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Abstract. A cross-diffusion system of parabolic equations for the relative concentration and
the dynamic repose angle of a mixture of two different granular materials in a long rotating drum
is analyzed. The main feature of the system is the ability to describe the axial segregation of the
two granular components. The existence of global-in-time weak solutions is shown for arbitrary large
cross-diffusion by using entropy-type inequalities and approximation arguments. The uniqueness of
solutions is proved if cross-diffusion is not too large. Furthermore, we derive a sufficient condition
on the parameters to have non-segregation. Finally, numerical simulations illustrate the long-time
coarsening of the segregation bands in the drum.
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1. Introduction. One important feature of granular materials, consisting of
different components, is their ability to segregate under external agitation rather than
to further mix [21]. Consider a long cylinder rotating about its longitudinal axis,
which is partially filled with a mixture of two different kinds of granular particles.
The mixture of grains may exhibit both radial and axial size segregation. Roughly
speaking, radial segregation occurs during the first few revolutions of the drum and
is often followed by slow axial segregation. Axial segregation leads to either a stable
array of concentration bands or, after a very long time, to complete segregation [2, 3,
24].

In this paper we are interested in the existence analysis of a specific model for
granular materials derived in [3]. Consider a mixture of two kinds of particles with
volume concentrations u1, u2 ∈ [0, 1], placed in a horizontal long narrow rotating
cylinder of length L > 0. Let u = u1 − u2 ∈ [−1, 1] be the relative concentration of
the mixture. Introduce the so-called dynamic angle of repose θ as the arctangent of
the average slope of the free surface of the mixture which is assumed to be flat (see
Figure 1.1). The variables u and θ are assumed to be constant in each cross section
of the drum and depend therefore only on the axial coordinate z ∈ Ω = (0, L) and on
the time t > 0.

Fig. 1.1. Relative concentration u and dynamical angle of repose θ in the geometry of the cross
section of a rotating drum. The gray region indicates the mixture partially filling the drum. The
variables u and θ are assumed to be constant in each cross section.
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In [3] the following cross-diffusion system for the evolution of u and θ has been
derived:

ut − (νuz − (1− u2)θz)z = 0, (1.1)
θt − (γu+ θ)zz + θ = µu in QT := Ω× (0, T ), (1.2)

where the subindices denote partial derivatives. The model (1.1)-(1.2) is obtained by
averaging the mass conservation laws for the two components of the granular matter
over the cross section of the cylinder, under the main assumptions that the mass of
grains in each cross-section of the drum remains constant and that the grains separate
predominantly near the surface of the drum, whereas in the bulk of the drum particles
are equally advected by the bulk flow (see [3] for details of the derivation).

The positive constant ν is related to the Fickian diffusion constants arising in
the surface fluxes of the two materials. The constant γ > 0 is proportional to the
difference of the Fickian diffusivities. Finally, µ is related to the difference of the
static repose angles of the two kind of particles.

We impose as in [3, 20] periodic boundary conditions and initial conditions for u
and θ, as we are not interested in effects due to the boundary conditions:

u(0, ·) = u(L, ·), uz(0, ·) = uz(L, ·)
θ(0, ·) = θ(L, ·), θz(0, ·) = θz(L, ·)

in (0, T ),

u(·, 0) = u0, θ(·, 0) = θ0 in Ω.
(1.3)

In the physical literature, periodic boundary conditions have been employed in nu-
merical simulations of the dynamics of the granular materials in order to eliminate
boundary effects [3, 20]. The subsequent analysis also works for no-flux and Dirichlet
boundary conditions (with appropriate changes of the obtained estimates).

We remark that the problem is intrinsically one-dimensional in space since the
equations are obtained by averaging over the cross section. For a two-dimensional
model we refer, for instance, to [10].

The terms ((1 − u2)θz)z and γuzz in (1.1)-(1.2) are called cross-diffusion terms
[17]. We remark that segregation effects due to cross-diffusion are well known in
population dynamics, and related cross-diffusion systems have been studied in math-
ematical biology (see, e.g., [18, 22]).

Segregation phenomena of granular material in rotating drums have been inten-
sively investigated in the physical literature. For instance, radial segregation has been
investigated numerically using particle methods [10] and analytically using leading-
order analysis [6] or shock-wave analysis [14]. Axial segregation has been simulated,
for instance, in [2, 3, 20] and analyzed in [3, 5, 16]. For more references, particularly
for experimental studies, we refer to the monograph [21] and the review paper [19].

Mathematically, the evolution problem (1.1)-(1.2) has a full and non-symmetric
diffusion matrix:

A :=
(
ν −(1− u2)
γ 1

)
.

Problems with full diffusion matrix also arise, for instance, in semiconductor theory
[7], population dynamics [18], and in non-equilibrium thermodynamics [9]. As a
consequence, no classical maximum principle arguments and no regularity theory as
for single equations are generally available for such kind of problems.

Notice that there are values for u and the parameters ν and γ for which the
above matrix A is not positive definite in the sense that x>Ax < 0 may hold for some
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x. The ellipticity of the system (1.1)-(1.2) is guaranteed if 4ν > γ (and |u| ≤ 1).
For these values, the existence of global-in-time solutions of (1.1)-(1.3) can be proved
using standard techniques. The question arises if it is possible to prove the existence
of global weak solutions for any values of the parameters ν > 0 and γ > 0. In this
paper we give a positive answer to this question.

The key of the existence analysis is the observation that the system (1.1)-(1.2)
possesses a functional whose time derivative is uniformly bounded in time if |u| < 1.
Indeed, using the functions φ(u), where

φ(s) :=
γ

2
log

1 + s

1− s
for − 1 < s < 1,

and θ in the weak formulation of (1.1) and (1.2), respectively, and adding the resulting
equations leads to the inequality

d

dt

∫ L

0

(
Φ(u) +

1
2
θ2

)
dz +

∫ L

0

(γνu2
z + θ2z)dz =

∫ L

0

(µuθ − θ2)dz ≤ c, (1.4)

where c > 0 only depends on µ and L. Here the function Φ(s) := γ
2 (1 − s) log(1 −

s) + γ
2 (1 + s) log(1 + s) ≥ 0 is the primitive of φ such that Φ(0) = 0. Observe that

this estimate is purely formal since the values |u| = 1 are possible.
The estimate (1.4) has an important consequence. With the change of unknowns

u = g(v), where g is the inverse of φ, i.e. g : R → (−1, 1) is given by

g(s) :=
e2s/γ − 1
e2s/γ + 1

, (1.5)

the system (1.1)-(1.2) becomes, for |u| < 1,

g(v)t − (νg′(v)vz − (1− g(v)2)θz)z = 0, (1.6)
θt − (γg′(v)vz + θz)z + θ = µg(v). (1.7)

Since γg′ = 1− g2, the diffusion matrix of the transformed problem

B :=
(
νg′(v) −(1− g(v)2)
γg′(v) 1

)
(1.8)

satisfies for any values of ν > 0 and γ > 0:

(x, y)B(x, y)> = νg′(v)|x|2 + |y|2 ≥ 0 ∀x, y ∈ R.

The fact that the above transformation of variables leads to a system of elliptic
equations for all values of the parameters can be related to some analytical work on
more general equations. Indeed, this fact is in some sense related to the equivalence
between the existence of an entropy and the symmetrizability of hyperbolic conser-
vation laws or parabolic systems [8, 15]. Using the definition of the (generalized)
‘entropy’

η(s) := g(s)s− χ(s) + χ(0) (1.9)

from [4] (first used in [1]), where χ′ = g, gives η(v) = Φ(g(v)) = Φ(u), with Φ as
above. In this sense, the functional Φ(u(t))+θ(t)2/2 can be interpreted as an ‘entropy’
for the system (1.1)-(1.2) as long as |u| < 1. However, notice that the matrix B is not
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symmetric but satisfies the inequality x>Bx > 0 for all x 6= 0, which is sufficient for
our existence analysis. The question if this observation leads to an existence theory
for elliptic systems with general full diffusion matrices is under investigation [12].

In order to make the above ‘entropy’ estimate rigorous, we have to overcome
the difficulties near the points where |u| = 1. For the transformed problem (1.6)-
(1.7) this difficulty translates into the fact that the matrix B does not satisfies the
uniform positive definiteness condition. Therefore, we have to approximate (1.6)-(1.7)
appropriately, see section 2.

Our main existence result is as follows:
Theorem 1.1. Let γ, ν > 0, µ ≥ 0 and u0, θ0 ∈ L2(Ω) with −1 ≤ u0 ≤ 1 in Ω.

For any T > 0, there exists a weak solution (u, θ) of (1.1)-(1.2) such that

u, θ ∈ H1(0, T ; (H1
per(Ω))′) ∩ L2(0, T ;H1

per(Ω)),
−1 ≤ u ≤ 1 in QT = Ω× (0, T ).

(1.10)

As explained above, the main difficulties of the proof of this theorem are that
the system (1.1)-(1.2) is generally not positive definite and no maximum principle to
show |u| ≤ 1 is available. Nevertheless, we are able to prove the existence of solutions
for any values of ν and γ and thus for arbitrary large cross-diffusion.

The proof consists of three steps. First, instead of using the transformation g,
we make a change of unknowns which takes into account the singular points |u| =
1 (section 2.1). Then the parabolic problem is discretized in time by a recursive
sequence of elliptic equations which can be solved each by Schauder’s fixed point
theorem (section 2.2). Finally, a priori bounds independent of the time discretization
parameter are obtained from an inequality similar to (1.4), and standard compactness
results lead to the existence of a solution of the original problem (1.1)-(1.2) (section
2.3). The bound on u can be proved by using Stampacchia’s truncation method in
the approximate problem.

We notice that for γ = 0, the diffusion matrix for (1.1)-(1.2) becomes tridiagonal
and thus, the problem can be solved by methods, for instance, employed in chemotaxis
problems [11].

Besides of the existence analysis we show two additional results. We prove the
uniqueness of solutions in a slightly smaller class of functions if the cross-diffusion is
not too large (section 3).

Theorem 1.2. Let γ < 4ν. Then, under the assumptions of Theorem 1.1 there
exists at most one solution (u, θ) of (1.1)-(1.2) in the class of functions satisfying
(1.10) and θ ∈ L∞(0, T ;H1

per(Ω)).
Furthermore, we derive a sufficient condition on the parameters in order to get

non-segregation, i.e. convergence of the transient solutions to the constant steady-
state given by

ū =
1
L

∫ L

0

u0(z)dz, θ̄ =
1
L

∫ L

0

θ0(z)dz.

The rate of convergence turns out to be exponential (Section 4).
Theorem 1.3. Let the assumptions of Theorem 1.1 hold and assume that |u0| ≤

c < 1 in Ω for some c < 1, µū = θ̄ and

νγ

µ2
>

L4

8(L2 + 1)
. (1.11)
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Then there exist constants c0 > 0, depending on u0, θ0, and constants δ1, δ2 > 0,
depending on the parameters, such that for all t > 0,

‖u(t)− ū‖L2(Ω) ≤ c0e
−δ1t, ‖θ(t)− θ̄‖L2(Ω) ≤ c0e

−δ2t.

The constants c0 and δ1, δ2 are defined in (4.1) and (4.4), respectively. The proof
of the above result is based on careful estimates using the ‘entropy’ (1.9). Aranson
et al. [3] have motivated from linear stability theory that the condition µ > ν is
necessary to have size segregation. The assumption (1.11) shows that the condition
µ > ν needs not to be sufficient. In fact, there are parameter values for which both
µ > ν and (1.11) hold, i.e., the granular materials are not segregating (see section 5).

Clearly, the dynamics of granular segregation pattern is of much larger interest
for the applications than non-segregation conditions. Therefore, our result has to be
understood as a first step in the understanding of the segregation dynamics.

Finally, we present in Section 5 some numerical examples illustrating the segre-
gation or non-segregation behavior.

2. Proof of Theorem 1.1.

2.1. Ideas of the proof. In this section we present and explain the approxima-
tions needed in the proof of Theorem 1.1. As already mentioned in the introduction,
the function g provides an ‘entropy‘ estimate only if |u| < 1. Since u = ±1 is possi-
ble, we use another change of unknowns which includes the points u = ±1. Let the
assumptions of Theorem 1.1 hold and let α > 1. Define the transformation u = gα(v)
with gα : [−sα, sα] → [−1, 1], given by

gα(s) := α
e2αs/γ − 1
e2αs/γ + 1

and sα :=
γ

2α
log

α+ 1
α− 1

. (2.1)

Observe that for α → 1, gα equals g on R, see (1.5). As the range of gα is [−1, 1],
the critical points u = ±1 are included in that transformation. In the following we
fix some α > 1 and write again g for gα.

With this change of unknown we obtain the system (1.6)-(1.7), with periodic
boundary conditions for v and θ and initial conditions

v(·, 0) = v0 := g−1(u0), θ(·, 0) = θ0 in Ω. (2.2)

The new diffusion matrix B is given by (1.8). It holds for any (x, y) ∈ R2

(x, y)B(x, y)> = νg′(v)x2 + y2 +
(
γg′(v)− (1− g(v)2)

)
xy

= νg′(v)x2 + y2 + (α2 − 1)xy.

Clearly, if α = 1 the matrix satisfies x>Bx > 0 for all x 6= 0, and it seems reasonable
that this will be also the case for α > 1 sufficiently close to one. In fact, let (v, θ) be a
weak solution to (1.1)-(1.2) and use v and θ as test functions in the weak formulation
of (1.6)-(1.7), respectively, to obtain the identity∫

Ω

(
G(v(t)) +

1
2
θ(t)2

)
dz +

∫ t

0

∫
Ω

(
νg′(v)2v2

z + θ2z + θ2
)
dzdt

=
∫

Ω

(
G(v0) +

1
2
θ20

)
dz − (α2 − 1)

∫ t

0

∫
Ω

vzθzdzdt+
∫ t

0

∫
Ω

µg(v)θdzdt,
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where G is defined by G′(s) = sg′(s) and G(0) = 0, i.e.

G(s) =
2αs
γ

e2αs/γ

e2αs/γ + 1
+ log

2
e2αs/γ + 1

. (2.3)

Since |g| is bounded by one and g′ ≥ (α2 − 1)/γ in [−sα, sα], see Lemma 2.2, we can
estimate∫

Ω

(
G(v(t)) +

1
2
θ(t)2

)
dz +

∫ t

0

∫
Ω

(
ν

γ
(α2 − 1)v2

z + θ2z

)
dzdt (2.4)

≤
∫

Ω

(
G(v0) +

1
2
θ20

)
dz − (α2 − 1)

∫ t

0

∫
Ω

vzθzdzdt+
∫ t

0

∫
Ω

(µ|θ| − θ2)dzdt,

as long as −sα ≤ v ≤ sα in Qt. Choosing α > 1 small enough and applying Young’s
inequality, it is possible to control the second integral on the right-hand side by the
integrals on the left-hand side. This gives the estimates vz ∈ L2(0, T ;L2(Ω)) and
θ ∈ L2(0, T ;H1

per(Ω)). The inequality (2.4) is made rigorous in Lemma 2.6 for a
time-discretized version of (1.6)-(1.7).

Still there remain two difficulties: the elliptic operator corresponding to (1.6)-
(1.7) is not uniformly elliptic (since g′ is only positive, but not uniformly positive in
R), and we have to deal with time derivatives in g(v) (instead of having time and space
derivatives in v). The first difficulty can be overcome by adding a small number ε > 0
to the diffusion term containing νg′(v) and to pass to the limit ε→ 0 after solving the
approximate problem. To overcome the second difficulty we approximate the system
by a semi-discrete problem in time (backward Euler method). This method is also
interesting from a numerical point of view, see, e.g., [13].

2.2. A semi-discrete problem. The main objective of this section is to prove
that for given τ > 0 and (w̃, θ̃) ∈ (H1

per(Ω))2, there exists a solution (w, ξ) ∈
(H1

per(Ω))2, satisfying −sα ≤ w ≤ sα in Ω, of the problem

1
τ

(g(w)− g(w̃))−
(
νg′(w)wz − (1− g(w)2)ξz

)
z

= 0, (2.5)

1
τ

(ξ − θ̃)− (γg′(w)wz + ξz)z + ξ = µg(w) in Ω. (2.6)

This system is a time-discretized version of (1.6)-(1.7). The function g(s) is defined
as in (2.1) but we allow for arguments s ∈ R. We shall use the following notion of
weak solution.

Definition 2.1. The pair (w, ξ) is called a weak solution of (2.5)-(2.6) if (w, ξ)
∈ (H1

per(Ω))2, −sα ≤ w ≤ sα in Ω, the initial conditions in (1.3) are satisfied in the
sense of (H1

per(Ω))′, and for every (ϕ,ψ) ∈ (H1
per(Ω))2 we have

1
τ

∫
Ω

(g(w)− g(w̃))ϕdz +
∫

Ω

(
νg′(w)wz − (1− g(w)2)ξz

)
ϕzdz = 0, (2.7)

1
τ

∫
Ω

(ξ − θ̃)ψdz +
∫

Ω

(γg′(w)wz + ξz)ψzdz +
∫

Ω

ξψdz = µ

∫
Ω

g(w)ψdz. (2.8)

As explained in Section 2.1, we approximate the system (2.5)-(2.6) by a system
where an additional ellipticity constant ε > 0 is introduced: Find (w, ξ) ∈ (H1

per(Ω))2
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such that in Ω

1
τ

(g(w)− g(w̃))−
(
(νg′(w) + ε)wz − (1− g(w)2)+ξz

)
z

+ εw = 0, (2.9)

1
τ

(ξ − θ̃)− (γg′(w)wz + ξz)z + ξ = µg(w), (2.10)

where s+ = max{0, s}.
The following properties of the function g can be easily shown.
Lemma 2.2. The function g : R → (−α, α) defined by (2.1) satisfies g ∈ C∞(R)∩

W 1,∞(R) and

0 < g′ ≤ α2/γ in R, g′ ≥ (α2 − 1)/γ in [−sα, sα]. (2.11)

Fix α > 1 such that 2(α2 − 1) ≤ ν/2γ and define h1, h2 : R → R by

h1 := νg′ − δ|γg′ − (1− g2)+|, h2 := 1− 1
δ
|γg′ − (1− g2)+|,

with 2(α2 − 1) ≤ δ ≤ ν/2γ. Then

h1 > 0, h2 ≥ 1/2 in R, and h1 ≥
ν

2γ
(α2 − 1) in [−sα, sα]. (2.12)

We prove the existence of a solution of (2.9)-(2.10) using Schauder’s fixed point
theorem. In order to define the fixed-point operator, we consider first the following
linearized problem: Let (ŵ, ξ̂) ∈ (L2(Ω))2 be given and find (w, ξ) ∈ (H1

per(Ω))2 such
that

−
(
(νg′(ŵ) + ε)wz − (1− g(ŵ)2)+ξz

)
z

+ εw =
1
τ

(g(w̃)− g(ŵ)), (2.13)

−(γg′(ŵ)wz + ξz)z + ξ = µg(ŵ) +
1
τ

(θ̃ − ξ̂) (2.14)

in Ω. The definition of a weak solution of problem (2.13)-(2.14) is similar to Definition
2.1.

Lemma 2.3. Let (w̃, θ̃) ∈ (H1
per(Ω))2 and (ŵ, ξ̂) ∈ (L2(Ω))2 be given. Then there

exists a unique weak solution of problem (2.13)-(2.14).
Proof. We define the bilinear form a : (H1

per(Ω))2 × (H1
per(Ω))2 → R,

a((w, ξ), (ϕ,ψ)) :=
∫

Ω

[(
(νg′(ŵ) + ε)wz − (1− g(ŵ)2)+ξz

)
ϕz + εwϕ

]
dz

+
∫

Ω

(
(γg′(ŵ)wz + ξz)ψz + ξψ

)
dz,

and the linear functional f : (L2(Ω))2 → R,

f(ϕ,ψ) :=
1
τ

∫
Ω

(
(g(w̃)− g(ŵ))ϕ+ (θ̃ − ξ̂)ψ

)
+ µ

∫
Ω

g(ŵ)ψ.

In order to apply the Lemma of Lax-Milgram, we have to check that a is continuous
and coercive in (H1

per(Ω))2 × (H1
per(Ω))2 and that f is continuous in (L2(Ω))2. The
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continuity of a and f follows easily from the pointwise bounds of g and g′ and the
regularity of w̃, θ̃, ŵ, and ξ̂. For the coercivity of a we estimate

a((w, ξ), (w, ξ)) =
∫

Ω

(
(νg′(ŵ) + ε)|wz|2 + |ξz|2 + ε|w|2 + |ξ|2

)
dz

+
∫

Ω

(
(γg′(ŵ)− (1− g(ŵ)2)+)wzξz

)
dz

≥
∫

Ω

(
(ε+ h1(ŵ))|wz|2 + h2(ŵ)|ξz|2 + ε|w|2 + |ξ|2

)
dz,

using Young’s inequality, where the functions h1 and h2 are defined in Lemma 2.2.
The bounds (2.12) then imply that

a((w, ξ), (w, ξ)) ≥ min{ε, 1/2}
(
‖w‖2

H1
per(Ω) + ‖ξ‖2

H1
per(Ω)

)
,

and the coercivity of a is proved. �

Lemma 2.4. Let (w̃, θ̃) ∈ (H1
per(Ω))2. Then there exists a unique weak solution

of problem (2.9)-(2.10).
Proof. We use the Schauder fixed point theorem. For this define the map S :

(L2(Ω))2 → (L2(Ω))2 by S(ŵ, ξ̂) = (w, ξ), where (w, ξ) is the weak solution of (2.13)-
(2.14). We have to check that S is continuous and compact and that the set

Λ :=
{
u ∈ (L2(Ω))2 : u = λS(u)

}
,

for λ ∈ [0, 1], is bounded. The continuity of S follows by standard arguments.
The compactness of S is just a consequence of the compactness of the embedding
H1

per(Ω) ⊂ L2(Ω).
It remains to show that Λ is bounded. If λ = 0 then Λ = {(0, 0)} is trivially

bounded. For λ ∈ (0, 1], the equation S(ŵ, ξ̂) = 1
λ (ŵ, ξ̂) is equivalent to∫

Ω

((
(νg′(ŵ) + ε)ŵz − (1− g(ŵ)2)+ξ̂z

)
z
ϕz + εŵϕ

)
dz =

λ

τ

∫
Ω

(g(w̃)− g(ŵ))ϕdz,∫
Ω

(
(γg′(ŵ)ŵz + ξ̂z)ψz + ξ̂ψ

)
dz = λ

∫
Ω

(
µg(ŵ) +

1
τ

(θ̃ − ξ̂)
)
ψdz

Using (ϕ,ψ) = (ŵ, ξ̂) as a test function, adding the resulting integral identities and
applying Young’s inequality as in (2.12), we obtain∫

Ω

(
(ε+ h1(ŵ))|ŵz|2 + h2(ŵ)|ξ̂z|2 + ε|ŵ|2 + |ξ̂|2)

)
dz =

λ

τ

∫
Ω

(g(w̃)− g(ŵ))ŵdz

+ λ

∫
Ω

(
µg(ŵ) +

1
τ

(θ̃ − ξ̂)
)
ξ̂dz.

Using again Young’s inequality on the right-hand side of this equation and employing
the estimate (2.12), we deduce∫

Ω

(
ε(|ŵz|2 + |ŵ|2) + |ξ̂z|2 + |ξ̂|2

)
dz ≤ λ2

τ2ε

∫
Ω

(g(w̃)− g(ŵ))2dz +
2λ2

τ2

∫
Ω

θ̃2dz

+ 2(λµ)2
∫

Ω

|g(ŵ)|2dz,
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and since g ∈ L∞(R), the assertion follows. �

In the following we derive uniform bounds for the solution of (2.9)-(2.10) which
allow to pass to the limit ε→ 0. This proves the existence of a solution of (2.5)-(2.6).
We need the following auxiliary result whose proof is standard.

Lemma 2.5. Let ϕ ∈ C(R) be non-decreasing with ϕ(0) = 0 and define Φ ∈ C1(R)
by Φ(s) :=

∫ s

0
g′(σ)ϕ(σ)dσ. Then it holds for all s, t ∈ R

Φ(s)− Φ(t) ≤ (g(s)− g(t))ϕ(s). (2.15)

Lemma 2.6. Let (w̃, ξ̃) ∈ (H1
per(Ω))2 be such that −sα ≤ w̃ ≤ sα in Ω and let

(wε, ξε) ∈ (H1
per(Ω))2 be a solution of (2.9)-(2.10). Then the following estimates hold:

−sα ≤ wε ≤ sα in Ω, (2.16)∫
Ω

(
G(wε) +

1
2
ξ2ε

)
dz + Cτ

∫
Ω

(|wεz|2 + |ξεz|2 + |ξε|2)dz

≤
∫

Ω

(
G(w̃) +

1
2
ξ̃2

)
dz + C ′τ, (2.17)

for some positive constants C, C ′ independent of ε and τ , and for G defined in (2.3).
In addition, there exists a subsequence of (wε, ξε) (not relabeled) such that (wε, ξε)

⇀ (w, ξ) weakly in (H1
per(Ω))2 and strongly in (L2(Ω))2 as ε→ 0, and (w, ξ) is a weak

solution of problem (2.5)-(2.6).
Proof. We use ϕ(wε) := max(wε−sα, 0) as a test function in the weak formulation

of (2.9). Since ϕ is increasing and ϕ(0) = 0 we can employ Lemma 2.5. Let Φ be
defined as in Lemma 2.5. Then, together with the identities (1− g(s)2)+ϕ′(s) = 0 for
all s ∈ R and Φ(w̃) = 0, we obtain

0 ≥ 1
τ

∫
Ω

(g(wε)− g(w̃))ϕ(wε)dx ≥
∫

Ω

(Φ(wε)− Φ(w̃))dx =
∫

Ω

Φ(wε)dx.

This implies Φ(wε) = 0 and therefore wε ≤ sα in Ω. In a similar way we deduce
wε ≥ −sα in Ω. Observe that these bounds imply that (1− g(wε)2)+ = 1− g(wε)2 in
Ω.

Now we use (wε, ξε) as a test function in the weak formulation of problem (2.9)-
(2.10). Adding the corresponding integral identities and using property (2.15) we get,
after multiplication by τ ,∫

Ω

(
G(wε) +

1
2
ξ2ε

)
dz + τ

∫
Ω

(
h1(wε)|wεz|2 + h2(wε)|ξεz|2 + |ξε|2

)
dz

≤ µτ

∫
Ω

g(wε)ξεdz +
∫

Ω

(
G(w̃) +

1
2
ξ̃2

)
dz.

Applying Young’s inequality and the bounds (2.11) and (2.12) for g′, h1 and h2, we
deduce (2.17).

Finally, the uniform estimates (2.16) and (2.17) imply the existence of a sub-
sequence (not relabeled) of (wε, ξε) and of a pair (w, ξ) ∈ (H1

per(Ω))2 such that, as
ε→ 0,

wε
∗
⇀ w weakly* in L∞(Ω), (2.18)

wεz ⇀ wz weakly in L2(Ω), (2.19)
ξε ⇀ ξ weakly in H1

per(Ω).
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In fact, the convergences (2.18) and (2.19) imply wε ⇀ w weakly in H1
per(Ω) and thus,

by the compactness of the embedding H1
per(Ω) ⊂ L2(Ω), we deduce for a subsequence,

as ε → 0, wε → w and ξε → ξ strongly in L2(Ω) and a.e. in Ω. These convergence
results and the continuity of g and g′ allow us to pass to the limit ε → 0 in the
weak formulation of problem (2.9)-(2.10) and to identify (w, ξ) as a weak solution of
(2.5)-(2.6). �

2.3. End of the proof of Theorem 1.1. Let T > 0 and N ∈ N be given and
let τ = T/N be the time step. We define recursively pairs (vk, θk) ∈ (H1

per(Ω))2,
k = 1, . . . , N , as the weak solution of the problem (2.5)-(2.6) corresponding to the
data (w̃, θ̃) = (vk−1, θk−1), and with (v0, θ0) = (v0, θ0). Then we define the piecewise
constant functions

vτ (x, t) := vk(x) and θτ (x, t) := θk(x) if (x, t) ∈ Ω× ((k − 1)τ, kτ ],

for k = 1, . . . , N , and introduce the discrete entropies

ηk :=
∫

Ω

(
G(vk) +

1
2
|θk|2

)
dz, ητ (t) :=

∫
Ω

(
G(vτ (·, t)) +

1
2
|θτ (·, t)|2

)
dz. (2.20)

We have the following consequence of Lemma 2.6.
Corollary 2.7. There exist uniform bounds with respect to τ for the norms

‖ητ‖L∞(0,T ), ‖vτ‖L2(0,T ;H1
per(Ω)), ‖g(vτ )‖L2(0,T ;H1

per(Ω)) and ‖θτ‖L2(0,T ;H1
per(Ω)).

In addition,

−sα ≤ vτ ≤ sα in QT = Ω× (0, T ). (2.21)

Proof. From the ‘entropy’ inequality (2.17) we obtain

ηm − η0 =
m∑

k=1

(ηk − ηk−1) ≤ C ′mτ − Cτ
m∑

k=1

∫
Ω

(|vk
z |2 + |θk

z |2 + |θk|2)dz,

for m = 1, . . . , N . Taking the maximum over m yields

‖ητ‖L∞(0,T ) + C

∫
QT

(
|vτ

z |2 + |θτ
z |2 + |θτ |2

)
dzdt ≤ η0 + C ′T.

Since both g and g′ are smooth and bounded we also deduce the estimate for the
norm ‖g(vτ )‖L2(0,T ;H1

per(Ω)). Finally, (2.21) follows directly from (2.16). �

We need uniform estimates of the time derivatives. For this, we introduce the
shift operator and linear interpolations in time. For t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N ,
we define στv

τ (·, t) := vk−1 and στθ
τ (·, t) := θk−1 in Ω. Setting δt := (t/τ−(k−1)) ∈

[0, 1], we introduce

g̃τ := g(στv
τ ) + δt

(
g(vτ )− g(στv

τ )
)
, θ̃τ := στθ

τ + δt
(
θτ − στθ

τ
)

(2.22)

in QT .
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Lemma 2.8. There exist uniform bounds with respect to τ for the norms

‖g̃τ
t ‖L2(0,T ;(H1

per(Ω))′), ‖g̃τ‖L2(0,T ;H1
per(Ω))∩L∞(QT ),

‖θ̃τ
t ‖L2(0,T ;(H1

per(Ω))′) and ‖θ̃τ‖L2(0,T ;H1
per(Ω)).

Proof. From the definition (2.22) of g̃τ and equation (2.5) we compute

g̃τ
t =

1
τ

(
g(vτ )− g(στv

τ )
)

=
(
νg′(vτ )vτ

z − (1− g(vτ )2)θτ
z

)
z
.

Using the boundedness of g′ in R and Corollary 2.7 we obtain a uniform bound for
‖g̃τ

t ‖L2((0,T ;H1
per)

′). Moreover, since g is bounded, it is clear that g̃τ ∈ L∞(QT ) for
any τ ≥ 0. We also have

g̃τ
z = δtg′(vτ )vτ

z + (1− δt)g′(στv
τ )(στv

τ )z. (2.23)

Since (στv
τ )z = στv

τ
z , the L∞(QT ) bound for g̃τ together with (2.23) and Corollary

2.7 implies a uniform bound for ‖g̃τ‖L2(0,T ;H1
per(Ω)). In a similar way we obtain uniform

estimates for θ̃τ . �

Proof of Theorem 1.1. The functions vτ , θτ , g̃τ , θ̃τ satisfy the weak formulation∫ T

0

〈g̃τ
t , ϕ〉dt+

∫
QT

(
νg′(vτ )vτ

z − (1− g(vτ )2)θτ
z

)
ϕzdzdt = 0, (2.24)∫ T

0

〈θ̃t, ψ〉dt+
∫

QT

(
γg′(vτ )vτ

z + θτ
z

)
ψzdzdt+

∫
QT

θτψdydt

= µ

∫
QT

g(vτ )ψdzdt, (2.25)

for any ϕ,ψ ∈ L2(0, T ;H1
per(Ω)). The estimates of Lemma 2.8 allow us to extract a

subsequence (not relabeled) such that, as τ → 0,

g̃τ
t ⇀ ut weakly in L2(0, T ; (H1

per(Ω))′), (2.26)

g̃τ ⇀ u weakly in L2(0, T ;H1
per(Ω)), (2.27)

g̃τ ∗
⇀ u weakly* in L∞(QT ),

θ̃τ
t ⇀ θt weakly in L2(0, T ; (H1

per(Ω))′), (2.28)

θ̃τ ⇀ θ weakly in L2(0, T ;H1
per(Ω)). (2.29)

The compact embedding H1
per(Ω) ⊂ L∞(Ω), the convergence results (2.26)-(2.29) and

Aubin’s lemma [23] imply, up to a subsequence,

g̃τ → u strongly in L2(0, T ;L∞(Ω)), (2.30)
θ̃τ → θ strongly in L2(0, T ;L∞(Ω)).

Moreover, Corollary 2.7 yields the existence of a subsequence such that

vτ ⇀ v weakly in L2(0, T ;H1
per(Ω)),

vτ ∗
⇀ v weakly* in L∞(QT ),

g(vτ ) ⇀ û weakly in L2(0, T ;H1
per(Ω)), (2.31)

θτ ⇀ θ̂ weakly in L2(0, T ;H1
per(Ω)).
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It holds g̃τ − g(vτ ) = τ(δt− 1)g̃τ
t , and therefore, by Lemma 2.8,

‖g̃τ − g(vτ )‖L2(0,T ;(H1
per)

′) → 0 as τ → 0. (2.32)

Hence, u = û. In a similar way we obtain θ = θ̂. Finally,

‖g(vτ )− u‖L1(0,T ;L2(Ω))

≤ ‖g(vτ )− g̃τ‖L1(0,T ;L2(Ω)) + ‖g̃τ − u‖L1(0,T ;L2(Ω))

≤ ‖g(vτ )− g̃τ‖1/2
L1(0,T ;(H1

per(Ω))′)‖g(v
τ )− g̃τ‖1/2

L1(0,T ;H1
per(Ω))

+ ‖g̃τ − u‖L1(0,T ;L2(Ω))

≤ C‖g(vτ )− g̃τ‖1/2
L2(0,T ;(H1

per(Ω))′) + ‖g̃τ − u‖L1(0,T ;L2(Ω))

→ 0, (2.33)

as τ → 0. Therefore, g(vτ ) → u strongly in L1(0, T ;L2(Ω)) and a.e. in QT . Now,
letting τ → 0 in (2.24)-(2.25), we obtain, for ϕ,ψ ∈ L2(0, T ;H1

per(Ω)),∫ T

0

〈ut, ϕ〉dt+
∫

QT

(
(νuz − (1− u2)θz

)
ϕzdzdt = 0, (2.34)∫ T

0

〈θt, ψ〉dt+
∫

QT

(
γuz + θz

)
ψzdzdt+

∫
QT

θψdz = µ

∫
QT

uψdzdt. (2.35)

This proves Theorem 1.1. �

3. Proof of Theorem 1.2. Let (u1, θ1) and (u2, θ2) be two weak solutions of
(1.1)-(1.3) with the same initial data, satisfying (1.10) and θ1 ∈ L∞(0, T ;H1

per(Ω)).
Set Qt = Ω× (0, t). The equations satisfied by u = u1 − u2 and θ = θ1 − θ2 read

ut − νuzz + θzz =
(
(u1 + u2)uθ1z + u2

2θz

)
z
, (3.1)

θt − θzz + θ = γuzz + µu. (3.2)

Take u and θ as test functions in the weak formulations of (3.1) and (3.2), respectively,
and add (3.2), multiplied by some number a > 0, and (3.1) to obtain

1
2

∫
Ω

(u(t)2 + aθ(t)2)dz +
∫

Qt

(νu2
z + aθ2z + aθ2)dzdt

=
∫

Qt

(1− aγ − u2
2)uzθzdzdt+ aµ

∫
Qt

uθdzdt−
∫

Qt

(u1 + u2)uθ1zuzdzdt. (3.3)

We apply Young’s inequality to the second integral on the right-hand side:

aµ

∫
Qt

uθdzdt ≤ aµ2

2

∫
Qt

u2dzdt+
a

2

∫
Qt

θ2dzdt.

For the third integral on the right-hand side of (3.3) we use the Gagliardo-Nirenberg
inequality

‖u‖L∞(Ω) ≤ C0‖u‖1/2
H1(Ω)‖u‖

1/2
L2(Ω) ∀u ∈ H1(0, L)
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and the Young inequality

x1/2y3/2 ≤ ε

2
x2 + C(ε)y2 ∀x, y ≥ 0, ε > 0.

Then, with the abbreviation C1 = 2C0‖θ1z‖L∞(0,T ;L2(Ω)) <∞ and |u1|, |u2| ≤ 1,∫
Qt

(u1 + u2)uθ1zuzdzdt

≤ 2‖u‖L2(0,t;L∞(Ω))‖θ1z‖L∞(0,t;L2(Ω))‖uz‖L2(0,t;L2(Ω))

≤ C1‖u‖1/2
L2(0,t;L2(Ω))

(
‖u‖2

L2(Qt)
+ ‖uz‖2

L2(Qt)

)1/4

‖uz‖L2(0,t;L2(Ω))

≤ C1

(
‖u‖L2(Qt)‖uz‖L2(Qt) + ‖u‖1/2

L2(Qt)
‖uz‖3/2

L2(Qt)

)
≤ ε

2
‖uz‖2

L2(Qt)
+
C2

1

2ε
‖u‖2

L2(Qt)
+
ε

2
‖uz‖2

L2(Qt)
+ C(ε)C4

1‖u‖2
L2(Qt)

.

With these inequalities we can estimate (3.3) as

1
2

(
‖u(t)‖2

L2(Ω) + a‖θ(t)‖2
L2(Ω)

)
+
a

2
‖θ‖2

L2(Qt)

≤ −
∫

Qt

(
−(|1− aγ|+ 1)|uz||θz|+ (ν − ε)u2

z + aθ2z
)

+
(
aµ2

2
+
C2

1

2ε
+ C(ε)C4

1

)
‖u‖2

L2(Qt)
. (3.4)

It can be easily seen that the quadratic form

A(x, y) = −(|1− aγ|+ 1)xy + (ν − ε)x2 + ay2, x, y ≥ 0,

is positive definite if we choose a = 1/γ and ε = ν − γ/4 > 0 (since γ < 4ν by
assumption). Then Gronwall’s lemma applied to (3.4) implies that u(t) = θ(t) = 0 in
Ω for any t > 0. This proves Theorem 1.2. �

4. Proof of Theorem 1.3. Let (u, θ) be a weak solution of (1.1)-(1.3) given by
Theorem 1.1. Let α > 1 and set

c0 =
1
2

∫ L

0

(
γ(u0 + 1) ln

1 + u0

1 + ū
+ γ(1− u0) ln

1− u0

1− ū
+ (θ0 − θ̄)

)
dz. (4.1)

Notice that c0 is well defined even if u0(z) = ±1. For the proof of Theorem 1.3 we
need the following lemma:

Lemma 4.1. Define the function ψ : [−1, 1] → R by

ψ(u) =
γ

2α
ln

(
α+ u

α+ ū

α− ū

α− u

)
.

Then the function Ψ : [−1, 1] → R, defined by

Ψ(u) =
γ

2α
(α+ u) ln

α+ u

α+ ū
+

γ

2α
(α− u) ln

α− u

α− ū
,
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satisfies for all u ∈ [−1, 1],

Ψ′(u) = ψ(u), Ψ′′(u) =
γ

α2 − u2
, Ψ(u) ≥ γ

2α2
(u− ū)2.

The lemma follows from Taylor expansion around ū:

Ψ(u) = Ψ(ū) + Ψ′(ū)(u− ū) +
1
2
Ψ′′(ξ)(u− ū)2 ≥ γ

2α2
(u− ū)2.

Proof of Theorem 1.3. We use ψ(u) ∈ L∞(QT ) ∩ L2(0, T ;H1
per(Ω)) and θ − θ̄ ∈

L2(0, T ;H1
per(Ω)) as test functions in the weak formulation of (1.1)-(1.2), respectively,

and add the resulting equations:∫
Ω

(
Ψ(u(t)) +

1
2
(θ(t)− θ̄)2

)
dz +

∫
Qt

(νψ′(u)u2
z + θ2z)dzdt (4.2)

=
∫

Ω

(
Ψ(u0) +

1
2
(θ0 − θ̄)2

)
dz +

∫
Qt

((1− u2)ψ′(u)− γ)uzθzdzdt

+
∫

Qt

(µu− θ)(θ − θ̄)dzdt.

For the second integral on the right-hand side we use Young’s inequality:∫
Qt

((1− u2)ψ′(u)− γ)uzθzdzdt = γ

∫
Qt

1− α2

α2 − u2
uzθzdzdt

≤ νγ

2
(α2 − 1)1/2

∫
Qt

u2
z

α2 − u2
dzdt+

γ

2ν
(α2 − 1)3/2

∫
Qt

θ2z
α2 − u2

dzdt

≤ νγ

2
(α2 − 1)1/2

∫
Qt

u2
z

α2 − u2
dzdt+

γ

2ν
(α2 − 1)1/2

∫
Qt

θ2zdzdt.

Since µū = θ̄, the last integral on the right-hand side of (4.2) becomes∫
Qt

(µu− θ)(θ − θ̄)dzdt = µ

∫
Qt

(u− ū)(θ − θ̄)dzdt−
∫

Qt

(θ − θ̄)2dzdt

≤ µ2δ

2

∫
Qt

(u− ū)2dzdt+
(

1
2δ

− 1
) ∫

Qt

(θ − θ̄)2dzdt,

where we choose

L2

2(L2 + 2)
< δ <

4νγ
µ2L2

.

This is possible by assumption (1.11). We employ Lemma 4.1 to estimate the first
integral on the left-hand side of (4.2):∫

Ω

(
Ψ(u(t)) +

1
2
(θ(t)− θ̄)2

)
dz ≥

∫
Ω

(
γ

2α2
(u(t)− ū)2 +

1
2
(θ(t)− θ̄)2

)
dz.

Finally, the second term on the left-hand side of (4.2) can be estimated by using the
Poincaré inequality

‖v − v̄‖L2(Ω) ≤
L√
2
‖vz‖L2(Ω) ∀v ∈ H1

per(Ω) with v̄ =
∫ L

0

v(z)dz.
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We obtain∫
Qt

(νψ′(u)u2
z + θ2z)dzdt ≥

∫
Qt

(
2νγ
L2

(u− ū)2

α2 − u2
+

2
L2

(θ − θ̄)2
)
dzdt.

Putting the above estimates together, we infer from (4.2)∫
Ω

(
γ

2α2
(u(t)− ū)2 +

1
2
(θ(t)− θ̄)2

)
dz (4.3)

≤ c20 +
∫

Qt

(
µ2δ

2
− 2νγ

L2
+
νγ

L2
(α2 − 1)1/2

)
(u− ū)2

α2 − u2
dzdt

+
(

1
2δ

− L2 + 2
L2

+
γ

νL2
(α2 − 1)1/2

) ∫
Qt

(θ − θ̄)2dzdt.

Observing that

(u− ū)2

α2 − u2
≥ (u− ū)2

α2
,

we can let α→ 1 in (4.3) to obtain

1
2

∫
Ω

(
γ(u(t)− ū)2 + (θ(t)− θ̄)2

)
dz ≤ c20 −

∫
Qt

(
2νγ
L2

− µ2δ

2

)
(u− ū)2dzdt

−
(
L2 + 2
L2

− 1
2δ

) ∫
Qt

(θ − θ̄)2dzdt.

Defining

δ1 =
4ν
L2

− µ2δ

γ
> 0, δ2 =

2(L2 + 2)
L2

− 1
δ
> 0, (4.4)

the theorem follows from Gronwall’s lemma. �

5. Numerical examples. In this section we illustrate the long-time coarsening
of the segregation bands in the drum by numerical experiments. For the numeri-
cal discretization, we use a time-discretized version of (1.6)-(1.7) (backward Euler
scheme), as motivated by the existence analysis of Section 2, instead of discretizing
directly (1.1)-(1.2). The space discretization is performed by using finite differences.
The nonlinear system is solved by a simple fixed-point strategy.

In the following examples, we illustrate the segregation behavior of the component
u of the solutions of (1.1)-(1.2). The behavior relies on three important conditions.
First, condition (1.11) ensures the convergence of u to a constant steady state. Second,
the authors of [3] conjectured that the condition µ > ν is a necessary condition to
have segregation. This conjecture arises from a linear stability analysis sketched in [3],
showing that perturbations of the form exp(λt+2πz/`), where λ ∈ R and ` > 0 is the
wave length of the perturbations, are unstable if µ > ν+4π2(ν+γ)/`2. Therefore, this
instability is captured only if the length L of the domain satisfies the third condition

L > 2π
√

(γ + ν)/(µ− ν). (5.1)

In Figure 5.1 we present the behavior of u in the (z, t)-plane for two different
domain lengths. The number of grid points is N = 50. The parameters in Figure 5.1
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(a) satisfy µ > ν and (1.11), but not (5.1). We observe convergence of u to a constant
steady state. We expect this behavior in view of Theorem 1.3. This example shows
that the condition µ > ν is not sufficient for segregation. The parameters in Figure
5.1 (b) satisfy the segregation condition (5.1) but not (1.11). The granular materials
segregate since the length of the cylinder is large enough, as claimed by the linear
stability analysis.

(a)
L =
1,
0 ≤
t ≤
0.159.

(b)
L =
30,
0 ≤
t ≤
3049.

Fig. 5.1. γ = 2, µ = 3, ν = 2, u0(z) = 0.8 cos(4πz/L), N = 50.

Figure 5.2 shows that (1.11) is a sufficient but not necessary condition to have
non-segregation. Indeed, the parameters are chosen such that (1.11) is not satisfied,
but the granular materials do not segregate.

Fig. 5.2. L = 4, γ = 2, µ = 2, ν = 3, u0(z) = 0.8 cos(4πz/L), N = 50.

A more detailed view of the same segregation phenomena as above but with a
larger number of bands is presented in Figure 5.3. The parameters do not satisfy (1.11)
but (5.1) holds. Thus, we expect segregation. The initial short-wave perturbations
produce decaying standing waves (Figure 5.3 (a)). The segregated bands emerge,
and we observe metastable long-wave bands. Finally, after larger time, the system
segregates again (Figure 5.3 (b)). This illustrates the very slow coarsening of the band
structure (see [3]).

(a)
0 ≤
t ≤
1.06.

(b)
4.8 ≤
t ≤
8.9.

Fig. 5.3. γ = 100, µ = 40, ν = 0.5, L = 30, u0(z) = 0.75 cos(80πz/L), N = 1000.
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