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Abstract. We present a method of analysis for free boundary problems which
is based on local energy estimates. This method allows us to deal with a great
variety of problems formulated in a very general form, where generality stands
for:
• No global information, like boundary conditions or boundedness of the

domain, is needed.
• No monotonicity assumption on the nonlinearities is required, as the

comparison principle is not invoked.
• Coefficients may depend on space and time variables and only a weak

regularity is required.
• No restriction on the space dimension is assumed.

In this article we first show how the energy method applies to a simple ex-
ample, proving the well known property of finite speed of propagation for the
porous medium equation. We then give an outline of how the method works in
more complicated situations: the occurrence of dead cores for the mangroves’
problem and the finite speed of propagation along the characteristics for an
evolution convection-diffusion equation.

1. Introduction

In this article we describe by means of three examples the so called energy method
for free boundary problems. The method was introduced by Antontsev in [1], and
was later extended and rendered to a mathematical rigorous form by Antontsev,
Dı́az and Shmarev [2] and Dı́az and Verón [6]. Other contributions have been given
by Bernis to PDE’s of arbitrary order, see [3]. See also some applications of the
method to systems of equations in [9, 5, 7, 8]. The idea of the method is to find
a differential inequality which is satisfied by the natural energies associated to
the problem and to deduce from its resolution some qualitative properties of the
solutions of the original problem. Among these properties we find the finite speed
of propagation and the formation of dead cores. Both are related to a degener-
ation introduced in the problem when the solution attains certain value, usually
normalized to be the zero value. Finite speed of propagation means that solutions
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corresponding to compact supported initial datum remain with compact support
at least for some time, meanwhile dead core means that even if the initial datum
is strictly positive, a region where the zero level is attained may appear in finite
time. Both phenomena are purely nonlinear.

2. The Porous Medium Equation and Finite Speed of Propagation

We consider the Cauchy problem for the porous medium equation,

vt − (vm)xx = 0, v(·, 0) = v0 , (1)

with m > 1 and v0 ≥ 0 of compact support in R. It is well known that the support
of v(·, t) remains bounded for all t > 0. This is a peculiar behaviour of solutions of
some type of parabolic problems which degenerate in some subset of the domain,
and which is called the finite speed of propagation property. The aim of this section
is to show how the energy method works for this simple example. Introducing the
change of unknown u := vm and defining p := 1/m, (1) transforms into

(up)t − uxx = 0, u(·, 0) = u0 := vm0 . (2)

Let us denote by Br the ball {x ∈ Ω: |x− x0| < r}, for any r > 0. Let x0 ∈ R and
ρ0 > 0 be such that u0(x0) = 0 in Bρ0 . Multiplying (2) by u and integrating in
Bρ × (0, t), with ρ < ρ0 and t > 0, we obtain

p
p+1

∫
Bρ

u(t)p+1 +
∫ t

0

∫
Bρ

|ux|2 =
∫ t

0

∫
∂Bρ

uuxn , (3)

with n the outer normal to Bρ. We define the energy functions

b(ρ, t) := sup
0≤τ≤t

∫
Bρ

u(τ)p+1 and E(ρ, t) :=
∫ t

0

∫
Bρ

|ux|2 ,

which are clearly non-negative and non-decreasing with respect to ρ and t. Apply-
ing Hölder’s inequality in (3), taking into account the increasing character of the
different terms with respect to t and using that Eρ(ρ, t) =

∫ t
0

∫
∂Bρ
|ux|2, with Eρ

the partial derivative of E with respect to ρ, we obtain

p
p+1b(ρ, t) + E(ρ, t) ≤

(∫ t

0

∫
∂Bρ

u2

) 1
2

(Eρ)
1
2 =: I(Eρ)

1
2 . (4)

To estimate I, which is a key step of the method, we apply a simple version of an
interpolation-trace inequality introduced in a general setting in [6].

Lemma 2.1. Let ϕ ∈ H1(x0 − ρ, x0 + ρ), for x0 ∈ R and ρ > 0. Then

|ϕ(x0 − ρ)|+ |ϕ(x0 + ρ)| ≤ L0

(
‖ϕx‖2 + ρ−δ ‖ϕ‖p+1

)γ
‖ϕ‖1−γr , (5)

with L0 > 0 , p > 0, γ := 2
2+r , δ := p+3

2(p+1) and r ∈ [1, 2].
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Here we used the notation ‖·‖s := ‖·‖Ls(x0−ρ,x0+ρ). The proof of this lemma
is worked out by using some basic inequalities for Lp and Sobolev spaces. Using
this lemma together with Young and Hölder inequalities we obtain

I ≤ ct 1−γ
2 (E + b)β , (6)

with β = γ/2+(1−γ)/(p+1), and c a positive constant. It is important to observe
here that β > 1/2 if and only if p < 1, since the argument we use now requires this
condition. This is the moment in which the degenerate parabolicity of the porous
medium equation comes in play. Applying Young’s inequality to (6), we obtain

I(Eρ)
1
2 ≤ ε(E + b) + cεt

1−γ
κ (Eρ)

1
κ , (7)

for some ε > 0 and κ := 2(1− β). Combining (4) and (7) and using b ≥ 0 we get

E ≤ ct 1−γ
κ (Eρ)

1
κ ,

for 0 < ρ < ρ0 and 0 < t < T . Since β > 1/2, we have κ < 1 and a direct
integration of this differential inequality in (ρ, ρ0) gives

E1−κ(ρ, t) ≤ E1−κ(ρ0, t)− c(ρ0 − ρ)t1−γ .

Therefore we deduce that choosing ρ ≤ cρ0 − E1−κ(ρ0, t)tγ−1 =: r(t), which is
possible till certain instant t∗ > 0 then E(ρ, t) = 0 for all t ∈ (0, t∗) and ρ such
that ρ ≤ r(t). And the result follows, i.e. u(·, t) = 0 in Br(t) for all t ∈ (0, t∗), or
in other words, the support of u(·, t) remains bounded in R at least while t < t∗.

3. The Mangroves’ Problem and Formation of Dead Cores

Mangroves grow on saturated soils or muds which are subject to regular inundation
by tidal water with salt concentration cw close to that of sea water. The mangrove
roots take up fresh water from the saline soil and leave behind most of the salt,
resulting in a net flow of water downward from the soil surface, which carries salt
with it. In the absence of lateral flow, the steady state salinity profile in the root
zone must be such that the salinity around the roots is higher than cw, and that
the concentration gradient is large enough so that the advective downward flow
of salt is balanced by the diffusive flow of salt back up to the surface. In [7] we
studied the following dimensionless model for the mangroves’ problem{

vt + (vq)x − vxx + f(x, v) = 0

qx + f(x, v) = 0
in QT := (0, d)× (0, T ) , (8)

with

v(0, ·) = vD, vx(d, ·) = q(d, ·) = 0 in (0, T ), and v(·, 0) = v0 in (0, d) . (9)

Here v := 1 − u and 0 ≤ u ≤ 1 denotes the water salt concentration, q the water
discharge and f(x, v) a function modeling the fresh water uptake by the roots of
mangroves, typically given by f(x, v) := k(x)vp, with k ≥ 0 the root distribution
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(a bounded function) and p a positive constant. The variable x ∈ Ω denotes depth.
The equations of (8) state the conservation of mass of salt and water.

The question is whether or not the water surrounding the roots of mangroves
may reach a threshold level of salinization, v = 0, in finite time. We know that if
p = 1, i.e. f is a linear function on the second variable, then v = 0 is not possible
in finite time. This is the same situation than that of the heat equation with a
linear source term. However, if p < 1, then f is non-Lipschitz continuous and a
different behaviour of v may appear. In fact, we prove, see theorem 3.1, that even
when v0 is positive, a dead core (region with v = 0) may appear in finite time. To
apply the energy method we consider the set

P(t) := {(x, τ) : |x− x0| < R(τ ; t), τ ∈ (t, T )} , for t ∈ (0, T ) ,

with R(τ ; t) := (τ − t)ν , 0 < ν < 1 to be fixed, α > 0 and x0 ∈ (0, d) such that
R(T ; 0) < x0 < d−R(T ; 0), implying P(t) ⊂ QT for all t ∈ (0, T ). For brevity, we
shall write P instead of P(t). We decompose the boundary of P as

∂P(t) := ∂fP(t) ∪ ∂lP(t) ,

with ∂fP(t) := {(x, T ) ∈ ∂P} and ∂lP(t) := {(x, τ) ∈ ∂P : t < τ < T}. Finally, we
define the local energy functions

E(t) :=
∫
P(t)

|vx|2 dx dτ and C(t) :=
∫
P(t)

vp+1 dx dτ . (10)

Observe that E and C are non-increasing functions with respect to t. We make
the following assumption on f : there exist positive constants k0, k1 such that

0 < k0s
p+1 ≤ sf(·, s) ≤ k1s

p+1 for s ∈ [0, 1] (11)

in P(t) for a.e. t ∈ (0, T ), with p ∈ (0, 1) and k0 > k1/2.

Theorem 3.1. Let (v, q) be a solution of (8)–(9) and assume (11). Then there exists
a constant M > 0 such that if E(0) + C(0) ≤ M then v ≡ 0 in P(t∗), for some
t∗ ∈ (0, T ).

Let us observe that testing the first equation of (8) with v and using the
second equation of (8) leads to the following estimate

E(0) + C(0) ≤
∫

Ω

v2
0(x)dx+

∫ T

0

vD(t)vx(0, t)dt .

In some situations, for instance when vD ≥ v0 the maximum principle implies
vx(0, ·) ≤ 0, allowing us to obtain an estimate of E(0) +C(0) only in terms of v0.

Proof of Theorem 3.1. The proof consists of three steps.
Step 1. Multiplying the first equation of (8) by v and integrating in P gives∫

P

{
1
2 (v2)t + 1

2 ((v2q)x + v2qx) + (|vx|2 − (vvx)x) + vf(x, 1− v)
}
dxdτ = 0 .
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Using the divergence theorem, the second equation of (8) and (11) we find∫
P
|vx|2 dxdτ + k0

∫
P
vp+1 dxdτ ≤

∫
∂lP

vvxnx dxdτ −

− 1
2

∫
∂lP

v2(nτ + qnx) dxdτ + k1
2

∫
P
vp+2 ,

with (nx, nτ ) the unitary outward normal vector to P. Using v ≤ 1, q ≤ dk1,

E(t) + (k0 − k1
2 )C(t) ≤ 1+dk1

2

∫ T

t

[v2]dτ +
∫
∂lP
|v||vx| dxdτ , (12)

where we introduced the notation [v] := |v(x0 +R(τ ; t), τ)|+ |v(x0 −R(τ ; t), τ)| .
Step 2. Our aim is to estimate the right hand side of (12) by means of E, C and
their derivatives. First notice that Et(t) =

∫ T
t

[|vx|2]Rt(τ ; t)dτ , with the subindex t
denoting derivative with respect to t. We use Hölder’s inequality to get∫

∂P
|v||vx| dxdτ ≤

(∫ T

t

−Rt[|vx|2] dτ

)1/2(∫ T

t

(−Rt)−1[v2] dτ

)1/2

=

=: (−Et)1/2I1 ≤ (−(E + C)t)1/2I1 . (13)

To handle I1(t) and I2(t) :=
∫ T
t

[v2] of (12) we apply the interpolation-trace in-
equality stated in lemma 2.1 to the function ϕ := v(·, t). We take r < 2 and find,
by applying Hölder’s inequality with exponent θ := 1−p

2−r

‖v(·, t)‖r ≤ ‖v(·, t)‖
2
rθ′
2 ‖v(·, t)‖

p+1
rθ
p+1 . (14)

Combining (5) and (14) and using v ≤ 1 we get

[v2] ≤ [v]2 ≤ L2
0m(R)(‖vx‖22 + ‖v‖p+1

p+1)γ |QT |
2(1−γ)
rθ′ ‖v‖

2(1−γ)(p+1)
rθ

p+1 (15)

with m(R) := max
{

1, R−2δγ
}

. We then deduce from (15)

I1 ≤ L0|QT |
1−γ
rθ′

(∫ T

t

m(R)(−Rt)−1(‖vx‖22 + ‖v‖p+1
p+1)γ+

2(1−γ)
rθ dτ

)1/2

. (16)

Due to the crucial assumption p < 1, it is compatible to choose r < 2 and r ≥
4/(3−p). Then we obtain that µ given by µ−1 := γ+(2(1−γ)/rθ) satisfies µ ≥ 1.
Using Hölder’s inequality with exponent µ and substituting R we obtain from (16)

I1 ≤ Λ(E + C)
γ
2 + 1−γ

rθ , (17)

with Λ(t) := L0|QT |
1−γ
rθ′ ν−1/2

(∫ T
t

(τ − t)µ′(1−ν−2δνγ)dτ
)1/2µ′

. Function Λ is finite
whenever we choose ν < (µ + 1)/(µ(1 + 2δ)) which is always possible since the
only restriction assumed on ν is 0 < ν < 1. Gathering (13) and (17) we get∫

∂P
|v||vx| dxdτ ≤ Λ(t)(−(E + C)t)1/2(E + C)

γ
2 + 1−γ

r . (18)
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In a similar way, but choosing r = 2 in (5), we get the following estimate

I2 ≤ L0Γ(E + C) , (19)

with Γ2(t) :=
∫ T
t

(τ − t)−δνdτ <∞ if ν < 1/δ.
Step 3. From (12), (18) and (19) we deduce

c0(E + C) ≤ Λ(−(E + C)t)1/2(E + C)
γ
2 + 1−γ

r ,

with c0 ≤ k0 − k1
2 −

1+dk1
2 L0Γ(t). Notice that making T − t small enough, say

T − t ≤ ε, we can ensure c0 > 0. Making the assumption, to force a contradiction,
that E(t) + C(t) > 0 for all t ∈ [0, T ], we arrive at the inequality

c20 (E(t) + C(t))2(1− γ2−
1−γ
r ) ≤ −Λ(t)2(E + C)t(t) . (20)

Due again to p < 1 we find σ := 2
(
1− γ

2 −
1−γ
r

)
< 1. We assume T > ε and

restrict t to take values on (T − ε, T ) (so T − t ≤ ε is fulfilled). Integrating (20) in
t ∈ (T − ε, t∗) with t∗ ∈ (T − ε, T ) we obtain

(E + C)1−σ(t∗) ≤ (E + C)1−σ(T − ε)− (1− σ)c20

∫ t∗

T−ε
Λ(t)−2dt .

Therefore, since E+C is non-increasing we have that if the initial energy satisfies

(E + C)1−σ(0) ≤ (1− σ)c20

∫ t∗

T−ε
Λ(t)−2dt =: M1−σ

then E(t∗) + C(t∗) = 0 and therefore v = 0 in P(t∗).

4. The Boussinesq System and Finite Speed of Propagation Along
the Characteristics

The Boussinesq system of hydrodynamics equations arises from a zero order ap-
proximation to the coupling between the Navier-Stokes equations and the ther-
modynamic equation. The presence of density gradients in a fluid means that
gravitational potential energy can be converted into motion through the action
of bouyant forces. Density differences are induced, for instance, by gradients of
temperature arising by heating non uniformly the fluid. In the Boussinesq approx-
imation of a large class of flows problems, thermodynamical coefficients, such as
viscosity, specific heat and thermal conductivity, can be assumed as constants lead-
ing to a coupled system with linear second order operators in the Navier-Stokes
equations and in the heat conduction equation. However, there are some fluids,
such as lubricants or some plasma flows, for which this is no longer an accurate
assumption. In this case the following problem must be considered, see [4]{

ut + (u · ∇)u− div (µ(θ)D(u)) = F(θ)

θt + u · ∇θ −∆ϕ(θ) = 0
in QT , (21)
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with div u = 0 in QT , and
u = 0, ϕ(θ) = 0 on ΣT ,

u(·, 0) = u0, θ(·, 0) = θ0 on Ω .
(22)

We shall study the finite speed of propagation of the temperature variable, θ,
along the characteristics defined by u. We suppose that ϕ is given by ϕ(s) :=
sm with m > 1, although more general functions may be considered, see [8].
Assume that the velocity component of a solution of (21)–(22) is such that u ∈
C([0, T ];C1

σ(Ω)), where σ denotes free divergence. Since u = 0 on ΣT , we may
consider the prolongation of u by zero to the whole RN , and formulate the problem

∂X
∂t

(x, t) = u(X(x, t), t) in RN × (0, T ),

X(x, 0) = x in RN ,

which admits a unique solution X ∈ C1(RN × [0, T ]). In the following we shall
suppose that θ0 vanishes in some ball Bρ0 centered in x0 and compactly imbedded
in Ω. The following property is a consequence of the continuity of X:{

there exist t̂ > 0 and ρ1 > ρ0 such that if t < t̂ and ρ < ρ1

then X(Bρ, t) ∈ Ω .
(23)

Theorem 4.1. Let (u, θ) be any solution of (21)–(22) and suppose that u is lo-
cally Lipschitz continuous in QT . Then there exists t∗ ∈ (0, t̂) and a continuous
function r : [0, t∗]→ R+, with r(0) = ρ0 such that

θ(x, t) ≡ 0 a.e. in {(x, t) : x ∈ X(Bρ0 , t), t ∈ (0, t∗)} .
Proof. We introduce the change of unknown v := θm. Then v satisfies:

(vp)t + u · ∇(vp)−∆v = 0 ,

for p := 1/m. Multiplying by v(·, t), for t > 0 fixed and integrating in X(Bρ, t)

p
p+1

∫
X(Bρ,t)

(
(vp+1)t + u · ∇vp+1

)
+
∫

X(Bρ,t)

|∇v|2 =
∫
∂X(Bρ,t)

v∇v · n . (24)

The Reynolds Transport Lemma asserts that for any regular ψ,∫
X(Bρ,t)

∂

∂t
ψ(y, t) dy =

d

dt

∫
X(Bρ,t)

ψ(y, t) dy −
∫

X(Bρ,t)

u(y, t) · ∇ψ(y, t)dy . (25)

Thus, integrating (24) in (0, t) and using (25) and v(·, 0) = 0 in Bρ0 we obtain∫
X(Bρ,t)

vp+1(t) +
∫ t

0

∫
X(Bρ,t)

|∇v|2 ≤ c
∫ t

0

∫
∂X(Bρ,t)

v∇v · n .

Note that this expression is similar to (3) but integrated in a ball transformed
along the characteristics defined by u. As usual, we define the energies

b(ρ, t) := sup
0≤τ≤t

∫
X(Bρ,t)

v(τ)p+1 and E(ρ, t) :=
∫ t

0

∫
X(Bρ,t)

|∇v|2 .
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Due to the regularity of X, we have ∂(X(Bρ, t)) ≡ X(∂Bρ, t) and therefore,

Eρ(ρ, t) =
∫ t

0

∫
∂X(Bρ,t)

|∇v|2 for a.e. ρ > 0 . (26)

To finish the proof we follow the steps given in section 2 using now a version of the
interpolation-trace trace inequality for sets transformed along the characteristics,
see [8]. We deduce b + E ≤ c(Eρ)1/2(b + E)1/κ where κ ∈ (0, 1) due to p < 1.
Integrating this inequality the assertion follows. ¤
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