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1 Introduction

For the time evolution of two competing species with homogeneous popu-
lation density, usually the Lotka-Volterra differential equations are used as 
an appropiate mathematical model. In the case of non-homogeneous den-
sities, diffusion effects have to be taken into account leading to reaction-
diffusion equations. Shigesada et al. proposed in their pioneering work 
[27] to introduce further so-called cross-diffusion terms modeling 
interspecific influence of the species. Denoting by ni the population 
density of the i-th species (i = 1, 2) and by Ji the corresponding flows of 
population, the time-dependent equations can be written as

(1.1) ∂tn1 + divJ1 = g1(n1, n2),
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∂tn2 + divJ2 = g2(n1, n2),(1.2)

J1 = −∇ ((c1 + α11n1 + α12n2)n1) + δ1n1∇U,(1.3)

J2 = −∇ ((c2 + α21n1 + α22n2)n2) + δ2n2∇U,(1.4)

in the bounded domain Ω ⊂ R
d (d ≥ 1) with time t > 0. Here, U = U(x) is

the (given) environmental potential, modeling areas where the environmen-
tal conditions are more or less favorable [22,27]. The diffusion coefficients
ci and αij are non-negative, and δi ∈ R (i, j = 1, 2). The source terms are
in Lotka-Volterra form:

g1(n1, n2) = (R1 − γ11n1 − γ12n2)n1,(1.5)

g2(n1, n2) = (R2 − γ21n1 − γ22n2)n2,(1.6)

where Ri ≥ 0 is the intrinsic growth rate of the i-th species (i = 1, 2),
γ11 ≥ 0 and γ22 ≥ 0 are the coefficients of intra-specific competition,
and γ12 ≥ 0 and γ21 ≥ 0 are those of interspecific competition.

The above system of equations is completed with mixed Dirichlet-
Neumann boundary conditions and initial conditions:

ni = nD,i on ΓD × (0,∞), Ji · ν = 0 on ΓN × (0,∞),(1.7)

ni(·, 0) = n0,i in Ω, i = 1, 2,(1.8)

where ν denotes the exterior unit normal to ∂Ω. This means that the popula-
tion density is fixed at a part of the domain boundary (due to emigration and
immigration processes), whereas no flux boundary conditions are prescribed
at the remaining boundary parts.

Eqs. (1.1)-(1.4) contain various types of reaction-diffusion models. In-
deed, in the case αij = 0 for i, j = 1, 2, they reduce to the drift-diffusion
equations, which has been studied in various fields of application, e.g.
electro-chemistry [2,3], biophysics [7] or semiconductor theory [21]. When
c1 = c2 = 0 and α12 = α21 = 0, Eqs. (1.1)-(1.4) are of degenerate
type. These types of problems arise, for instance, in porous media flow
[17], oil-recovery [8], plasma physics [14] or semiconductor theory [13]. In
chemotaxis, related models appear [9,23].

For α12 > 0 and α21 > 0, the problem becomes strongly coupled with
full diffusion matrix

A(n1, n2) =
(

c1 + 2α11n1 + α12n2 α12n1
α21n2 c2 + 2α22n2 + α21n1

)
.

Nonlinear problems of this kind are quite difficult to deal with since the
usual idea to apply maximum principle arguments to get a priori estimates
cannot be used here. Furthermore, the diffusion matrix is not symmetric and
of degenerate type if c1 = c2 = 0.
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Up to now, only partial results are available in the literature concerning
the well-posedness of the problem, and no results can be found concerning
the numerical analysis. We summarize some of the available results for the
time-dependent equations (see [31] for a review) and refer to [19,26] for
the stationary problem. Global existence of solutions and their qualitative
behavior forα11 = α22 = α21 = 0have been proved in, e.g., [20,24,25,30].
In this case, Eq. (1.2) is only weakly coupled. For sufficiently small cross-
diffusion parameters α12 > 0 and α21 > 0 (or equivalently, ”small” initial
data) and vanishing self-diffusion coefficients α11 = α22 = 0, Deuring
proved the global existence of solutions [6]. For the case c1 = c2 a global
existence result in one space dimension has been obtained by Kim [18].
Furthermore, under the condition

8α11 > α12, 8α22 > α21,(1.9)

Yagi [32] has shown the global existence of solutions in two space dimen-
sions assuming α12 = α21. A global existence result for weak solutions in
any space dimension under condition (1.9) can be found in [10].

Condition (1.9) can be easily understood by observing that in this case,
the diffusion matrix is positive definite:

ξT A(n1, n2)ξ ≥ min{c1, c2}|ξ|2 for all ξ ∈ R
2,

hence yielding an elliptic operator. If the condition (1.9) does not hold, there
are choices of ci, αij , ni ≥ 0 for which the matrix A(n1, n2) is not positive
definite, and it is therefore unclear if the problem (1.1)–(1.8) can be solved
for these data.

In this paper we provide the tools to treat this problem both analytically
and numerically. More precisely,

• we construct a positivity-preserving numerical scheme based on a
semidiscretization in time, and

• we show the numerical convergence of the semidiscrete solutions in one
space dimension.

Moreover, we obtain the global existence of non-negative solutions in one
space dimension. For these results we do not need any restriction on the
diffusion coefficients (except positivity; see Sect. 2). Our results are valid
only for the case of one space dimension since the continuous embedding
H1(Ω) ⊂ L∞(Ω) is crucial in the proof.

Before we introduce the method of proof, we perform (for a smoother
presentation) the following change of unknowns:

u1 = α21n1, u2 = α12n2, and q = −∇U.
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We assume that α12 > 0 and α21 > 0 which is no restriction since if α12 = 0
or α21 = 0, at least one of the equations (1.1), (1.2) is weakly coupled, and
the results of [24,25,30] apply. Eqs. (1.1)–(1.8) can be reformulated as

∂tui − div(ci∇ui + 2aiui∇ui + ∇(u1u2) + diuiq) = fi(u1, u2),(1.10)

ui = uD,i on ΓD × (0, T ),(1.11)

(ci∇ui + 2aiui∇ui + ∇(u1u2) + diuiq) · ν = 0 on ΓN × (0, T ),(1.12)

u(·, 0) = u0
i in Ω, i = 1, 2,(1.13)

where T > 0,

uD,1 = α21nD,1, uD,2 = α12nD,2, u0
1 = α21n0,1, u0

2 = α12n0,2

and

a1 = α11/α21, a2 = α22/α12, d1 = α21δ1, d2 = α12δ2.

The source terms are given by

fi(u1, u2) = (Ri − βi1u1 − βi2u2)ui,

with
β1i = γ1i/α21, β2i = γ2i/α12, i = 1, 2.

The key for understanding the problem (1.10)–(1.13) mathematically is
based on two observations. First, Eqs. (1.10)–(1.13) admit the entropy

η1(t) =
2∑

i=1

∫
Ω

(ui(log ui − log uD.i) − ui + uD,i) dx ≥ 0

with the entropy inequality

η1(t) + 2
∫ t

0

∫
Ω

{
2∑

i=1

(2ci|∇√
ui|2 + ai|∇ui|2) + 2|∇√

u1u2|2
}

dxdt

≤ η1(0) + C(T ),(1.14)

where C(T ) > 0 depends on T , q, the boundary data and the source terms.
By Poincaré’s inequality, this estimate provides L2(0, T ;H1(Ω)) estimates
for ui (if ai > 0). However, the entropy inequality can be made rigorous
only if ui ≥ 0, which cannot be easily obtained from the minimum principle.

The second observation is that the existence of an entropy allows for a
transformation of variables which symmetrizes the problem (cf. [4]). This
transformation reads

u1 = ew1 , u2 = ew2 ,
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and then Eqs. (1.10) transform into

∂t

(
ew1

ew2

)
− div

(
B(w1, w2)∇

(
w1

w2

)
+

(
d1e

w1

d2ew2

)
q

)
=

(
f1

f2

)

with the new diffusion matrix

B(w1, w2) =
(

c1 + 2a1e
2w1 + ew1+w2 ew1+w2

ew1+w2 c2 + 2a2e
2w1 + ew1+w2

)
,

which is symmetric and positive definite:

det B(w1, w2) ≥ (c1 + 2a1e
2w1)(c2 + 2a2e

2w2).(1.15)

In this formulation the matrix B provides an elliptic operator for all ci > 0,
ai ≥ 0, i = 1, 2.

Moreover, if L∞ bounds for wi are available, we obtain a strictly positive
solution ui to the original problem. In order to obtain these L∞ bounds for
wi = log ui, the entropy estimate (1.14) is not sufficient since this estimate
does not exclude the case ui = 0 locally. We use another ‘entropy’ to derive
a priori bounds:

η(t) = η1(t) + αη2(t),

where

η2(t) =
2∑

i=1

∫
Ω

(ui − uD,i − log(ui/uD,i))dx.

For appropriate α > 0 (see Sect. 3), we can show that, in addition to (1.14),
it holds

2∑
i=1

∫ t

0

∫
Ω

|∇ log ui|2dxdt ≤ c(α),

where c(α) depends on α, but not on ui. Using Poincaré’s and Sobolev’s
inequalities, we can see that this provides a bound for log ui in
L2(0, T ;L∞(Ω)). Here, the assumption of one space dimension becomes
crucial.

The idea of employing an exponential transformation of variables has
been sucessfully used to obtain non-negative or positive solutions to elliptic
and parabolic equations of fourth order in [11,15,16].

Finally, we remind here that parabolic systems of the type

∂tbi(w) − div ai(x, b(w),∇w) = fi(b(w)), i = 1, . . . , n,

have been studied by Alt and Luckhaus [1] assuming a monotone func-
tion b = (b1, . . . , bn) : R

n → R
n and a uniform elliptic operator

ai(x, b(w),∇w). However, no positivity or non-negativity results have been
obtained.

Let us summarize the main features of the presented method of proof:
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• The numerical scheme preserves the positivity of the solution.
• No restriction on the diffusion coefficients ci, ai > 0 are needed.
• The solution of the continuous problem (as the limit of discrete solutions)

is non-negative and exists globally in time.

We stress once again the fact that the positivity (and non-negativity) property
is obtained without the use of the maximum principle.

This paper is organized as follows. In Sect. 2 we make precise the
semidiscretization in time and state the main results. Section 3 is devoted
to the proof of the existence of positive semidiscrete solutions. Finally, in
Sect. 4 the continuous limit is performed.

2 Semi-discretization in time and main results

We consider the following assumptions:

(A1) Ω ⊂ R is a bounded interval, ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, ΓN is
relatively open, and ΓD �= ∅.

(A2) u0
i ∈ L∞(Ω) satisfies u0

i ≥ γ > 0 in Ω, uD,i = const. > 0 on ΓD,
i = 1, 2.

(A3) ai, ci > 0, di ∈ R (i = 1, 2) and q ∈ L2(Ω × (0, T )).
(A4) fi : [0,∞)2 → R (i = 1, 2) is continuous and it holds for all u1, u2 >

0, p, q > 0:

fi(u1, u2) ≤ C1,

f1(u1, u2) log
u1

p
+ f2(u1, u2) log

u2

q
≤ C2(p, q),

f1(u1, u2)
(

1
p

− 1
u1

)
+ f2(u1, u2)

(
1
q

− 1
u2

)
≤ C3(p, q),

for some C1, C2(p, q), C3(p, q) > 0.

Remark 2.1 The Lotka-Volterra source terms

f1(u1, u2) = (R1 − β11u1 − β12u2)u1,

f2(u1, u2) = (R2 − β21u1 − β22u2)u2

satisfy condition (A4) if βii > 0, i = 1, 2 and β12 = β21 ≥ 0. Indeed, we
obtain for u1, u2 > 0,

f1(u1, u2) log
u1

p
+ f2(u1, u2) log

u2

q

= (R1−β11u1)u1 log
u1

p
+(R2 − β22u2)u2 log

u2

q
−β12u1u2 log

(
u1u2

pq

)
≤ C,
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and

f1(u1, u2)
(

1
p

− 1
u1

)
+ f2(u1, u2)

(
1
q

− 1
u2

)

= (R1 − β11u1 − β12u2)
(

u1

p
− 1

)
+ (R2 − β21u1 − β22u2)

(
u2

q
− 1

)

= (R1 − β11u1)
(

u1

p
− 1

)
+ (R2 − β22u2)

(
u2

q
− 1

)

+ β12

(
u1 + u2 −

(
1
p

+
1
q

)
u1u2

)

=
(

R1

p
+ β11 + β12 − β11

p
u1

)
u1 +

(
R2

q
+ β22 + β12 − β22

q
u2

)
u2

− R1 − R2 − β12

(
1
p

+
1
q

)
u1u2

≤ C,

for an appropriate C > 0.

We introduce now the semi-discrete problem. Since some of our results
also holds for the multi-dimensional problem we keep the notation using div
and ∇. Let N ∈ N and let τ = T/N be the time step. (We can also allow
for quasi-uniform time steps; see [5] for details.) We are seeking solutions
uk

1, u
k
2, approximating u, v, respectively, in the interval ((k − 1)τ, kτ ], k =

1, . . . , N , of the recursive elliptic problem

1
τ
(uk

i − uk−1
i ) − divJk

i = fi(uk
1, u

k
2) in Ω,(2.1)

uk
i = uD,i on ΓD, Jk

i · ν = 0 on ΓN ,(2.2)

where

Jk
i = ci∇uk

i + 2aiu
k
i ∇uk

i + ∇(uk
1u

k
2) + diq

kuk
i , i = 1, 2,

u0
i = u0 in Ω, for i = 1, 2, and

qk =
1
τ

∫ kτ

(k−1)τ
q(·, t)dt.

Define the (in time) piecewise constant functions u(τ), v(τ) and q(τ) by

u
(τ)
i = uk

i (i = 1, 2), q(τ) = qk in Ω × ((k − 1)τ, kτ ],

for k = 1, . . . , N . Then it holds (see, e.g., [12])

q(τ) → q in L2(QT ) as τ → 0.(2.3)

Our main results are the following.
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Theorem 2.2 Let (A1)–(A4) hold. Then there exists solutions (uk
1, u

k
2) ∈

H1(Ω; R
2) of (2.1)–(2.2) satisfying

0 < γk ≤ uk
1(x), uk

2(x) ≤ Γk, x ∈ Ω,

for some γk, Γk > 0, k = 1, . . . , N .

The following theorem concerns the convergence of the discrete solutions
(u(τ)

1 , u
(τ)
2 ) to a solution (u1, u2) of the continuous problem:

Theorem 2.3 Let (A1)–(A4) hold. Then there exists a subsequence of
(u(τ)

1 , u
(τ)
2 ) (not relabeled) such that as τ → 0,

u
(τ)
i → ui strongly in L2(QT ),

u
(τ)
i ⇀ ui weakly in L2(0, T ;H1(Ω)),

∂tu
(τ)
i ⇀ ∂tui weakly in L1(0, T ;H−1(Ω))

and (u1, u2) is a weak solution of (1.10)–(1.13) satisfying ui ∈
L2(0, T ;H1(Ω)) ∩ W 1,1(0, T ;H−1(Ω)) and

u1(x, t), u2(x, t) ≥ 0 for (x, t) ∈ QT .

3 Proof of Theorem 2.2

As explained in the introduction, we have to work with variables which
symmetrize the elliptic operator. Introduce the new variables w = (w1, w2)
by defining

u1 = ew1 , u2 = ew2

and set

b(w) = (b1(w), b2(w)) = (ew1 , ew2).

With the diffusion coefficients

aii(w) = cie
wi + 2aie

2wi + ew1+w2 , i = 1, 2,

a12(w) = a21(w) = ew1+w2 ,

Eqs. (1.10)–(1.13) are formally equivalent to

∂tbi(w)−div


 2∑

j=1

aij(w)∇wj + dibi(w)q


 = Fi(w), in Ω×(0, T ),

(3.1)
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 2∑

j=1

aij(w)∇wj + dibi(w)q


 · ν = 0 on ΓN × (0, T ),(3.2)

w = wD on ΓD × (0, T ),(3.3)

w(0) = w0 in Ω,(3.4)

where Fi(w) = fi(ew1 , ew2), wD,i = log(uD,i), and w0
i = log(u0

i ), i =
1, 2. Moreover, Eqs. (2.1)–(2.2) can be rewritten as

bi(wk) − bi(wk−1)
τ

− div


 2∑

j=1

aij(wk)∇wk
j + dibi(wk)qk




= Fi(wk) in Ω,(3.5) 
 2∑

j=1

aij(wk)∇wk
j + dibi(wk)qk


 · ν = 0 on ΓN ,(3.6)

wk = wD on ΓD,(3.7)

for k = 1, . . . , N . We introduce the discrete entropy (for k = 0, . . . , N ,
including thus the entropy of the initial data)

ηk = ηk
1 + αηk

2 , where α = 2 min{c1, c2},

ηk
1 is the discrete “physical” entropy

ηk
1 =

2∑
i=1

∫
Ω

(bi(wk)(wk
i − wD,i) − bi(wk) + bi(wD))dx,

and ηk
2 is another discrete entropy:

ηk
2 =

2∑
i=1

∫
Ω

(ewk
i −wD,i − (wk

i − wD,i))dx.

Notice that ηk ≥ 0.
First we prove the discrete analogue of an entropy-type estimate which

holds in any space dimension.

Lemma 3.1 Let (A1)–(A4) hold and letwk ∈ H1(Ω; R2)be a weak solution
of (3)–(3.7). Then there exists a constant C > 0 such that for any k =
1, . . . , N and any τ > 0,

ηk+τ

2∑
i=1

∫
Ω

(
α2

4
|∇wk

i |+α|∇ewk
i /2|2+ai|∇ewk

i |2
)

dx≤ηk−1+Cτ.

(3.8)
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Proof. The key of the proof is to use (wk
i −wD,i)+α(bi(−wD)−bi(−wi)) ∈

H1
0 (Ω ∪ΓN ) = {v ∈ H1(Ω) : v = 0 on ΓD} as a test function in the weak

formulation of (3.5)–(3.7). Adding the corresponding equations for i = 1
and i = 2 gives

1
τ

2∑
i=1

∫
Ω

(bi(wk)−bi(wk−1))
[
(wk

i −wD,i)+α(bi(−wD)−bi(−wk))
]
dx

+
2∑

i,j=1

∫
Ω

aij(wk)∇wk
j ·∇

[
(wk

i −wD,i)+α(bi(−wD)−bi(−wk))
]
dx

=−
2∑

i=1

∫
Ω

dibi(wk)qk·∇
[
(wk

i −wD,i)+α(bi(−wD)−bi(−wk))
]
dx

+
2∑

i=1

∫
Ω

Fi(wk)
[
(wk

i −wD,i)+α(bi(−wD)−bi(−wk))
]
dx.(3.9)

In order to estimate the first term on the left-hand side of (3.9), we use the
convexity of x → bi(x) and the elementary inequality ex ≥ 1 + x for all
x ∈ R:

1
τ

2∑
i=1

∫
Ω

(bi(wk)−bi(wk−1))[(wk
i −wD,i)+α(bi(−wD)−bi(−wk))]dx

=
1
τ
(ηk

1−ηk−1
1 )+

1
τ

2∑
i=1

∫
Ω

(bi(wk)−bi(wk−1)−bi(wk−1)(wk
i −wk−1

i ))dx

+
α

τ
(ηk

2−ηk−1
2 )+

α

τ

2∑
i=1

∫
Ω

(ewk−1
i −wk

i −wk−1
i +wk

i −1)dx

≥ 1
τ
(ηk−ηk−1).

We rewrite the second term on the left-hand side of (3.9), using wD,i =
const., as follows:

2∑
i,j=1

∫
Ω

aij(wk)∇wk
j · (∇wk

i + αe−wk
i ∇wk

i )dx

=
2∑

i=1

∫
Ω

(cie
wk

i + 2aie
2wk

i + αci + 2αaie
wk

i )|∇wk
i |2dx

+ α

∫
Ω

(ewk
2 |∇wk

1 |2 + ewk
1 |∇wk

2 |2 + (ewk
1 + ewk

2 )∇wk
1 · ∇wk

2)dx

+ 2
∫

Ω
|∇ewk

1+wk
2 |2dx.
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For the first term on the right-hand side of (3.9) we employ Young’s inequal-
ity:

−
2∑

i=1

∫
Ω

dibi(wk)qk(∇wk
i + αe−wk

i ∇wk
i )dx

≤
2∑

i=1

∫
Ω

(
aie

2wk
i |∇wk

i |2 +
αci

2
|∇wk

i |2 +
(

1
4

+
1

2αci

)
d2

i |qk|2
)

dx.

Finally, by Assumption (A4), we obtain for the last term of (3.9):

2∑
i=1

∫
Ω

Fi(wk)[(wk
i −wD,i)+α(bi(−wD,i)−bi(−wk

i ))]dx

=
2∑

i=1

∫
Ω

(fi(ewk
1 , ewk

2 )(wk
i −wD,i)+αfi(ewk

1 , ewk
2 )(e−wD,i−e−wk

i ))dx

≤
2∑

i=1

∫
Ω

(C2(wD,1, wD,2)+C3(uD,1, uD,2))dx

≤ C,

where here and in the following C > 0 denotes a constant independent of
wk

i and τ with values varying from occurence to occurence.
Putting the above estimates together, we infer from (3.9):

1
τ
(ηk − ηk−1) +

2∑
i=1

∫
Ω

(αci

2
+ (ci + 2αai)ewk

i + aie
2wk

i

)
|∇wk

i |2dx

≤ C +
2∑

i=1

∫
Ω

(
1
4

+
1

2αci

)
d2

i |qk|2dx

− α

∫
Ω

(ewk
2 |∇wk

1 |2 + ewk
1 |∇wk

2 |2 + (ewk
1 + ewk

2 )∇wk
1 · ∇wk

2) dx

≤ C +
α

4

∫
Ω

(ewk
1 |∇wk

1 |2 + ewk
2 |∇wk

2 |2)dx.

The last integral can be absorbed by the second term on the left-hand side
since α = 2 min{c1, c2}:

1
τ
(ηk − ηk−1) +

2∑
i=1

∫
Ω

(
α2

4
+

α

4
ewk

i + aie
2wk

i

)
|∇wk

i |2dx ≤ C,

from which we deduce (3.8) and hence the assertion of the lemma. �
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Remark 3.2 The a priori estimate of Lemma 3.1 can only be obtained if
c1, c2 > 0. If ci = 0 and a1, a2 > 0, we get uniform estimates only
for ∇ewk

i /2 and ∇ewk
i which is not enough to control wk

i . If ai = 0 and
c1, c2 > 0 we control wk

i in H1(Ω), by Poincaré’s inequality and therefore,
in the one-dimensional case, also ewk

i in H1(Ω). Finally, notice that the a
priori estimate (3.8) holds for any α > 0 if ai > 1

8 which is exactly the
condition needed in [32].

Lemma 3.3 Let (A1)–(A4) hold and let wk−1 ∈ L∞(Ω; R2), k ≥ 1. Then
there exists a solution wk ∈ H1(Ω; R2) of (3.5)–(3.7).

Remark 3.4 Since the solution satisfies wk ∈ H1(Ω; R2) ↪→ L∞(Ω; R2)
in one space dimension, the unknowns uk

i = exp(wk
i ) are well defined

and elements of H1(Ω). Hence (uk
1, u

k
2), k = 1, . . . , N , is a solution of

(2.1)–(2.2), and Theorem 2.2 is a consequence of Lemma 3.3.

Proof. We use Leray-Schauder’s fixed-point theorem. For this, let z =
(z1, z2) ∈ L∞(Ω; R2) be given and consider the linear system

−∂x


 2∑

j=1

aij(z)∂xwk
j + dibi(z)qk


 =

1
τ
(bi(wk−1) − bi(z)) + Fi(z)

(3.10)

in Ω, i = 1, 2, together with the boundary conditions
 2∑

j=1

aij(z)∂xwk
j + dibi(z)qk


 · ν = 0 on ΓN ,(3.11)

wk = wk
D on ΓD.(3.12)

Since
2∑

i,j=1

aij(z)ξiξj ≥ γ(‖z‖L∞(Ω))|ξ|2

for all ξ = (ξ1, ξ2) ∈ R
2 and some γ = γ(‖z‖L∞(Ω)) > 0, we can

apply Lax-Milgram’s lemma to get the existence of a unique solution wk =
(wk

1 , wk
2) ∈ H1(Ω; R2) to (3.10)–(3.12). Since d = 1, Sobolev’s embedding

theorem implies wk ∈ L∞(Ω; R2). This defines the fixed-point operator

S : L∞(Ω; R2) → L∞(Ω; R2), z → wk.

The continuity of S follows from standard arguments. Indeed, let zn → z in
L∞(Ω) as n → ∞ and wk

n = S(zn). Using wk
n − wk

D as a test function in
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the weak formulation of (3.10), we obtain from standard elliptic estimates
and Poincaré’s inequality the bound

‖wk
n‖H1(Ω) ≤ c(‖zn‖L∞(Ω)),

where the constant c = c(‖zn‖L∞(Ω)) also depends on wk−1 and the data.
Since H1(Ω; R2) embeds in L∞(Ω; R2) compactly in one space dimension,
there is a subsequence (wk

n′) of (wk
n) such that

wk
n′ → wk strongly in L∞(Ω),

wk
n′ ⇀ wk weakly in H1(Ω),

as n′ → ∞. Performing the limit n′ → ∞ in the weak formulation of (3.10)
shows that wk = S(z). Since the limit wk is unique,

wk
n → wk strongly in L∞(Ω),

for the whole sequence (wk
n). The compactness of the embedding implies

the compactness of the operator S.
Now let wk ∈ L∞(Ω; R2) and σ ∈ [0, 1] be such that wk = σS(wk).

An estimate very similar to the estimate of Lemma 3.1 (which settles the
case σ = 1) gives the existence of wk and σ such that

2∑
i=1

∫
Ω

|∇wk
i |2 ≤ Cτ + ηk−1 ≤ C.

By Poincaré’s and Sobolev’s inequality, this implies

‖wk‖L∞(Ω) ≤ C‖wk‖H1(Ω) ≤ C,

which is the desired uniform bound. Therefore, we can apply the Leray-
Schauder fixed-point theorem to deduce the existence of a fixed-point of S
and thus a solution of (3.5)–(3.7). �

4 Proof of Theorem 2.3

For the proof of Theorem 2.3 we need a priori estimates uniformly in τ .
Define the piecewise constant functions w(τ) by

w(τ)(x, t) = wk(x) if (x, t) ∈ Ω × ((k − 1)τ, kτ ].

An immediate consequence of Lemma 3.1 is the following result:
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Corollary 4.1 It holds for τ > 0,

‖η(τ)‖L∞(0,T ;L1(Ω)) ≤ C,

2∑
i=1

(
α‖ew

(τ)
i /2‖L2(0,T ;H1(Ω)) + ai‖ew

(τ)
i ‖L2(0,T ;H1(Ω))

)
≤ C,

where C > 0 is independent of τ and

η(τ)(t) =
2∑

i=1

∫
Ω

(
bi(w(τ))(w(τ)

i − wD) − bi(w(τ)) + bi(wD)

+ α(bi(w(τ)) − w
(τ)
i + wD,i)

)
(t)dx.

Recall that α = 2 min{c1, c2}.

Proof of Corollary 4.1. We obtain from the entropy inequality (3.8) for
1 ≤ m ≤ N ,

ηm − η0 =
m∑

k=1

(ηk − ηk−1)

≤ −
m∑

k=1

τ

∫
Ω

2∑
i=1

(α|∇ewk
i /2|2 + ai|∇ewk

i |2)dx + Cmτ.

Applying the maximum over m = 1, . . . , N and using mτ ≤ Nτ = T
gives

‖η(τ)‖L∞(0,T ;L1(Ω)) +
2∑

i=1

(
α‖∇ew

(τ)
i /2‖L2(QT ) + ai‖∇ew

(τ)
i ‖L2(QT )

)
≤ η0 + CT.

Thus, Poincaré’s inequality gives the conclusion. �

We also need an estimate for the discrete time derivative. For this we
define

b̃(τ)(·, t) =
kτ − t

τ

(
b(wk) − b(wk−1)

)
+ b(wk), t > 0.

Furthermore, let στ be the shift operator

στw
(τ)(·, t) = wk−1 if t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N.

Then we have
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Lemma 4.2 It holds

‖b(w(τ)) − b(στw
(τ))‖L1(0,T ;V ∗) ≤ Cτ,

‖∂tb̃
(τ)‖L1(0,T ;V ∗) + ‖b̃(τ)‖L2(0,T ;H1(Ω)) ≤ C,

where C does not depend on τ and V ∗ = (H1
0 (Ω ∪ ΓN ))∗.

Proof. The usual idea is to use wk
i − wk−1

i as a test function in (3) for
i = 1, 2 and to obtain the estimate∫

Ω

(
b(wk) − b(wk−1)

)
· (wk − wk−1)dx ≤ Cτ,

from which it follows that w(τ) −στw
(τ) → 0 in L2(QT ). The above bound

can only be achieved if an L∞ bound on wk independent of k is available.
However, by Corollary 4.1, we only have a uniform H1 bound on ewk

, i.e.
we do not control any lower bound of wk. (Here we can allow for ci ≥ 0,
i = 1, 2.)

Therefore we compute a bound for b(w(τ))−b(στw
(τ)) in a larger space

than L2(QT ) and use the assumption d = 1 in order to obtain a uniform L∞

bound for ewk
. Indeed, from the weak formulation of Eqs. (3) for i = 1, 2

we obtain for V = H1
0 (Ω ∪ ΓN ), i = 1, 2,

τ−1‖bi(w(τ)) − bi(στw
(τ))‖L1(0,T ;V ∗)

≤ ‖ci∇ew
(τ)
i + 2aie

w
(τ)
i ∇ew

(τ)
i + die

w
(τ)
i q(τ) + Fi(w(τ))‖L1(0,T ;L2(Ω))

+ ‖ew
(τ)
1 ∇ew

(τ)
2 + ew

(τ)
2 ∇ew

(τ)
1 ‖L1(0,T ;L2(Ω))

≤ ci‖∇ew
(τ)
i ‖L1(0,T ;L2(Ω)) + 2ai‖ew

(τ)
i ‖L2(0,T ;L∞(Ω))‖∇ew

(τ)
i ‖L2(QT )

+ di‖ew
(τ)
i ‖L2(0,T ;L∞(Ω))‖q(τ)‖L2(QT ) + Cf

+ ‖ew
(τ)
1 ‖L2(0,T ;L∞(Ω))‖ew

(τ)
2 ‖L2(QT )

+ ‖ew
(τ)
2 ‖L2(0,T ;L∞(Ω))‖ew

(τ)
1 ‖L2(QT ).

Since ai > 0 and d = 1, we obtain

‖ew
(τ)
i ‖L2(0,T ;L∞(Ω)) ≤ C‖ew

(τ)
i ‖L2(0,T ;H1(Ω)) ≤ C,

in view of Corollary 4.1, and therefore

‖bi(w(τ)) − bi(στw
(τ))‖L1(0,T ;V ∗) ≤ Cτ.

Furthermore,

‖∂tb̃
(τ)‖L1(0,T,V ∗) ≤ τ−1‖b(w(τ)) − b(στw

(τ))‖L1(0,T ;V ∗) ≤ C
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and

‖b̃(τ)‖L2(0,T ;H1(Ω)) ≤ 2‖b(w(τ))‖L2(0,T ;H1(Ω))

+‖b(στw
(τ))‖L2(0,T ;H1(Ω)) ≤ C,

by Corollary 4.1. �

Proof of Theorem 2.3. Since the embedding H1(Ω) ↪→ L∞(Ω) is compact
in one space dimension, we can apply Aubin’s lemma [28] to b̃(τ), in view
of the uniform bounds of Lemma 4.2, to obtain, up to a subsequence which
is not relabeled,

∂tb̃
(τ) ⇀ ∂tz weakly in L1(0, T ;V ∗),(4.1)

b̃(τ) ⇀ z weakly in L2(0, T ;H1(Ω)),(4.2)

b̃(τ) → z strongly in L2(0, T ;L∞(Ω)),(4.3)

b(w(τ)) ⇀ u weakly in L2(0, T ;H1(Ω)).(4.4)

By Lemma 4.2 we have, as τ → 0,

‖b̃(τ) − b(w(τ))‖L1(0,T ;V ∗) ≤ ‖b(w(τ)) − b(στw
(τ))‖L1(0,T ;V ∗) → 0,

and hence z = u.
We claim now that

b(w(τ)) → u strongly in L2(QT ).(4.5)

Indeed, by (4.2)–(4.4),

‖b(w(τ)) − u‖L1(0,T ;L2(Ω))

≤ ‖b(w(τ)) − b̃(τ)‖L1(0,T ;L2(Ω)) + ‖b̃(τ) − u‖L1(0,T ;L2(Ω))

≤ ‖b(w(τ)) − b̃(τ)‖1/2
L1(0,T ;V ∗)‖b(w(τ)) − b̃(τ)‖1/2

L1(0,T ;V )

+ ‖b̃(τ) − u‖L1(0,T ;L2(Ω))

≤ ‖b(w(τ)) − b̃(τ)‖L1(0,T ;V ∗) · C + ‖b̃(τ) − u‖L1(0,T ;L2(Ω))

→ 0 as τ → 0,

and thus

b(w(τ)) → u strongly in L1(0, T ;L2(Ω)).(4.6)

Then Corollary 4.1 and (4.6) give

‖b(w(τ)) − u‖L2(0,T ;L1(Ω)) ≤ ‖b(w(τ)) − u‖1/2
L∞(0,T ;L1(Ω))

× ‖b(w(τ)) − u‖1/2
L1(QT )

≤ C‖b(w(τ)) − u‖1/2
L1(QT )

→ 0 as τ → 0,
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and Gagliardo-Nirenberg’s inequality yields

‖b(w(τ)) − u‖L2(QT ) ≤ C‖b(w(τ)) − u‖1/2
L2(0,T ;H1(Ω))

× ‖b(w(τ)) − u‖1/2
L2(0,T ;L1(Ω))

≤ C‖b(w(τ)) − u‖1/2
L2(0,T ;L1(Ω))

→ 0 as τ → 0,

which is (4.5).
Now we can let τ → 0 in the weak formulation of (3), i = 1, 2, which

reads for φ ∈ L∞(0, T ; (W 1,∞(Ω))∗) :∫ T

0
〈∂tb̃i

(τ)
, φ〉dt +

∫
QT

(
ci∇ew

(τ)
i + 2aie

w
(τ)
i ∇ew

(τ)
i + ∇ew

(τ)
1 +w

(τ)
2

)
·∇φdxdt

= −di

∫
QT

ew
(τ)
i q(τ) · ∇φdxdt +

∫
QT

fi(ew
(τ)
1 , ew

(τ)
2 )φdxdt.

In view of (4.1)–(4.5), (2.3) and Assumption (A2) we obtain∫ T

0
〈∂tui, φ〉dt +

∫
QT

(ci∇ui + 2aiui∇ui + ∇(u1u2)) · ∇φdxdt

= −di

∫
QT

uiq · ∇φdxdt +
∫

QT

fi(u1, u2)φdxdt,

i.e. u = (u1, u2) is a weak solution of (1.10)–(1.11). Moreover, the initial
condition (1.13) is satisfied in the sense of V ∗. �

Remark 4.3 The presented positivity-preserving scheme will be used for
numerical simulations in a future work. For numerical stationary solutions,
we refer to [10].
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