ν on ΓD we obtain∫

∂Ω

(∇w2 · ∇ψ) (∇ψ · ν) =
∫

ΓD

|∇ψ|2∇w2 · ν.(3.26)

Denoting by H(·) the Hessian matrix we get after integrating by parts∫
Ω

∇ψ · ∇ (∇w2 · ∇ψ) =
∫

Ω

∇ψ : H(w2) : ∇ψ − 1
2

∫
Ω

∆w2 |∇ψ|2

+
1
2

∫
ΓD

|∇ψ|2∇w2 · ν.(3.27)

Substituting (3.26) and (3.27) in (3.25) leads to

−
∫

Ω

∆ψ (∇w2 · ∇ψ) =
∫

Ω

∇ψ : H(w2) : ∇ψ − 1
2

∫
Ω

∆w2 |∇ψ|2

−1
2

∫
ΓD

|∇ψ|2∇w2 · ν,

and using∇w2 ·ν ≥ 0 on ΓD (as a particular case of (3.19)) and the regularity assumed
on w2 we deduce (3.24). For problem (3.21) estimate (3.9) holds and then we have∫

QT

(∇ψ · ∇η −∇ξ · ∇η) ≤ c

∫
QT

(
|∇ψ|2 + |∇ξ|2

)
.(3.28)

Finally, Hölder’s, Young’s and Poincaré’s inequalities together with (3.20) gives

−
∫

QT

(F1 − F2) (ψ + ξ) ≤ εc

∫
QT

[
(ϕ(u1)− ϕ(u2))

2 + (ϕ(v1)− ϕ(v2))
2
]

+
c

ε

∫
QT

(
|∇ψ|2 + |∇ξ|2

)
,(3.29)

for all ε > 0. Then, using ϕ Lipschitz continuous and non-decreasing, substituting
estimates (3.24) (and the corresponding for v), (3.28) and (3.29) in (3.23) and choosing
ε, δ small enough we obtain∫

Ω

(
|∇ψ(T )|2 + |∇ξ(T )|2

)
≤ c

∫
QT

(
|∇ψ|2 + |∇ξ|2

)
.(3.30)

Gronwall’s inequality and (3.22) imply ∇ψ ≡ ∇ξ ≡ 0 a.e. in QT , from where the
assertion follows.

We finally present our third result. The main assumption is on the regularity of
the solution constructed in Theorem 2.1: we suppose ∇b(u),∇b(v) ∈ L1(0, T ;Lp(Ω)),
with p given in (3.1). As a consequence of Corollary 2.3 this regularity property is
satisified in the following example:

ϕ(s) := sm, b(s) := sγ with 1 < m < 2γ and γ ≥ 1,

in space dimension one.
Theorem 3.4. Assume H1–H3 and suppose that there exists an open set

B̃ ⊂ ΓD such that the (N−1)−dimensional Haussdorf measure of B̃ and ΓD coincides.
Suppose

ϕ ∈ C2((0,∞)), with ϕ′(0) = 0
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and assume the existence of a positive constant c and a convex function µ ∈ C0([0,∞))
∩ C2((0,∞)) such that µ(0) = 0,

0 < µ′(r) ≤ ϕ′(r) and ϕ(r) ≤ cµ(r) for r > 0.(3.31)

Then problem (1.1) has a unique solution in the class of weak solutions satisfying

b(u), b(v) ∈ L1(0, T ;W),

with W given by (3.1).
Proof. Consider, as in proof of Theorem 2.1, the sequence of regularized problems
(1.1)ε in which we approximate solutions of the degenerate problem (1.1) by taking
the perturbed auxiliary conditions given by (2.39), remaining the other conditions
unchanged. We know from Theorem 2.2 that for each ε > 0 problem (1.1)ε has, at
least, a weak solution (uε, vε, wε) with the additional regularity stated in the men-
tioned theorem and converging to a weak solution (u, v, w) of (1.1) (Theorem 2.1).
Moreover, there exist positive constants λ and c, independent of ϕ and ε, such that

c ≥ uε, vε ≥ εe−λt a.e. in QT(3.32)

and

‖∇wε‖L∞(QT ) ≤ c.(3.33)

Suppose that (u2, v2, w2) is another weak solution of (1.1) and define (Uε, Vε,Wε) :=
(uε − u2, vε − v2, wε −w2) and Fε := F (uε, vε)− F (u2, v2). Then (Uε, Vε,Wε) satisfy

Uεt −∆ (ϕ(uε)− ϕ(u2)) + div (b(uε)∇Wε + (b(uε)− b(u2))∇w2) = Fε,

Vεt −∆ (ϕ(vε)− ϕ(v2))− div (b(vε)∇Wε + (b(vε)− b(v2))∇w2) = Fε,

−∆Wε + Uε − Vε = 0,
(3.34)

in QT , and the auxiliary conditions
ϕ(uDε) = ϕ(uD) + ϕ(εe−λ1t), ϕ(vDε) = ϕ(vD) + ϕ(εe−λ1t) on ΣD,
ϕ(uD2) = ϕ(uD), ϕ(vD2) = ϕ(vD), WDε = 0 on ΣD,
∇ϕ(uNε) · ν = ∇ϕ(vNε) · ν = ∇Wε · ν = 0 on ΣN ,
∇ϕ(u2) · ν = ∇ϕ(v2) · ν = 0 on ΣN ,
Uε(·, 0) = Vε(·, 0) = ε in Ω.

(3.35)

Taking smooth test functions ψ, ξ, η with homogeneous mixed boundary conditions
for problem (3.34)-(3.35) we get∫

Ω

ψ(T )Uε(T ) + ξ(T )Vε(T ) = ε

∫
Ω

ψ(0) + ξ(0)−
∫

ΣD

ϕ(εe−λ1t) (∇ψ +∇ξ) · ν

+
∫

QT

Uε (ψt +Aε
u∆ψ + Bε

u · ∇ψ + η + F ε
u (ψ + ξ))

+
∫

QT

Vε (ξt +Aε
v∆ξ −Bε

v∇ξ − η + F ε
v (ψ + ξ))

−
∫

QT

Wεdiv (b(uε)∇ψ − b(vε)∇ξ +∇η) ,(3.36)

with Aε
z :=

∫ 1

0
ϕ′(szε + (1 − s)z2)ds, Bε

z := ∇w2

∫ 1

0
b′(szε + (1 − s)z2)ds for z = u, v

and F ε
u :=

∫ 1

0
∂F
∂u (suε + (1 − s)u2, vε)ds with a similar definition for F ε

v , where here
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and in the sequel we denote by z any of the functions u or v. Due to b ∈ C1([0,∞)),
F Lipschitz continuous, (3.32) and (3.33) we have

‖Bε
z‖L∞(QT ) , ‖F

ε
z ‖L∞(QT ) ≤ k0,(3.37)

with k0 independent of ε. In addition, using (3.31) we deduce the existence of a
constant

k(ε) := ε−1eλTµ(εe−λT )(3.38)

such that

0 < k(ε) ≤ Aε
z ≤ k0 in QT .(3.39)

We consider sequences of C∞(QT ) functions such that

Aε,n
z → Aε

z, Bε,n
z → Bε

z, F ε,n
z → F ε

z , y bnz → b(zε),

strongly in L2(QT ) when n→∞. We choose Aε,n
z monotone decreasing on n and Bε,n

z ,
F ε,n

z and bnz monotone increasing on n. Because of (3.39), (3.37) and the L∞(QT )
regularity of solutions of (1.1) we deduce

0 < k(ε) ≤ Aε,n
z ≤ k0, and ‖Bε,n

z ‖L∞(QT ) , ‖F
ε,n
z ‖L∞(QT ) , ‖b

ε,n
z ‖L∞(QT ) ≤ k0(3.40)

in QT . We rewrite identity (3.36) as∫
Ω

ψ(T )Uε(T ) + ξ(T )Vε(T ) = ε

∫
Ω

ψ(0) + ξ(0)−
∫

ΣD

ϕ(εe−λ1t) (∇ψ +∇ξ) · ν

+
∫

QT

Uε [(Aε
u −Aε,n

u ) ∆ψ + (Bε
u −Bε,n

u ) · ∇ψ]

+
∫

QT

Vε [(Aε
v −Aε,n

v ) ∆ξ − (Bε
v −Bε,n

v )∇ξ]

+
∫

QT

Uε (F ε
u − F ε,n

u ) (ψ + ξ) + Vε (F ε
v − F ε,n

v ) (ψ + ξ)

+
∫

QT

∇Wε · ((b(uε)− bnu)∇ψ − (b(vε)− bnv )∇ξ)

−
∫

QT

Wεdiv (bnu∇ψ − bnv∇ξ +∇η)

+
∫

QT

Uε (ψt +Aε,n
u ∆ψ + Bε,n

u · ∇ψ + η + F ε,n
u (ψ + ξ))

+
∫

QT

Vε (ξt +Aε,n
v ∆ξ −Bε,n

v · ∇ξ − η + F ε,n
v (ψ + ξ))

=: I1 + · · ·+ I9,(3.41)

and set the following problem to choose the test functions:

ψt +Aε,n
u ∆ψ + Bε,n

u · ∇ψ + η + F ε,n
u (ψ + ξ) = 0 in QT ,

ξt +Aε,n
v ∆ξ −Bε,n

v · ∇ξ − η + F ε,n
v (ψ + ξ) = 0 in QT ,

∆η + div (bnu∇ψ − bnv∇ξ) = 0 in QT ,

ψ = ξ = η = 0 on ΣD,

∇ψ · ν = ∇ξ · ν = ∇η · ν = 0 on ΣN ,

ψ(·, T ) = χu
δ , ξ(·, T ) = χv

δ in Ω,

(3.42)
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with χz
δ ∈ C∞0 (Ω) satisfying dist(ΣD, supp(χz

δ)) ≥ δ and χz
δ uniformly bounded in

L1(Ω) for all δ > 0.
Lemma 3.5. Problem (3.42) has a unique solution with the regularity of test

functions of (1.1), see (2.4) and (2.5). Moreover,

ψ, ξ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),(3.43)

η ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)),

and their norms in these spaces are uniformily bounded with respect to n. Finally,
there exists a positive constant C(T ) independent of ε and δ such that

‖ψ‖L∞(QT ) , ‖ξ‖L∞(QT ) ≤ C(T ).(3.44)

Continuation of proof of Theorem 3.4. With the test functions of Lemma 3.5 we have
I7 = I8 = I9 = 0 in (3.41). Using in the resulting identity the uniform estimates with
respect to n provided by Lemma 3.5 we deduce that I3, I4, I5 and I6 tend to zero
when n→∞. Therefore, identity (3.41) is reduced to∫

Ω

χu
δUε(T ) + χv

δVε(T ) = ε

∫
Ω

(ψ(0) + ξ(0))−
∫

ΣD

ϕ(εe−λ1t) (∇ψ +∇ξ) · ν.(3.45)

The treatment of the boundary integral deserves the following
Lemma 3.6. Let Aε, Bε, gε ∈ L∞(QT ) with

k(ε) < Aε,(3.46)

where k(ε) is given by (3.38). Consider the problem
ψt +Aε∆ψ + Bε · ∇ψ + gε = 0 in QT ,
ψ = 0 on ΣD,
∇ψ · ν = 0 on ΣN ,
ψ(·, T ) = χδ in Ω,

with δ > 0. Then, there exist a δ(ε) > 0 and a positive constant c, independent of ε,
such that if δ < δ(ε) then

−∇ψ · ν ≤ c
‖Bε‖L∞(QT ) ‖ψ‖L∞(QT )

k(ε)
a.e. in ΣD.(3.47)

End of proof of Theorem 3.4. Now we are in a position to pass to the limits ε, δ →
0. First note that Lemma 3.5 ensures the existence of uniform in ε, δ estimates of
‖ψ‖L∞(QT ) , ‖ξ‖L∞(QT ) . Therefore

ε

∫
Ω

(ψ(0) + ξ(0)) → 0 as ε, δ → 0.(3.48)

Applying Lemma 3.6 to the two first equations of problem (3.42) and considering the
uniform bounds in ε of ‖Bε

u‖L∞(QT ), see (3.37), and in ε, δ of ‖ψ‖L∞(QT ), see Lemma
3.5, we obtain

−
∫

ΣD

ϕ(εe−λ1t)∇ψ · ν ≤ c
ϕ(ε)
k(ε)

,(3.49)
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where we used that ϕ is non-negative and increasing. Using (3.31) and (3.38) we
obtain ϕ(ε) ≤ cεk(ε) and from (3.49) we deduce

−
∫

ΣD

ϕ(εe−λ1t)∇ψ · ν ≤ 0 as ε, δ → 0.(3.50)

A similar argument may be applied to the term involving ξ. To finish, we choose
function χu

δ as follows: set Ωδ := {x ∈ Ω : dist [∂Ω, supp (Uε(x, T ))] > δ} and define

χu
δ (x, t) :=

{
sign {u(x, t)− u2(x, T )} if x ∈ Ωδ,
0 if x ∈ Ω\Ω̄δ.

Then ∫
Ω

χu
δUε(T ) →

∫
Ω

|u(T )− u2(T )| as ε, δ → 0,(3.51)

and a similar property holds for the term involving Vε. Gathering (3.48)-(3.51) we
deduce from (3.45) ∫

Ω

|u(T )− u2(T )|+ |v(T )− v2(T )| ≤ 0,

and the assertion follows.
Proof of Lemma 3.5. The proof follows the same scheme than proof of Lemma 3.2.
Therefore, we shall only show how to obtain property (3.44). Set

K :=
{
h ∈ L2(0, T ∗;V) ∩ L1(0, T ∗;L∞(Ω)) : ‖h‖L2(0,T∗;V) + ‖h‖L1(0,T∗;L∞(Ω)) < R

}
,

and define Q : K → L2(0, T ∗;V)∩L1(0, T ∗;L∞(Ω)) by Q(η̂) = η, being η the solution
of 

∆η + div
(
bnu∇ψ̂ − bnv∇ξ̂

)
= 0 in QT ,

η = 0 on ΣD,
∇η · ν = 0 on ΣN ,

(3.52)

with (ψ̂, ξ̂) solution of

ψ̂t +Aε,n
u ∆ψ̂ + Bε,n

u · ∇ψ̂ + η̂ + F ε,n
u (ψ̂ + ξ̂) = 0 in QT ,

ξ̂t +Aε,n
v ∆ξ̂ −Bε,n

v · ∇ξ̂ − η̂ + F ε,n
v (ψ̂ + ξ̂) = 0 in QT ,

ψ̂ = ξ̂ = 0 on ΣD,

∇ψ̂ · ν = ∇ξ̂ · ν = 0 on ΣN ,

ψ̂(·, T ) = χu
δ , ξ̂(·, T ) = χv

δ in Ω.

(3.53)

By Alexandrov’s maximum principle, see [27], the solution of (3.53) satisfy∥∥∥ψ̂∥∥∥
L∞(QT∗ )

+
∥∥∥ξ̂∥∥∥

L∞(QT∗ )
≤ ecT∗ ‖η̂‖L1(0,T∗;L∞(Ω)) ,(3.54)

with c depending on a bound of ‖F ε,n
z ‖L∞ which we know independent of ε, n, see

(3.40). Now define

θ := η + bnuψ̂ − bnv ξ̂.(3.55)
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From (3.52) we have that θ satisfies
∆θ = div

(
ψ̂∇bnu − ξ̂∇bnv

)
in QT ,

θ = 0 on ΣD,
∇θ · ν = 0 on ΣN .

By well known results, see [40], we have

‖θ‖L∞(Ω) ≤ c

(∥∥∥ξ̂∇bnv∥∥∥
Lp(Ω)

+
∥∥∥ψ̂∇bnu∥∥∥

Lp(Ω)

)
,

for p given in (3.1). Then

‖θ‖L∞(Ω) ≤ c

(∥∥∥ξ̂∥∥∥
L∞(Ω)

‖∇bnv‖Lp(Ω) +
∥∥∥ψ̂ ∥∥∥

L∞(Ω)
‖∇bnu‖Lp(Ω)

)
.

Recalling the definition of θ and using the assumption b(u), b(v) ∈ L1(0, T ;W) we
obtain

‖η‖L1(0,T∗;L∞(Ω)) ≤ c(T ∗)
(∥∥∥ψ̂∥∥∥

L∞(QT∗ )
+
∥∥∥ξ̂∥∥∥

L∞(QT∗ )

)
,(3.56)

with c(t) depending only on ‖∇b(z)‖L1(0,t;Lp(Ω)) and ‖b(z)‖L∞(Qt)
, z = u, v. Gather-

ing (3.54) and (3.56) we find

‖η‖L1(0,T∗;L∞(Ω)) ≤ c(T ∗)ecT∗ ‖η̂‖L1(0,T∗;L∞(Ω)) < c(T ∗)ecT∗R,

and to obtain Q(K) ⊂ K we only have to choose T ∗ small enough. The rest of the
proof of existence of a fixed point is similar as that in Lemma 3.2. Finally, notice
that a continuation argument allows to extend the solution to any T > 0. Indeed,
estimates (3.54) and (3.56) do not blow up for any finite T ∗.
Proof of Lemma 3.6. Since ∂Ω is regular, Ω satisfies the exterior sphere condition,
i.e., for all x0 ∈ ∂Ω there exists R1 > 0 and x1 ∈ IRN\Ω̄ such that

B(x1, R1) ∩ Ω̄ = {x0} ,

where B(x1, R1) :=
{
x ∈ IRN : |x− x1| < R1

}
. Let us fix x0 ∈ Interior(ΓD). This

set is non empty because, by hypothesis, there exists an open set B̃ such that B̃ ⊂ ΓD.
Therefore, there exists a small enough δ > 0 such that, by defining R2 := δ + R1,
we have B(x1, R2) ∩ ∂Ω ⊂ ΓD. Moreover, since dist(∂Ω, supp(χδ)) ≥ δ, we also have
χδ ≡ 0 in ω := Ω ∩ B(x1, R2). We shall use the notation k0(ε) := ‖g‖L∞(QT ),

k1(ε) :=
(

N−1
R1

+ 1
)
‖B‖L∞(QT ) and k2(ε) := ‖ψ‖L∞(QT ) . We define

L(ψ) := ψt +Aε∆ψ + B · ∇ψ and w(x, t) := ψ(x, t) + σ(r),

with (x, t) ∈ ω × (0, t) and r := |x− x0| . Function σ ∈ C2([R1, R2]) will be chosen
such that σ′′(r) ≥ 0, σ′(r) ≤ 0 and the maximum of w in ω̄ × [0, T ] is attained in
{x0} × [0, T ]. Assuming these properties we get, due to (3.46)

L(w) = −g +Aε∆σ + B · ∇σ ≥ k(ε)σ′′(r) + k1(ε)σ′(r)− k0(ε).



On a quasilinear degenerate system in semiconductors theory 27

Choosing σ(r) := k0(ε)
k1(ε)

r + C2e
− k1(ε)

k(ε) r, with C2 an arbitrary constant, we obtain

k(ε)σ′′(r) + k1(ε)σ′(r)− k0(ε) = 0, σ′′(r) ≥ 0 and

if C2 ≥ k(ε)
k0(ε)
k2
1(ε)

e
k1(ε)
k(ε) R2 then σ′(r) ≤ 0.(3.57)

Taking C2 with this restriction we have that L(w) ≥ 0 in ω̄ × [0, T ] and therefore,
by the maximum principle, we deduce that w attains its maximum on the parabolic
boundary of ω× [0, T ] . On this boundary the values of w may be estimated as follows:

w(x, t) = σ(r) ≤ σ(R1) on (ΓD ∩ ∂ω)× [0, T ] ,
w(x, t) = ψ(x, t) + σ(r) ≤ k2(ε) + σ(R2) on (∂B(x1, R2) ∩ ∂ω)× [0, T ] ,
w(x0, t) = σ(R1) on [0, T ] ,
w(x, T ) = σ(r) + χδ(x) ≤ σ(R1) in ω,

where we have used that χδ ≡ 0 in ω. It is a straightforward computation to see
that,by making δ small enough, we can choose C2 such that (3.57) and σ(R1) =
k2(ε) + σ(R2) hold. As a consequence we obtain that ∇w(x0, t) · ν ≥ 0 and by the
definition of w and taking δ suitably we obtain

−∇ψ(x0, t) · ν ≤ c
k1(ε)k2(ε)

k(ε)
in [0, T ] .
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