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Universidad Politécnica de Madrid, c/ Ŕıos Rosas 21, 28003 Madrid, Spain

(Submitted by: J.I. Díaz)

Abstract. The evolution of one-dimensional fluidized beds may be
modeled in form of a system of partial differential equations of the com-
pressible Navier-Stokes type where the viscosity depends on the den-
sity, which may vanish, the source term is nonlinear, and the constitu-
tive law for the pressure blows up for finite values of the density. A
finite-differences scheme is used to solve an approximated problem in
Lagrangian coordinates, which we show to be equivalent to the corre-
sponding problem in Eulerian coordinates. We then prove compactness
and convergence properties of the sequence of solutions of the approx-
imated problems and partially identify the limit as a solution of the
original problem.

1. Introduction

Two-phase systems where a dense phase of small particles is fluidized
within a gas flow appear in many industrial applications, among which the
fluidized bed combustor is probably the most important. In this article we
study a mathematical problem which modelizes the dynamical aspects of
a fluidized bed, which we assume to follow the general rules of continuum
mechanics. For the spatial one dimensional case, the system of equations
strongly resembles to the compressible Navier-Stokes equations, although the
constitutive laws for the pressure and stress tensor are of different nature.

Let us briefly comment the main steps in the deduction of the model. In
the interior of a domain Ω ⊂ R

3, a collection of solid particles of constant
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density, ρs, (solid-phase) is blown by an inflow of gas of constant density, ρg,
(gas-phase) from the bottom of the boundary, ∂Ω. As we mentioned above,
we assume that the system gas-solid behaves according to the conservation
laws of continuum mechanics and, therefore, averaged velocities correspond-
ing to the gas and solid phase, vg, vs, are defined. We further assume that
the gas density is much smaller than the solid density,

ρg � ρs, (1.1)

and that the specific volume of the solid phase, which we denote by ρ, is
bounded by a constant ρ∗, i.e., 0 ≤ ρ ≤ ρ∗ < 1. We may describe the
behaviour of the two-phase flow by the following mass and momentum con-
servation laws, see [4]:

div ((1 − ρ)vg + ρvs) = 0 in QT := Ω × (0,T), (1.2)

ρt + div m = 0, (1.3)

mt + div
(m

ρ
× m) − div τ + ∇pc = ρg −∇ph, (1.4)

in Q+ := {(x, t) ∈ QT : ρ(x, t) > 0}, and

ρ = 0 and m = 0 in QT \Q+. (1.5)

Here, m := ρvs is the momentum per unit of volume and mass of the
solid-phase, pc is the collisional pressure of the solid-phase and ph is the
hydrodynamical pressure, due to friction between phases. Finally, g denotes
the gravity force and τ is the stress tensor. Notice that assumption (1.1)
implies that mass and momentum conservation equations for the gas-phase
are reduced to (1.2).

The pressures pc and ph and the stress tensor τ are modelized by con-
stitutive laws. For the hydrodynamical pressure, describing friction forces,
different particular choices may be found in the literature, deduced from
experimental or theoretical arguments, see [4, 1, 6, 19, 20]. We shall as-
sume that its gradient is proportional to the difference of velocities of both
phases, which is commonly accepted in the literature, and to some smooth
and positive function, q(ρ),

−∇ph = q(ρ)(vg − vs).

For the collisional pressure, p ≡ pc, we also find many different modelizations
in the literature, see [4, 18, 6, 5, 19]. In view of the lack of precise knowledge,
we assume this pressure to take a form such that the following qualitative
properties are satisfied: (i) the pressure is a smooth increasing function of
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ρ, with p(0) = 0; and (ii) the pressure contains a limiting term, avoiding
the volumetric fraction, ρ, to reach the threshold value ρ∗. The following
example is taken in [27]

p(ρ) = A2ργ exp
( ε0ρ

ρ∗ − ρ

)
, γ > 1, A, ε0 > 0, (1.6)

although we shall consider more general conditions on p, see (2.2).
For the stress tensor, we assume that it has a similar form than for a

Newtonian fluid, see [4, 2, 22, 18],

τ(ρ,vs) := λdiv vsI + 2νD(vs),

where λ, ν are the kinematic viscosity coefficients, which we suppose that
may depend on ρ, I is the identity tensor and D(vs) := 1

2(∇vs + ∇vs
T ).

The dimensionless rescaled model may then be written in one space di-
mension as in [18, 27],

ρt + mx = 0 (1.7)

mt +
(m2

ρ

)
x
−

(
μ(ρ)

(m

ρ

)
x

)
x

+ p(ρ)x = f(ρ, m, t), (1.8)

in
Q+ := {(x, t) ∈ QT : ρ(x, t) > 0} , (1.9)

where μ := λ + 2ν, f modelizes gravity and frictional forces, and

ρ = m = 0 in QT \Q+, (1.10)

with QT := Ω × (0, T ), with Ω := (0, L), and T, L < ∞.
Turning to the boundary conditions, we observe that in addition to the

fixed boundary, in which we impose the natural boundary condition

m(0, ·) = m(L, ·) = 0 in (0, T ), (1.11)

we must impose a further condition in the free boundary, the unknown set
in QT given by Γ := Q+ ∩ Q0, with Q0 := {(x, t) ∈ QT : ρ(x, t) = 0}. The
compatibility conditions among equations (1.7)-(1.8), which hold in Q+ and
equation (1.10), which hold in Q0, imply that the normal flux of m and the
normal tension must vanish in Γ. Since we already assumed p(0) = 0, this
free boundary condition implies that, to have a continuous transition of ρ
between Q+ and Q0, we must assume

lim
ρ→0

τ(ρ) = lim
ρ→0

μ(ρ) = 0. (1.12)

Equations (1.7)-(1.8) are completed with initial conditions

ρ(·, 0) = ρ0, m(·, 0) = m0 in Ω. (1.13)
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From now on, we shall refer to problem (1.7)-(1.13) as Problem P.
As we already mentioned, Problem P is very related to the compressible

Navier-Stokes equations. However, two important differences have to be
noted. First, the a priori boundedness of the volumetric fraction, ρ, which
we shall often call density, by analogy with the Navier-Stokes equations.
Second, the dependence of viscosity on density (and the related property
(1.12)) which is usually taken as a positive constant.

The literature on the Navier-Stokes equations is extensive, see for instance
[7]-[12], [23]-[25], [13]-[15], [21, 16, 17]. We emphasize that in [11], the au-
thors prove that the one-dimensional compressible Navier-Stokes problem
with discontinuous transition to the vacuum is an ill-posed problem. This
motivates, to some extent, our assumption (1.12) since although our pressure
term is qualitatively different to that of the Navier-Stokes equations when
ρ → ρ∗, they behave alike when ρ → 0, i.e., in the transition to the vacuum.
The disadvantage of considering a vanishing viscosity term is that it does
not allow us to obtain the usual energy estimates for the velocity, represent-
ing this one of the main difficulties of proving the existence of solutions of
Problem P.

The rest of the article is organized as follows. In Section 2, we present
our precise assumptions and state the main results. These are related to an
approximated problem, which we call Problem Pε, for which we find uniform
estimates which imply the compactness of the sequence of approximated so-
lutions. In Section 3, we prove the existence of solutions and obtain uniform
estimates of a related problem in Lagrangian coordinates. In Section 4,
we prove the equivalence between the problems in Lagrangian and Eulerian
coordinates. Finally, in Section 5, we prove our main results.

2. Assumptions and main results

We consider the following assumptions on the data:

(H1) The initial data of the density is such that ρ
α−1/2
0 ∈ H1(Ω), α > 1/2,

with 0 ≤ ρ0 < 1 in Ω and ‖ρ0‖L1 = 1.
(H2) The viscosity is assumed to take the form

μ(ρ) = νρα, with ν > 0. (2.1)

(H3) The initial data of the momentum is of the form m0 := ρ0u0, with
u0 ∈ L2(Ω).
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(H4) The pressure term is assumed to be such that p ∈ C1([0, 1); R+) is
increasing, with p(0) = 0, and satisfying∫ ρ′

0

p(s)
s2

ds < ∞ and
∫ 1

ρ′

( ∫ z

ρ′
p(s)ds

)1/2
dz = ∞, (2.2)

for an arbitrary ρ′ ∈ (0, 1). The source term, f ∈ C([0, 1)×R×R+)
is given by

f(ρ, m, t) = q(ρ)(M(t) − m), (2.3)
where q ∈ C([0, 1]) is increasing, with q(0) = 0 and q(1) < ∞, and
M ∈ C([0, T ]; R+) represents the flow of gas entering into the domain
through the point x = 0.

Remark 1. (1) A regularization and passing to the limit technique allows
us to prove Theorems 1 and 2 below under weaker assumptions on function
f . Indeed, we only need that f satisfies the Carathéodory conditions.

(2) In the rescaling of the previous section, we normalized the specific
volume to be ρ < 1 instead of ρ < ρ∗. This is the reason why we write in
(H1) ρ0 < 1 and in (H4) the upper limit of integration of the second integral
is 1.

(3) It is not difficult to see that solutions of (1.2)-(1.5) with m = 0 are
unidimensional. These static stationary solutions are called stationary cloud
solutions, and we show in [27] that for a domain large enough, a free bound-
ary arises. Moreover, when laws of the type (1.6) are assumed for the pres-
sure, we show that the regularity of ρ in this boundary is determined by the
exponent γ.

This exponent is also important in the study of the linear stability of
trivial constant solutions, where the condition γ ≥ 3 is a necessary condition
for unstable bubbling regimes to appear (when gas flow speed is greater than
a critical rate). We have that stationary cloud solutions satisfy hypothesis
(H1) if γ < 2α. Therefore, if we want to cover the case of a pressure given
by (1.6), we must allow α to be larger than 3/2. Although the lack of
precise physical knowledge about the viscosity coefficient led us to take a
simple constitutive law satisfying (1.12), the arguments above motivated us
to choose (2.1) for a general α, instead of the more obvious linear law.

In order to approximate the solutions of Problem P, we introduce an aux-
iliary problem consisting of equations (1.7)-(1.8) with function μ replaced by
a certain perturbation με, completed with the following auxiliary conditions

u(0, ·) = u(L, ·) = 0 in (0, T ), (2.4)
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ρ(·, 0) = ρ0ε, u(·, 0) = u0 in Ω. (2.5)

We take the perturbed data satisfying the following assumptions:

(H1)ε ρ
α−1/2
0ε ∈ H1(Ω), ‖ρ0ε‖L1 = 1, and

ρ
α−1/2
0ε → ρ

α−1/2
0 in H1(Ω) as ε → 0. (2.6)

In addition, we assume that there exist constants C and ρ+, inde-
pendent of ε, such that

0 < Cε
2
3 ≤ ρ0ε ≤ ρ+ < 1. (2.7)

(H2)ε The perturbed viscosity is of the form

με(ρ) := μ(ρ) + ε = νρα + ε. (2.8)

Before stating our results, we give the notion of weak solution of equations
(1.7)-(1.10) with boundary and initial data given by (2.4)-(2.5), with vis-
cosity given by (2.8) and with the data satisfying hypothesis (H1)ε, (H2)ε,
(H3) and (H4). We shall refer to this problem as to Problem Pε. Since the
density shall be a positive function, we formulate Problem Pε in terms of ρ
and u := m/ρ.

Definition 1. A pair (ρ, u) is called a weak solution of Problem Pε if ρ :
QT → R+, and u : QT → R are such that

ρ ∈ H1(0, T ;L2(Ω)) ∩ C(QT ), ρα−1/2 ∈ L∞(0, T ;H1(Ω)), p(ρ) ∈ L∞(QT ),

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), ut ∈ L2(0, T ;H−1(Ω)),

0 < ρ− ≤ ρ ≤ ρ+ < 1 a.e. in QT , (2.9)
for some constants ρ− and ρ+ (which may depend on ε). The equations and
auxiliary data are satisfied in the sense

ρt + (ρu)x = 0 a.e. in QT , (2.10)∫
QT

(
ρu(ϕt + uϕx) − με(ρ)uxϕx + p(ρ)ϕx + f(ρ, m, t)ϕ

)
= 0, (2.11)

for all ϕ ∈ C([0, T ];C1
0 (Ω)) ∩ H1(0, T ;L2(Ω)), and

lim
t→0

||ρ(·, t) − ρ0ε||C0(Ω) = lim
t→0

||u(·, t) − u0||H−1(Ω) = 0. (2.12)

We are concerned with the compactness properties of the sequence of
solutions (ρε, uε) of Problem Pε. We expect the limit of this sequence to be
a solution of Problem P corresponding to the unperturbed data (ρ0, m0) and
μ, in which the density ρ may vanish in the interior of the domain.
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Although we give here statements for general α > 1/2, we shall particular-
ize the proofs for α = 1. This is done for the aim of clarity, as the proof for
the general case does not use new arguments and only introduces a rather
more obscure notation. We give some details on the different aspects of both
proofs in Remark 4.

In the following statements, which are the main results of this article,
we assume the existence of solutions of Problem Pε, which we prove as an
auxiliary result in Section 4.

Theorem 1. Assume (H1)ε, (H2)ε, (H3) and (H4) and let (ρε, uε) be a
weak solution of Problem Pε. Then we have estimates of the norms

||(ρεx)α−1/2||L∞(L2), ||(ρα
ε )t||L2(L1), ||ρ1/2

ε uε||L∞(L2), ||(ρα
ε + ε)1/2uεx||L2 ,

(2.13)
which are independent of ε. In addition, the constant ρ+ of (2.9) may also
be fixed independently of ε.

Here, we introduced the notation ‖ · ‖Lp(Lq) for ‖ · ‖Lp(0,T ;Lq(Ω)) and ‖ · ‖Lp

for ‖ · ‖Lp(QT ). The above estimates allow us to pass to the limit in the weak
formulation of Problem Pε. We obtain the following result of convergence
to a solution of Problem P.

Theorem 2. Assume (H1)-(H4). Consider the sequence (ρε, uε) of solutions
of Problems Pε and set mε := ρεuε, for any ε > 0. Then there exist functions
ρ ∈ C(QT ), m, ζ, Γ ∈ L2(QT ) and χ2 ∈ 
(QT ) (the set of Radon measures)
such that, up to a subsequence,

ρε → ρ uniformly in QT , with ρ < ρ+ < 1 in QT , (2.14)

mε ⇀ m, ρα
ε (

mε

ρε
)x ⇀ ζ,

mε√
ρε

⇀ Γ in L2(QT ), (2.15)

and
m2

ε

ρε
⇀ χ2 in 
(QT ). (2.16)

Consider the sets Q+ defined in (1.9) and Q∗ := {(x, t) ∈ QT : ρ(x, t) = 0}.
Then we have

m = 0 and ζ = 0 in Q∗, (2.17)

ζ = ρα(
m

ρ
)x a.e. in Q+, (2.18)

χ2 =
m2

ρ
a.e. in Q+ and (χ2)x = 0 in Interior (Q∗). (2.19)
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In addition, if α = 1, then

mε → m in L2(QT ). (2.20)

Remark 2. (1) Note that in the passing to the limit we obtain compactness
properties for ρε and mε, but not for uε. This is interesting from the point of
view of the physical model since the relevant conserved physical quantities
of the problem are precisely the density and the momentum. Velocity only
appears as an auxiliary quantity.

(2) We are able to identify the limit of the diffusion term in the whole
domain because we identified this limit almost everywhere, and the limit is
an element of L2(QT ). However, in the case of the convective term, we are
only able to identify the limit almost everywhere because we do not obtain
Lp regularity, for p > 1, from the sequence of solutions of Problem Pε, since
we only have an estimate of the sequence in L1(QT ).

3. Lagrangian coordinates. Problem PLε

Introducing the Lagrangian mass coordinates

X(x, t) =
∫ x

0
ρ(z, t)dz, t̂(x, t) = t for (x, t) ∈ QT ,

and making the identification t̂ ≡ t, we may rewrite formally equations (1.7)-
(1.8) (with μ replaced by με) for the new unknowns W (X, t) = 1/ρ(x, t) and
U(X, t) = u(x, t) as

Wt − UX = 0, (3.1)
Ut − (β(W )UX − p(W ))X = F (W, U, t), (3.2)

in DT := I × (0, T ), with I = (0, 1) (due to the normalization of the initial
mass, see hypothesis (H1)ε). Here we introduced the functions β(s) :=
με(1/s)/s, p(s) := p(1/s) and F (s, σ, t) := sf(1/s, σ/s, t). The boundary
and initial data are

U(0, ·) = U(1, ·) = 0 a.e. in (0, T ), (3.3)
W (·, 0) = W0ε, U(·, 0) = U0 a.e. in I. (3.4)

Assumptions on (H1)ε and (H3) on the initial data are replaced by
(HL1)ε W0ε ∈ H1(I), U0 ∈ L2(I) and there exist constants C and ρ+,

independent of ε, such that

0 <
1

ρ+
≤ W0ε ≤ Cε−2/3. (3.5)
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The definition of weak solution for this problem is similar than that of Prob-
lem Pε. We write it for the case α = 1.

Definition 2. A pair (W, U) is called a weak solution of Problem PLε if
W : DT → R+ and U : DT → R are such that

W ∈ L∞(0, T ;H1(I))∩H1(0, T ;L2(I))∩C(DT ), p(W ) ∈ L∞(DT ), (3.6)

U ∈ L∞(0, T ;L2(I)) ∩ L2(0, T ;H1
0 (I)) ∩ H1(0, T ;H−1(I)), (3.7)

0 < 1/ρ+ ≤ W ≤ 1/ρ− < 1 a.e. in DT , (3.8)

for some positive constants ρ− and ρ+. Equations (3.1)-(3.2) are satisfied in
the following sense

Wt = UX a.e. in DT , (3.9)∫
DT

(
UΦt − β(W )UXΦX + p(W )ΦX + F (W, U, t)Φ

)
= 0, (3.10)

for all Φ ∈ C([0, T ];C1
0 (I))∩H1(0, T ;L2(I)). The solutions verify the initial

conditions in the sense:

lim
t→0

||W (·, t) − W0ε||C0(I) = lim
t→0

||U(·, t) − U0||H−1(I) = 0. (3.11)

Theorem 3. Assume (HL1)ε, (H2)ε, (H3) and (H4). Then there exists a
weak solution of Problem PLε. In addition, ρ+ may be chosen independent
of ε.

To obtain the existence of solutions of Problem PLε, we first consider a
spatial discretization of equations (3.1)-(3.2), leading to a system of ordinary
differential equations in time. The local solution of the system is a straight-
forward consequence of the Theorem of Piccard–Lipschitz. To prove the
existence of a global solution, we obtain uniform estimates of suitable norms
of the solution. In particular, we deduce the discrete energy inequalities
corresponding to the natural energy inequalities of the continuum problem.
We finally extend the solution of the system of ODE’s to space by piece-
wise linear approximations, showing that the estimates are independent of
the discretization parameter. We then pass to the limit and identify it as a
solution of Problem PLε.

We introduce a finite difference scheme to discretize Problem PLε, see
[7]. For any given integer N , let h = 1/N . We define Xk = kh, for k ∈
{0, . . . , N}, and Xk+1/2 = (Xk +Xk+1)/2, for k ∈ {0, . . . , N −1}. We denote
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by Uk(t) and Wk+1/2(t) the approximations of U(Xk, t) and W (Xk+1/2, t),
respectively. Define the spatial difference operator δ by

δgk =
gk+1/2 − gk−1/2

h
, δgk+1/2 =

gk+1 − gk

h
.

We set the following system of ordinary differential equations:

Ẇk+1/2 = δUk+1/2, k ∈ {0, . . . , N − 1}, (3.12)

U̇k = δ(βδU − p)k + fk, k ∈ {1, . . . , N − 1}, (3.13)

in (0, T ), where we use the notation βk+1/2 ≡ β(Wk+1/2), pk+1/2 ≡ p(Wk+1/2)
and

fk(t) ≡ F ((Wk+1/2 + Wk−1/2)/2, Uk, t).
We complete equations (3.12)-(3.13) fixing the end-points values as

U0(t) = UN (t) = 0, (3.14)

and the initial values as

Wk+1/2(0) = W0ε(Xk+1/2) and Uk(0) =
∫ Xk

Xk−1

U0. (3.15)

The existence of local solution of problem (3.12)-(3.15) is obtained by the
Theorem of Piccard–Lipschitz. To prove the global existence we need to
show that the Lipschitz constant corresponding to system (3.12)-(3.13) is
finite for any T < ∞. To this end it is sufficient to prove

1 < W− ≤ Wk+1/2 ≤ W+ < ∞, (3.16)
−∞ < U− ≤ Uk ≤ U+ < ∞,

in (0, T ), for any T > 0 and for certain constants W−, W+, U− and U+.
These estimates are obtained via energy estimates involving the following
energy functionals:

Ep(σ) :=
∫ ∞

σ
p(s)ds =

∫ 1/σ

0

p(s)
s2

ds,

Eβ(σ) :=
∫ σ

W ′
β(s)ds =

[
ε log s − 1

s

]σ

W ′
,

(3.17)

for an arbitrary constant W ′ > 1. Observe that since p and β are positive,
we have that Ep is decreasing and Eβ is increasing. In addition, hypothesis
(H4) implies that, for any z′ > 1,

lim
z→1

∫ z′

z
Ep(σ)dσ = ∞. (3.18)
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We also have, for any ε > 0,

lim
σ→∞

Eβ(σ) = ∞. (3.19)

Notice that (3.19) implies that if ε > 0 and Eβ(σ) < ∞, then σ ≤ C < ∞.
However, for ε = 0 we have limσ→∞ Eβ(σ) = 1/W ′ < ∞, and therefore the
constant C above depends on ε.

In the following, we shall use the notation Ep
k+1/2(t) for Ep(Wk+1/2(t))

and similarly for Eβ.

Lemma 1. There exists a constant C independent of h and ε such that
N−1∑
k=1

(
U2

k (T )h+
∫ T

0
(U2

k +βk+1/2(δUk+1/2)
2)h

)
+

N−1∑
k=0

Ep
k+1/2(T )h ≤ C(1+T ),

(3.20)
and

N−1∑
k=1

(δEβ
k )2(T )h ≤ C(1 + T ). (3.21)

Proof. Multiplying equation (3.12) by Ukh and summing in k = 1, 2, . . . , N ,
using (3.14) and the summation by parts formulae, integrating in (0, T ) and
using
N−1∑
k=1

δpkUk = −
N−1∑
k=0

pk+1/2δUk+1/2 = −
N−1∑
k=0

pk+1/2Ẇk+1/2 =
d

dt

N−1∑
k=0

Ep
k+1/2h,

we deduce

E1 ≤
(
T +

N−1∑
k=1

U2
k (0)h +

N−1∑
k=0

Ep
k+1/2(0)h

)
, (3.22)

where E1 is the left hand side of (3.20). We shall see at the end of this proof
that the constant at the right of (3.22) is independent of h and ε.

To prove the second energy inequality (3.21), we observe that combining
equations (3.12) and (3.13) we obtain

δĖβ
k = δ(βδU)k = U̇k + δpk − fk. (3.23)

Multiplying by δEβ
k h, summing in k = {1, . . . , N − 1} and integrating in

(0, T ), we get

1
2

N−1∑
k=1

∫ T

0

d

dt
(δEβ

k )2h =
N−1∑
k=1

∫ T

0
(U̇k + δpk − fk)δE

β
k h. (3.24)
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We have
N−1∑
k=1

∫ T

0
U̇kδE

β
k h =

N−1∑
k=1

[
UkδE

β
k

]T

0
h −

N−1∑
k=1

∫ T

0
UkδĖ

β
k h, (3.25)

but, by (3.23)
N−1∑
k=1

∫ T

0
UkδĖ

β
k h =

N−1∑
k=1

∫ T

0
Ukδ(βδU)kh. (3.26)

Summation by parts in the right of (3.26) gives
N−1∑
k=1

∫ T

0
Ukδ(βδU)kh =

N−1∑
k=0

∫ T

0
βk+1/2(δUk+1/2)

2h. (3.27)

Therefore, from (3.25)-(3.27) we get

N−1∑
k=1

∫ T

0
U̇kδE

β
k h ≤

N−1∑
k=1

(
1
4
(δEβ

k )2(T ) + 2U2
k (T ) − Uk(0)δEβ

k (0)h
)

h

+
N−1∑
k=0

∫ T

0
βk+1/2(δUk+1/2)

2h. (3.28)

On the other hand, since p is decreasing and Eβ is increasing we have
∫ T

0

N−1∑
k=1

δpkδE
β
k h ≤ 0. (3.29)

We have, then from (3.24), (3.28) and (3.29)

1
4

N−1∑
k=1

(δEβ
k )2(T )h ≤

N−1∑
k=1

(
(δEβ

k )2(0) + 2(U2
k (T ) + U2

k (0))
)

h

+
1
2

N−1∑
k=1

∫ T

0

(
2βk+1/2(δUk+1/2)

2 + (δEβ
k )2

)
h.

Using (3.20) and Gronwall’s inequality we deduce
N−1∑
k=1

(δEβ
k )2(T )h ≤ C

(
T +

N−1∑
k=1

(
U2

k (0) + (δEβ
k (0))2

)
h +

N−1∑
k=0

Ep
k+1/2(0)h

)
.

(3.30)
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Let us finally show that the constants in (3.22) and (3.30) do not depend on
h neither on ε. On one hand we have, by definition of Ep, see (3.17)

Ep
k+1/2(0) =

∫ ∞

W0ε(Xk+1/2)
p̄(s)ds =

∫ 1/W0ε(Xk+1/2)

0

p(s)
s2

ds ≤
∫ ρ+

0

p(s)
s2

ds ≤ C,

with C independent of h and ε, and where we used assumptions (H4) and
(HL1)ε. On the other hand, we may write

δEβ
k (0) =

1
h

∫ W0ε(Xk+1/2)

W0ε(Xk−1/2)

d

ds
Eβ(s)ds =

1
h

∫ W0ε(Xk+1/2)

W0ε(Xk−1/2)
β(s)ds.

Observe that convergence (2.6) and definition (3.4) implies
N−1∑
k=1

|
R0ε(Xk+1/2) − R0ε(Xk−1/2)

h
|2h ≤ C,

with C independent of ε and h. Therefore, using the primitive function of
β, see (3.17), and the bound (3.5), we obtain

N−1∑
k=1

(δEβ
k (0))2h ≤

N−1∑
k=1

1
h

(
ε| log R0ε(Xk+1/2) − log R0ε(Xk−1/2)|

+ |R0ε(Xk+1/2) − R0ε(Xk−1/2)|)
)2

≤
N−1∑
k=1

2(
ε

ρ−
+ 1)2|

R0ε(Xk+1/2) − R0ε(Xk−1/2)
h

|2h ≤ C,

with C independent of h and ε, and where we used (HL1)ε and that ε is a
small number (say ε < 1). �
Lemma 2. There exist constants W−, independent of h and ε, and W+,
independent of h, such that

1 < W− ≤ Wk+1/2 ≤ W+ < ∞ in (0, T ), for any k ∈ {0, . . . , N − 1} .

Proof. Inequality (3.20) of Lemma 1 implies that for any t ∈ (0, T ] we can
find at least one k ∈ {0, . . . , N − 1} such that

Ep
k+1/2(t) ≤ C(1 + T ). (3.31)

In a similar way, equation (3.12) implies
N−1∑
k=0

Wk+1/2(t)h =
N−1∑
k=0

Wk+1/2(0)h,
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so we also can find k such that Eβ
k+1/2(t) ≤ C(1 + T ), where we denote

by C any constant independent of h and ε. Using a discrete version of the
embedding H1 ⊂ L∞ and inequality (3.21) we obtain

sup
k∈{0,...,N−1}

Eβ
k+1/2(t) ≤ C(1 + T ).

By (3.19), we deduce the existence of a constant, say W+, which depends on
ε, such that Wk+1/2 ≤ W+ for any k ∈ {0, . . . , N − 1}.

To obtain the lower bound we introduce the function G : (1,∞) → R+

given by

G(σ) :=

⎧⎨
⎩

∫ σ

W ′
β(s)

√
Ep(s)ds if σ < W ′,

0 if σ > W ′.

It is clear that G is increasing and differentiable in (1,∞)\{W ′}. Moreover,
the uniform bound of β in (1, W ′) implies

lim
σ→1+

G(σ) = −∞, (3.32)

uniformly in ε, see (3.18). The Theorem of the Mean Value ensures that
for any σ1, σ2 > 1 there exists σ̄ ∈ (σ1, σ2) such that |G(σ2) − G(σ1)| ≤√

Ep(σ̄)|Eβ(σ2)−Eβ(σ1)|. On one hand, (3.31) implies that G(Wk+1/2)(t) ≡
Gk+1/2 ≤ C(1 + T ). On the other, for any l > k there exists

W j ∈
(
min{Wj−1/2, Wj+1/2},max{Wj−1/2, Wj+1/2}

)

such that

|Gl+1/2 − Gk+1/2| ≤
l∑

j=k+1

|Gj+1/2 − Gj−1/2| ≤
l∑

j=k+1

√
Ep(W j)|δEβ

j |h

≤
l∑

j=k+1

(
Ep

j−1/2 + Ep
j+1/2

)
h +

l∑
j=k+1

(δEβ
j )2h ≤ C(1 + T ),

with C independent of h and ε, by Lemma 1. Here we used that Ep is
increasing. In a similar way we prove this bound for l > k, and the assertion
follows from (3.32). �
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Proof of Theorem 3. To obtain the existence of solutions of Problem PLε

we consider the following piecewise linear approximations of W and U :

W h(X, ·) =

⎧⎪⎪⎨
⎪⎪⎩

W1/2 X ∈ [0, X1/2],
X−Xk−1/2

h Wk+1/2 + Xk+1/2−X

h Wk−1/2, X ∈ [Xk−1/2, Xk+1/2],

WN−1/2 X ∈ [XN−1/2, XN ],

and, for any X ∈ [Xk, Xk+1], with k ∈ {0, . . . , N − 1},

Uh(X, t) =
X − Xk

h
Uk+1(t) +

Xk+1 − X

h
Uk(t).

Lemma 2 allows us to obtain the following estimate, uniform in h,

1 < W− ≤ W h ≤ W+ < ∞ in QT . (3.33)

Using (3.33) and Lemma 1, we also obtain estimates independent of h of the
norms

||Uh||L∞(L2), ||Uh
X ||L2 , and ||W h

X ||L∞(L2). (3.34)

Assumption (HL1)ε allows us to get uniform in h estimates for ||U0h||L2 and
||W h

0εX ||L2 . Therefore, there exist functions W and U such that, up to a
subsequence (not relabeled),

W h ∗
⇀ W in L∞(DT ), (3.35)

W h
X

∗
⇀ WX in L∞(0, T ;L2(I)), (3.36)

Uh ∗
⇀ U in L∞(0, T ;L2(I)), (3.37)

Uh
X ⇀ UX in L2(DT ). (3.38)

Equation (3.12) implies that W h
t (Xk+1/2, ·) = Uh

X(Xk+1/2, ·), and therefore
we obtain ‖W h

t ‖L2 ≤ 2‖Uh
X‖L2 . Hence, up to a subsequence

W h
t ⇀ Wt in L2(DT ). (3.39)

Convergences (3.35), (3.36), (3.39) and Corollary 4, page 85 of [26] imply

W h → W in C(DT ). (3.40)

Property (3.33), convergences (3.37), (3.40) and the continuity of β, p and
F imply

βh := β(W h) → β(W ) and ph := p(W h) → p(W ) in C(DT ), (3.41)

F h := F (W h, Uh, ·) ⇀ F (W, U, ·) in L2(DT ). (3.42)
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Convergences (3.38) and (3.41) give

βhUh
X ⇀ β(W )UX in L2(DT ). (3.43)

We now identify (W, U) as a weak solution of the problem PLε. Let us
consider a test functions φ ∈ C∞(DT ) with compact support in I × [0, T ).
We use the notation

φk(t) := φ(Xk, t) for k ∈ {1, . . . , N − 1},
φk+1/2(t) := φ(Xk+1/2, t) for k ∈ {0, . . . , N − 1},

Uh
k (t) := Uh(Xk, t), W h

k+1/2(t) = W (Xk+1/2, t), etc.

Multiplying equations (3.12) and (3.13) by φk+1/2(t)h and φk(t)h, respec-
tively, summing in k and integrating, we obtain that (W h, Uh) satisfy

N−1∑
k=0

(
W h

k+1/2(0)φk+1/2(0)h +
∫ T

0
W h

k+1/2φ̇h
)
−

N−1∑
k=1

∫ T

0
Uh

k δφkh = 0,

(3.44)
N−1∑
k=1

(
Uh

k (0)φk(0)h +
∫ T

0
Uh

k φ̇k

)
+

N−1∑
k=0

∫ T

0

(
ph − βhδUh

)
k+1/2

δφk+1/2

+
N−1∑
k=1

∫ T

0
fh

k φk = 0, (3.45)

where fh
k = F ((W h

k+1/2 + W h
k−1/2)/2, Uh

k , ·). For the continuous unknowns,
the convergence results (3.35)-(3.43) imply that∫ 1

0
W h(·, 0)φ(·, 0) +

∫
DT

(W hφt − UhφX), (3.46)

∫ 1

0
Uh(·, 0)φ(·, 0) +

∫
DT

(Uhφt + (ph − βhUh
X)φX + fhφ), (3.47)

converge to the corresponding expressions with W h and Uh replaced by W
and U . So, for example, we have, as h → 0,∫

DT

βhUh
XφX →

∫
DT

β(W )UXφX .

Therefore, if we show
N−1∑
k=0

∫ T

0
(βhδUh)k+1/2δφk+1/2 →

∫
DT

βhUh
XφX as h → 0, (3.48)
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and the same convergences for the corresponding terms of (3.46)-(3.47) then
the identification of the limit is achieved. We show here how to obtain (3.48).
The other terms of equations (3.44)-(3.45) are treated in a similar way. First
observe that (3.34), the Lipschitz continuity of β in the interval (W−, W+),
see (3.33), and

∣∣∣W h(X, t) − W h
k+1/2(t)

∣∣∣ =
∣∣∣
∫ X

Xk+1/2

W h
X(z, t)dz

∣∣∣ ≤ h1/2‖W h
X(·, t)‖L2 ,

imply ∣∣βh
k+1/2 − β(W h(X, ·))

∣∣ ≤ Ch1/2 in (0, T ),

for any X ∈ [Xk−1/2, Xk+1/2]. Therefore,
∫

DT

βhUh
XφX =

∫ T

0

N−1∑
k=0

∫ Xk+1

Xk

βhUh
XφX =

∫ T

0

N−1∑
k=0

∫ Xk+1

Xk

βhUh
XφX

=
∫ T

0

N−1∑
k=0

∫ Xk+1

Xk

(
βh

k+1/2 + O(h1/2)
)
δUh

k+1/2

(
δφk+1/2 + O(h)

)

=
∫ T

0

N−1∑
k=0

h
(
βh

k+1/2 + O(h1/2)
)
δUh

k+1/2

(
δφk+1/2 + O(h)

)

=
∫ T

0

N−1∑
k=0

(
hβh

k+1/2δU
h
k+1/2δφk+1/2 + O(h1/2)

)
, (3.49)

where, as usual, we introduced the notation O(h) for a function of h, O,
such that |O(h)| ≤ Ch as h → 0. From (3.49) we obtain

∫ T

0

N−1∑
k=0

hβh
k+1/2δU

h
k+1/2δφk+1/2 →

∫
DT

βUXφX as h → 0,

which is (3.48).
Once we have that the limit (W, U) satisfies equations (3.9)-(3.10), the

only additional regularity of weak solutions stated in Definition 2 which
is not straightforward is that of U ∈ H1(0, T ;H−1(I)). We obtain this
regularity using (3.10) for any Φ ∈ L2(0, T ;H1

0 (I)). We get∫
DT

UΦt ≤
(
‖β(W )‖L∞‖UX‖L2 + ‖p‖L2

)
‖Φ‖L2(H1

0 ) + ‖F‖L2‖Φ‖L2 ,

and the result follows. Finally, due to the regularity of the solutions and of
the initial data, (3.11) holds true. �
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Corollary 4. Let (Wε, Uε) be the weak solution of Problem PLε constructed
in Theorem 3. Then∫ 1

0
|Uε(·, T )|2 +

∫
DT

(
U2

ε + β(Uε)|UεX |2
)

+
∫ 1

0
Ep(Wε(·, T ))

≤ C
(
T +

∫ 1

0

(
|U0|2 + Ep(W0ε)

))
,

sup
[0,T ]

∫ 1

0
|Eβ(Wε(·, T ))X |2 ≤ C

(
T +

∫ 1

0
|Eβ(W0ε)X |2

)
.

Proof. Both inequalities are a straightforward consequence of Lemma 1,
see (3.22) and (3.30), and the convergence properties shown in the proof of
Theorem 3, see (3.35)-(3.43). �

4. Existence of solutions of Problem Pε

In this section we prove that solutions of Problem PLε may be translated,
via a change of variables, into solutions of Problem Pε. In fact, both notions
of solution are equivalent but, for brevity, we show the result in just one
direction.

The main difficulty is that the natural change of variables, which depends
on the solution of PLε constructed in the previous section, has a Jacobian
matrix which is not continuously differentiable and therefore the usual the-
orems of change of variables may not be applied. To overcome this difficulty
we consider a sequence which approximates the solution of PLε and ac-
cordingly define a sequence of regular maps approximating the change of
variables. We then show that the corresponding sequence in Eulerian coor-
dinates converges to a weak solution of Problem Pε.

Theorem 5. Assume that (W, U) is a weak solution of Problem PLε. Then
there exists a continuous map, γ : DT → QT , which defines a change of
variables γ(X, t) := (x(X, t), t) ≡ (x, t), such that 0 < ‖det(Dγ)‖L∞(DT ) <

∞. In addition, the pair (ρ, u) : QT × QT → R+ × R defined by

ρ(x, t) := 1/W (γ−1(x, t)), u(x, t) := U(γ−1(x, t)), (4.1)

for (x, t) ∈ QT , is a weak solution of Problem Pε corresponding to the initial
data

(
1/W0ε(γ−1(·, 0)), U0ε(γ−1(·, 0))

)
.

Remark 3. Choosing the initial data of Problem PLε as W0ε = 1/ρ0ε ◦
γ(·, 0) and U0 = u0 ◦ γ(·, 0), Theorem 5 provides a solution of Problem Pε

corresponding to the initial data (ρ0ε, u0).
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Proof. For convenience, we work with functions related to the density in
Lagrangian coordinates, R := 1/W , instead of W . Let (W, U) be a weak
solution of Problem PLε. The regularity (3.6)-(3.7) and the bounds (3.8)
imply that R ∈ L∞(0, T ;H1(I))∩H1(0, T ;L2(I))∩C(DT ), p(R) ∈ L∞(DT ),
and

0 < ρ− ≤ R ≤ ρ+ < 1 in DT . (4.2)
In addition, (R, U) satisfies

Rt + R2UX = 0 a.e. in DT ,∫
DT

(
UΦt − (R2 + εR)UXΦX + p(R)ΦX + F (1/R, U, t)Φ

)
= 0.

We split the proof in several steps.
Step 1. Regularization of the solutions of PLε. We consider a regu-
larization Rn ∈ C∞(DT ) of R such that ‖Rn‖L∞(H1) ≤ ‖R‖L∞(H1),

Rn → R in H1(0, T ;L2(I)) ∩ C(DT ), (4.3)

satisfies the bounds (4.2) and ‖1/Rn‖L1(I)(t) = L for all t ∈ (0, T ). We
define Un(X, t) :=

∫ X
0 (1/Rn)t. Then using (4.3) we deduce

Un → U in L2(0, T ;H1
0 (I)), (4.4)

where U is the second component of the weak solution of PLε.
Step 2. Regularization of the change of variables. We consider the
map γn : DT → QT given by γn(X, t) := (yn(X, t), t), with

yn(X, t) =
∫ X

0

1
Rn

(Z, t)dZ.

We now check that γn defines a smooth change of variables. First, note that

• ∂yn

∂X
= 1/Rn > 0 in DT , with yn(0, ·) = 0 and yn(1, ·) = L in (0, T ),

• ∂yn

∂t
=

∫ X

0
(1/Rn)t = Un in DT , and

• ∂yn

∂t∂X
= (1/Rn)t in DT .

Therefore, γn(DT ) = QT , Dγn ∈ C∞(DT ) and det(Dγn) = 1/Rn > 0 in DT ,
where Dγn is the Jacobian matrix of γn. Note that, in the limit n → ∞,
∂yn/∂t does not converge, in general, to a continuous function.

Since ∂yn/∂X > 0, we have that for every t ∈ (0, T ), there exists a
function Yn(·, t) : [0, L] → [0, 1] which is the inverse of yn(·, t). We define
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Γn : QT → DT by Γn(x, t) := (Yn(x, t), t). Observe that Yn is the unique
solution of the problem

∂Y

∂x
= Rn(Y, ·) in QT , Y (0, ·) = 0 in (0, T ).

Now, 0 = Yn(yn(0, t), t) = Yn(0, t) and 1 = Yn(yn(1, t), t) = Yn(L, t) imply
Γn(QT ) = DT . Moreover, from ∂

∂t (yn(Yn(x, t), t)) = 0, we deduce

∂Yn

∂t
(x, t) = −Rn(Yn(x, t), t)Un(Yn(x, t), t). (4.5)

Hence, DΓn(Yn, ·) ∈ C∞(QT ) and det(DΓn) = Rn(Yn, ·) > 0 in QT . There-
fore, γn and Γn define smooth changes of variables.

Finally, observe that both γn and Γn converge uniformly, up to a sub-
sequence, to some continuous functions γ and Γ. For the first, it is an
easy consequence of the convergence (4.3). For the second, we have for all
(x1, t1), (x2, t2) ∈ QT ,

||Γn(x2, t2) − Γn(x1, t1)||
≤ |Yn(x2, t2) − Yn(x1, t2)| + |Yn(x1, t2) − Yn(x1, t1)| + |t2 − t1|
≤ ‖Rn‖L∞ (|x2 − x1| + ‖Un‖L2(L∞) |t2 − t1|1/2) + |t2 − t1|,

which implies that the sequence Γn is uniformly continuous, and the assertion
follows. We used the continuous imbedding H1 ⊂ L∞.
Step 3. Convergence in Eulerian coordinates. We define

ρn(x, t) := Rn(Yn(x, t), t), un := Un(Yn(x, t), t) for (x, t) ∈ QT .

Using the convergence of (Rn, Un) to (R, U), see (4.3) and (4.4), the bounds
(4.2), the identity (4.5) and the continuous imbedding H1 ⊂ L∞, we obtain∫

QT

|ρnt|2 =
∫

QT

∣∣∣∂Rn

∂t
(Yn, ·) − ∂Rn

∂X
(Yn, ·)Rn(Yn, ·)Un(Yn, ·)

∣∣∣2

=
∫

DT

∣∣∣∂Rn

∂t
− ∂Rn

∂X
RnUn

∣∣∣2 1
Rn

≤ c
(
‖Rnt‖L2 + ‖Rn‖L∞(H1) ‖Un‖L2(L∞)

)2
≤ c.

In a similar way, we obtain uniform bounds for ‖ρnx‖L2 , ‖un‖L∞(L2) and
‖unx‖L2 . These bounds imply the existence of a subsequence (ρn, un) con-
verging weakly to (ρ, u), with

ρ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (4.6)
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u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (4.7)

For the time derivative of un, we have that for any φ ∈ C∞(QT ),∫ T

0
〈unt, φ〉H−1×H1

0
=

∫
QT

(∂Un

∂t
(Yn, ·) − ∂Un

∂X
(Yn, ·)Rn(Yn, ·)Un(Yn, ·)

)
φ

=
∫

DT

(∂Un

∂t
− ∂Un

∂X
RnUn

)φ(yn, ·)
Rn

=
∫

DT

(∂Un

∂t

φ(yn, ·)
Rn

+
1
2
U2

n

∂φ

∂X
(yn, ·)

)

≤ c
(
‖Unt‖L2 + ‖Un‖2

L4

)
‖φ‖L2(H1

0 ) ≤ c.

Using the uniform convergence of γn and the continuous embedding

L2(0, T ;H1
0 (I)) ∩ L∞(0, T ;L2(I)) ⊂ L4(DT )

we obtain

‖unt‖L2(H−1) ≤ c(‖Unt‖L2 + ‖Un‖2
L2(H1

0 )∩L∞(L2)) ≤ c,

and therefore u ∈ H1(0, T ;H−1(Ω)) and

un ⇀ u in H1(0, T ;H−1(Ω)). (4.8)

Step 4. Identification of the limit. To prove that (ρ, u) is a weak solution
of Problem Pε we first need to show that the test functions of problems PLε

and Pε are conveniently related to each other. Let φ ∈ C([0, T ];C1
0 (Ω)) ∩

H1(0, T ;L2(Ω)) and define Φn := φ ◦ γn . We have

Φnt =
∂φ

∂t
(yn, ·) +

∂φ

∂x
(yn, ·)Un, and ΦnX =

∂φ

∂x
(yn, ·) 1

Rn
,

in DT , and then

‖Φnt‖L2 ≤ c(‖φt‖L2 + ‖φx‖L∞‖Un‖L2) and sup
DT

|ΦnX | ≤ c sup
QT

|φx| .

The convergence of γn and Rn imply that the sequence Φn is uniformly
bounded in C([0, T ];C1

0 (I)) ∩ H1(0, T ;L2(I)). Hence, there exists a func-
tion Φ such that ΦnX → ΦX uniformly in DT and Φnt ⇀ Φt in L2(DT ).
Furthermore, Φ = φ ◦ γ, is a test function of Problem PLε.

To prove that (ρ, u) is a solution of Problem Pε, we observe that (ρn, un)
satisfy

∂ρn

∂t
+

∂ρn

∂x
un + ρn

∂un

∂x
=

∂Rn

∂t
(Yn, ·) − ∂Rn

∂X
(Yn, ·)Rn(Yn, ·)Un(Yn, ·)
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+
∂Rn

∂X
(Yn, ·)Rn(Yn, ·)Un(Yn, ·) + R2

n(Yn, ·)∂Un

∂X
(Yn, ·) = 0.

Passing to the limit we obtain equation (2.10). On the other hand, for
φ ∈ C([0, T ];C1

0 (Ω)) ∩ H1(0, T ;L2(Ω)), we have
∫

QT

(ρnun(φt + unφx) − (ρn + ε)unxφx + p(ρn)φx + ρnf(ρn, un, t)φ)

=
∫

DT

(UnΦnt + (p(Rn) − (Rn + ε)RnUnX)ΦnX + F (Rn, Un, t)Φn) . (4.9)

The convergence of (Rn, Un) to (R, U), see (4.3) and (4.4), and the conver-
gence of Φn to a test function of Problem PLε imply that the right hand side
of (4.9) tends to zero. The uniform convergence of Γn implies the uniform
convergence of ρn, and the bound of un in L4(QT ) implies the convergence
of u2

n in L2(DT ). Then, since (ρn, un) → (ρ, u), see (4.6), (4.7) and (4.8), we
may pass to the limit on the left hand of (4.9). �

5. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let (ρε, uε) be the solution of Problem Pε given by
Theorems 3 and 5. Then, using Theorem 5 and Corollary 4, we get∫ L

0
ρε(·, T )u2

ε(·, T ) +
∫

QT

(
ρεu

2
ε + (ρε + ε)|uεx|2

)
+

∫ L

0
ρε(·, T )Ep(

1
ρε

(·, T ))

=
∫ 1

0
U2

ε +
∫

DT

(
U2

ε + β(Uε)|UεX |2
)

+
∫ 1

0
Ep(Wε)

≤ C

(
T +

∫ L

0

(
ρ0εu

2
0 + ρ0εE

p(1/ρ0ε)
))

, (5.1)

and

4||(√ρε)x||2L∞(L2) = sup
[0,T ]

∫ L

0

ρ2
ε |ρεx|2

ρ3
ε

≤ sup
[0,T ]

∫ L

0

β2(1/ρε)
ρε

|( 1
ρε

)x|2 (5.2)

= sup
[0,T ]

∫ 1

0

∣∣∣Eβ(Wε)X

∣∣∣2 ≤ C
(
T +

∫ L

0
(
ε + ρ0ε

ρ
3/2
0ε

ρ0εx)2
)
.

Using the assumptions (H1)ε and (H3) on the initial data we deduce that
the right hand sides of (5.1)-(5.2) are uniformly bounded with respect to ε.
In particular, from (5.1) we obtain uniform bounds for ‖√ρεuε‖L∞(L2) and
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‖√ρε+εuεx‖L2 , and from (5.2) we obtain a uniform estimate for ||ρεx||L∞(L2).
From equation (2.10), we also obtain the uniform estimate

||ρεt||L2(L1) = ||ρεuεx + ρεxuε||L2(L1) ≤ C‖√ρε‖L∞‖√ρεuεx‖L2

+ C‖(√ρε)x‖L∞(L2)‖
√

ρεuε‖L∞(L2) ≤ C.

Finally, Theorem 3, gives Wε ≥ W− ≡ 1/ρ+ in DT , with ρ+ independent of
ε. Then by (4.1) of Theorem 5 we deduce ρ < ρ+ in QT , for the same ρ+.
Proof of Theorem 2. Estimates of Theorem 1 and Corollary 4, page 85 of
[26], imply (2.14) and first part of (2.15). To prove the first part of (2.17), we
use the sign function defined, as usual, by sign(s) = 1 if s > 0, sign(s) = −1
if s < 0, and sign(0) = 0, and the characteristic function of the set Q∗,
denoted by 1Q∗ . Estimate (2.13) implies∫

QT

mεsign(m)1Q∗ ≤ ‖√ρεuε‖L∞(L2)‖sign(m)
√

ρε1Q∗‖L1(L2) → 0.

On the other hand ∫
QT

mεsign(m)1Q∗ →
∫

Q∗
|m|,

and therefore m = 0 in Q∗.
To obtain the second part of (2.14) we observe that the estimate of

||√ρε + ε(mε
ρε

)x||L2 in (2.13) implies both the existence of a function η ∈
L2(QT ) such that

√
ρε(

mε

ρε
)x ⇀ η in L2(QT ),

and
ε(

mε

ρε
)x =

√
ε
√

ε(
mε

ρε
)x ⇀ 0 in L2(QT ).

Since (2.14) implies
√

ρε →
√

ρ uniformly, there exists a function ζ ∈ L2(QT )
such that

ρε(
mε

ρε
)x ⇀

√
ρη := ζ in L2(QT ),

and we thus obtain both second parts of (2.15) and (2.17).
The estimate of || mε√

ρε
||L∞(L2) in (2.13) implies

mε√
ρε

∗
⇀ Γ in L∞(0, T ;L2(Ω)).

To obtain (2.18) we consider the sets

Qδ
ε = {(x, t) : ρε(x, t) > δ} and Qδ = {(x, t) : ρ(x, t) > δ} .
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Due to the uniform convergence ρε → ρ, we have that for every δ > 0 there
exists ε0 > 0 such that Qδ ⊂ Q

δ/2
ε for every ε < ε0. Then

||(mε

ρε
)x||L2(Qδ) = ‖uεx‖L2(Qδ) ≤ ‖uεx‖L2(Q

δ/2
ε )

≤
√

2
δ
||√ρεuεx ||L2(Q

δ/2
ε )

≤
√

2
δ
||√ρεuεx ||L2(QT ).

On the other hand, the first two convergences in (2.14) imply

ρε(
mε

ρε
)x ⇀ ρ(

m

ρ
)x in L2(Qδ),

which prove (2.18).
The estimate of m2

ε/ρε in (2.13) implies the convergence (2.16). We may
identify the limit in the sets Qδ and therefore obtain first part of (2.19). The
second part of (2.19) is deduced by testing against functions with support
in Q\Q∗.

Finally, to obtain (2.20), we use (2.10), (2.11), (2.13), and Corollary 4,
page 85 of [26]. �

Remark 4. The proofs of Theorems 1 and 2 in the general case α > 1/2
are just a slight modification of the proof for the case α = 1. The main
difference arises when showing (2.14). In the general case we have, instead
of (3.17), the following definition of the energy Eβ

Eβ(σ) :=
∫ σ

W ′
β(s)ds =

[
ε log s − 1

α

1
sα

]σ

W ′
,

with which we may obtain inequality (3.30) again. The assumptions on the
initial condition (2.6) allow us to bound the right hand side of inequality
(3.30) uniformly in ε and h. Then in a similar way than in (5.2), we obtain a
uniform bound of ρ

α−1/2
x in L∞(0, T ;L2(Ω)). Obtaining the other estimates

in (2.13) is straightforward. These estimates allow us to prove the uniform
convergence of ρα

ε , and then we easily deduce (2.14).
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