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Abstract

We consider an evolution model describing the vertical movement of water and salt
in a domain splitted in two parts: a water reservoir and a saturated porous medium
below it, in which a continuous extraction of fresh water takes place (by the roots
of mangroves). The problem is formulated in terms of a coupled system of partial
differential equations for the salt concentration and the water flow in the porous
medium, with a dynamic boundary condition which connects both subdomains.

We study the existence and uniqueness of solutions, the stability of the trivial
steady state solution, and the conditions for the root zone to reach, in finite time,
the threshold value of salt concentration under which mangroves may live.

Key words: dynamic boundary condition, system of partial differential equations,
existence, uniqueness, dead core.

1 Introduction

Mangrove forests or swamps can be found on low, muddy, tropical coastal
areas around the world. Mangroves are woody plants that form the dominant
vegetation of mangrove forests. They are characterized by their ability to
tolerate regular inundation by tidal water with salt concentration cw close to
that of sea water (see, for example, [18]). The mangrove roots take up fresh
water from the saline soil and leave behind most of the salt, resulting in a
net flow of water downward from the soil surface, which carries salt with it.
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As pointed out by Passioura et al. [25], in the absence of lateral flow, the
steady state salinity profile in the root zone must be such that the salinity
around the roots is higher than cw, and that the concentration gradient is large
enough so that the advective downward flow of salt is balanced by the diffusive
flow of salt back up to the surface. In [25] the authors presented steady state
equations governing the flow of salt and uptake of water in the root zone,
assuming that there is an upper limit cc to the salt concentration at which
roots can take up water, and that the rate of uptake of water is proportional to
the difference between the local concentration c and the assumed upper limit
cc. They also assumed that the root zone is unbounded, and that the constant
of proportionality for root water uptake is independent of depth through the
soil. In [12], the model was extended in two important ways. First, considering
more general root water uptake functions and second, limiting the root zone
to a bounded domain. The authors proved mathematical properties such as
the existence and uniqueness of solutions of the evolution and steady state
problems, the conditions under which the threshold level of salt concentration
is attained, and others. In [12], it is assumed that tides, or other sources of fresh
or not too saline water, renew the water on the soil-water interface allowing to
prescribe the salt concentration at this boundary (Dirichlet boundary data).
Although this is the usual situation in which mangroves live, in this article we
shall focus in the situation in which the inflow of fresh or sea water is impeded.
In this situation, the continuous extraction of fresh water by the roots of
mangroves drives the ecosystem to a complete salinization and, henceforth,
to death. This work is motivated by the occurrences observed at Ciénaga
Grande de Santa Marta, Colombia. As reported by Botero [8] (see also [28]),
the construction of a highway along the shore in the 1950s obstructed the
natural circulation of water between both parts of the road (Caribbean sea
and lagoon). In addition, in the 1970s, inflow of fresh water from the river
Magdalena was reduced due to the construction of smaller roads and flooding
control dikes. These changes caused a hypersalinization of water and soil,
which resulted in approximately 70% mangrove mortality (about 360 Km2

of mangrove forests), see [8], [17]. Although other causes, like evaporation or
sedimentation, may have had an important contribution to the salinization of
the Ciénaga, we shall keep our attention in the mechanisms of mangroves and
their influence in this process.

The main mathematical difficulty of this model when compared with that
studied in [12] is that the closure of the natural system, the lagoon, implies
a new type of boundary condition in the water-soil interface, which is no
longer of Dirichlet type. Balance equations for salt and water content lead to
a dynamical boundary condition at such interface, i.e., a boundary condition
involving the time derivative of the solution. Although not too widely con-
sidered in the literature, dynamic boundary conditions date back at least to
1901 in the context of heat transfer [26]. Since then, they have been studied in
many applied investigations in several disciplines like Stefan problems [29,32],
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fluid dynamics [16], diffusion in porous medium [27,15], mathematical biology
[14] or semiconductor devices [30]. From a more abstract point of view the
reader is referenced to, among others, [10,23,19,11,13,1,2,7].

Apart from the mathematical technical details, one of the main features of
the dynamic boundary condition when compared to the Dirichlet boundary
condition is the elimination of the boundary layer the latter creates in a neigh-
borhood of the water-soil interface, layer in which the salt concentration keeps
well below the threshold salinity level. Thus, this new model allows us to de-
scribe the situation in which a continuous increase of fresh water uptake by
the roots of mangroves drives the ecosystem to a complete salinization.

The outline of the paper is the following: in Section 2 we formulate the math-
ematical model. We assume that mangroves roots are situated in a porous
medium in the top of which a water reservoir keeps the soil saturated. As in
[12], coupled partial differential equations for salt concentration and water dis-
charge are considered in the porous medium. Above it, in the water reservoir,
balance laws for salt and water are formulated. The assumption of homoge-
neous salt concentration in the water reservoir leads to a dynamic boundary
condition in the water-soil interface. In Section 3 we state our hypothesis and
formulate our main results on existence and uniqueness of solutions of the evo-
lution problem, as well as the convergence of this solution to the steady state
solution. We also study the conditions under which the complete salinization
of the root zone is attained in finite time (dead core). Finally, in Section 4 we
prove our assertions.

2 The mathematical model

In this section we formulate the mathematical model which describes the salt
and water movement in the water-soil system. We consider the case where
the mangroves are present in the horizontal x, y plane, with an homogeneous
porous medium located below this plane and a water reservoir above it. The
porous medium is characterized by a constant porosity θ, indicating that we
are assuming the mangroves roots to be homogenized throughout the porous
medium, without affecting its properties. Assuming further that the hydro-
dynamic dispersion tensor, D, is constant and isotropic, i.e. neglecting the
velocity dependence in the mechanical dispersion, we find for the salt concen-
tration the equation, see [6],

θ
∂c

∂t
+ div (cq− θD∇c) = 0, (1)

where the vector q denotes the specific discharge of the fluid, D = DI, I is
the identity matrix and t denotes time. We also have a fluid balance in the
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porous medium. Disregarding density variations in the mass balance equation
of the fluid, we obtain a fluid volume balance expressed by

div q + S = 0, (2)

where S is the volume of water taken up by the roots per unit volume of porous
material per unit time. If the mangroves are uniformly distributed throughout
the x, y-plane and there is no lateral fluid flow, we may consider the problem as
one-dimensional in the vertical direction. If the z-axis is positive when pointing
downwards, the flow domain is characterized by the interval 0 < z < H <∞.
In the one-dimensional setting equations (1) and (2) become

θct + (cq − θDcz)z = 0, (3)

qz + S = 0, in (0, H)× (0, T ) (4)

For S, we assume to have the form

S :=


s(z)

(
1− c

cc

)p

for 0 ≤ c ≤ cc,

0 for c > cc,
(5)

where cc is the upper limit of salt concentration at which mangroves may
uptake water, p > 0 and s(z) is determined by the root distribution as a
function of the depth z below the soil surface. This root distribution function
will be non-negative, and non-increasing with z. We shall keep in mind the
following characteristic example: we assume that the function s is a positive
constant, s0/z∗, above a certain depth z∗, and zero below that depth, i.e.

s(z) = s0/z∗ if 0 ≤ z ≤ z∗ and s(z) = 0 if z∗ < z ≤ H. (6)

The quantity s0 is the total amount of root water uptake in the profile with
no salt present, in volume per unit surface per unit time, i.e. the transpiration
rate of the mangrove plants in the absence of salinity. On the bottom of the
porous medium domain, we assume no flux boundary conditions, resulting in

q(H, t) = cz(H, t) = 0 for t ∈ (0, T ). (7)

On the water-soil interface we prescribe a boundary condition which is deduced
from conservation laws for salt and water in the whole system water-soil. We
assume that salt concentration in the water domain, C, remains uniformly
distributed in space. This approximation is justified when assuming a much
faster mixing of the salt in the reservoir than in the porous medium. Then,
the average height level of the water reservoir, W , and C are functions that
only depend on time. We further consider, based on a continuity assumption

C(t) = c(0, t) for t ∈ (0, T ). (8)
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Then we have:

• The salt balance. Assuming that the total amount of salt in the system
water-soil remains constant, we have

d

dt

(
CW +

∫ H

0
θc

)
= 0 in (0, T ).

Therefore, from equation (3) and the boundary condition (7),

d(CW )

dt
= c(0, ·)q(0, ·)− θDcz(0, ·) in (0, T ). (9)

• The fluid balance, which asserts that the amount of water taken up from
the soil by the roots of mangroves is replaced by water from the reservoir:

dW

dt
= −q(0, ·) in (0, T ). (10)

Combining (8)-(10) we deduce

W (t)ct(0, t) = θDcz(0, t) for t ∈ (0, T ), (11)

which is the dynamic boundary condition for the soil-water interface. Finally,
we add to this formulation given initial distributions of salt concentration,
c(·, 0) = c0 in (0, H), and of water reservoir height level, W (0) = W0.

We recast the above formulation in an appropriate dimensionless form intro-
ducing the following variables, unknowns and parameters:

t̃ := Dt/z2
∗ , x := z/z∗, u := c/cc, q̃ = qz∗/Dθ,

w = W/θz∗, s̃(x) := z∗s(Hx)/s0, d := H/z∗, m := s0z∗/Dθ,

and we define f(x, u) := S(Hx, ccu), with f : [0, d]× [0, 1] → R+ given by

f(x, σ) := s̃(x)(1− σ)p
+, (12)

with p > 0 and

s̃(x) = 1 if 0 ≤ x ≤ 1 and s̃(x) = 0 if 1 < x ≤ d. (13)

With the above changes we are led to the following problem (omitting tildes):
find u : Q̄T → [0, 1], q : Q̄T → R and W : [0, T ] → R such that

ut + (uq − ux)x = 0, (14)

qx +mf(·, u) = 0 in QT = I × (0, T ), with I = (0, d), (15)

w′(t) + q(0, t) = 0 for t ∈ (0, T ),
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subject to the boundary and initial conditions

w(t)ut(0, t) = ux(0, t), (16)

ux(d, t) = q(d, t) = 0 for t ∈ (0, T ), (17)

u(·, 0) = u0 in I, w(0) = w0. (18)

Remark 1 In the recasting of our model there appeared a constant capturing
all the important physical parameters, the mangrove’s number:

m := s0z∗/Dθ. (19)

Using [25] and [24] as a reference we find the following values for the physical
constants: D = 7 · 10−5 m2/day, θ = 0.5, and s0 = 1 `m−2day−1. Taking
z∗ in the range 0.2–0.5 m, this implies a time scale in the range 2–10 yr and
m ∈ (6, 15).

3 Main results

We shall refer to problem (14)-(18), as to Problem P, for which we assume the
following hypothesis:

H1. The function f : Ī × [0, 1] → R, with I = (0, d) and d ≥ 1, satisfies

f ∈ L∞(I;C([0, 1]), |f | ≤ 1,

f(·, s) is non-increasing in Ī and f(d, s) ≥ 0 for all s ∈ [0, 1],

f(x, ·) is non-increasing in [0, 1] and f(x, 1) = 0 for a.e. x ∈ I.

Note that, in particular, f ≥ 0 in Ī × [0, 1].
H2. The initial data posses the regularity

u0 ∈ H1(I) with 0 ≤ u0 ≤ 1 in I.

H3. The function w is a positive constant. The number m is positive. We set
w = m = 1.

Remark 2 The assumption w (or the dimensional W ) constant in H3 has a
reasonable range of validity. From (4), (5), (10) and the mean value theorem
we infer

W (t) = W0 −
∫ t

0
q(0, τ)dτ = W0 − ts0(1−

c̄

cc
)p, for some c̄ ∈ (0, cc).

Set s0 as in Remark 1 and p = 1. A lower limit for c̄ is sea water salt concen-
tration cw ∼ 0.5cc. Then W0 must be much greater than the 15 cm. that the
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lagoon will decrease per year while keeping the sea water salt concentration.
For a value of c = 0.9cc the decrease of the height level is of about 3 cm. per
year .

Remark 3 Since the numbers m and w do not play any essential role in the
results we prove in this work, we set m = w = 1 for clarity.

Under Hypothesis H1-H3 we can not expect the existence of classical solutions.
We then introduce the notion of solution we shall work with.

Definition 1 We say that (u, q) is a strong solution of Problem P if u : Q̄T →
[0, 1] and q : Q̄T → R satisfy the following properties:

(1) For any r ∈ (0,∞),

u ∈ W 1,r(0, T ;Lr(I)) ∩ Lr(0, T ;W 2,r(I)) ∩ C((0, T ];C(Ī)),

q ∈ C((0, T ];W)

with W := {ϕ ∈ W 1,∞(I) : ϕ(d) = 0} .
(2) The differential equations (14) and (15) and the boundary conditions (16)

and (17) are satisfied almost everywhere. The initial distribution is sat-
isfied in the sense

lim
t→0

‖u(·, t)− u0‖L2(I) = 0.

We prove the following result on existence and regularity of solutions.

Theorem 1 Assume H1-H3. Then there exists a strong solution of Problem
P satisfying

u ≥ um := min
Ī
u0 a.e. in QT . (20)

In addition, if for some p > 0

f ∈ Cp(Ī × [0, 1]) and u0 ∈ C2+p(Ī), (21)

and if u0 satisfies the following compatibility condition

u′0(0) + u′0(0)
∫ 1

0
f(x, u0(x))dx− u′′0(0) = f(0, u0(0))u0(0), (22)

then u ∈ C1+p,2+p(Q̄T ) and q ∈ C1+p,1+p(Q̄T ).

We prove uniqueness of solution for f(x, ·) being Lipschitz continuous in [0, 1].
For more general functions, we show that uniqueness of solution holds true
under an additional condition on the component u. In Proposition 1 we give
an example in which solutions of Problem P satisfy such condition.

Theorem 2 Let (u1, q1) and (u2, q2) be two strong solutions of Problem P and
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let H1-H3 be satisfied. If either

f(x, ·) is Lipschitz continuous in [0, 1] for almost all x ∈ Ω, (23)

or anyone of the solutions satisfies

u(x, t) >
∫ x

0
|ux(y, t)| dy a.e. in QT , (24)

then (u1, q1) = (u2, q2) a.e. in QT .

Proposition 1 Assume H1-H3 and (21)-(22), and let (u, q) be a solution of
Problem P. Suppose that u0 satisfies u0x ≤ L in I and

f(·, um) ≤ L < um −
1

2
, (25)

for some positive constant, L, with um given by (20). Assume

f(·, u) + ufu(·, u) < 0 in QT . (26)

Then condition (24) is satisfied.

Remark 4 In particular, if f(x, σ) = s(x)(1− σ)p, with s smooth, and u0 ∈
C2+p(Ī) satisfies u0x ≤ (1 − um)p < um − 1

2
, then condition (24) is satis-

fied. Actually, the smoothness requirement on s may be dropped by using an
approximation argument.

One important effect of the dynamic boundary condition when compared to
the Dirichlet boundary condition at the boundary water-soil is the elimination
of the boundary layer the latter creates. It is straightforward to prove that
the unique solution of the steady state problem corresponding to Problem P,
i.e., functions U ∈ H1(I) and Q ∈ W satisfying

(QU − Ux)x = Qx + f(·, U) = 0 in I,

Ux(0) = Ux(d) = 0,

is the trivial solution (U,Q) = (1, 0). Regarding the asymptotic convergence
of solutions of Problem P to this trivial solution when t → ∞, we have the
following result.

Theorem 3 Assume H1-H3 and um > 0, and let (u, q) be a strong solution of
Problem P. Then

(u, q) → (1, 0) in L2(I) and u(0, t) → 1 pointwise as t→∞.

We finally state a result on the existence of a dead core for solutions of Problem
P, i.e., sets where the threshold salinization u = 1 is attained in finite time.
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The proof of this result, which is of local nature, i.e., independent of the
boundary data, can be found in [12]. First, we introduce some notation. For
any t ∈ (0, T ) we consider the parabola of vertex (x0, t),

P(t) := {(x, τ) : |x− x0| < (τ − t)ν , τ ∈ (t, T )} ,

with 0 < ν < 1 and x0 ∈ I such that T ν < x0 < 1− T ν , implying P(t) ⊂ QT

for all t ∈ (0, T ). We define the local energy functions

E(t) :=
∫
P(t)

|ux|2 dx dτ and C(t) :=
∫
P(t)

(1− u)p+1 dx dτ. (27)

In [12] we proved the following theorem using the techniques introduced in
[3,4].

Theorem 4 Suppose there exist constants s0 and s1 such that

0 < s0σ
p+1 ≤ σf(·, 1− σ) ≤ s1σ

p+1 for σ ∈ [0, 1], (28)

in P(t) for a.e. t ∈ (0, T ), with p ∈ (0, 1) and s0 > s1/2, and let (u, q) be a
strong solution of Problem P. Then there exists a positive constant M such
that if E(0) + C(0) ≤M then u ≡ 1 in P(t∗), for some t∗ ∈ (0, T ).

Let us finish this section with a remark on the assumptions of Theorem 4.
First, if function f is given by f(x, σ) = s(x)(1 − σ)p, with s given by (13)
then (28) is trivially satisfied in the region where s > 0 (root zone). Regarding
the bound of the initial energy, we have that testing the first equation of (14)
with 1− u and using the equation (15) we obtain

2E(0) + C(0) ≤
∫

I
(1− u0)

2 + (1− u0(0))2
(
1 +

∫
QT

f(·, u)
)
. (29)

Therefore, if the initial datum is close enough to one then the initial energy
bound is satisfied. Combining Theorems 3 and 4 we deduce the following
corollary.

Corollary 1 Let (u, q) be a strong solution of Problem P in QT , for T large
enough. Under the conditions of Theorems 3 and 4 there exist T0, t

∗ > 0 such
that u ≡ 1 in P(t∗), for some t∗ ∈ (T0, T ).

Or, in other words, the threshold value of salt concentration is attained in any
compact set contained in the root zone in finite time.
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4 Proofs

Proof of Theorem 1. We first prove the existence of weak solution of a time
discretization of Problem P. Since, a priori, the component u of solutions to
approximated problems will not necessarily satisfy 0 ≤ u ≤ 1, we extend f by
f̄ as f̄(x, σ) = 0 if σ > 1, f̄(x, σ) = f(x, σ) if 0 ≤ σ ≤ 1 and f̄(x, σ) = f(x, 0)
if σ < 0. We denote the corresponding problem by Problem P̄.

Lemma 1 For ũ ∈ H1(I), and τ > 0 small enough, there exists a solution
(u, q) ∈ W 2,r(I)×W, with r <∞, of

u+ τ(uq − ux)x = ũ a.e. in I, (30)

qx + f̄(·, u) = 0 a.e. in I, (31)

u(0) = ũ(0) + τux(0), ux(d) = 0. (32)

Proof. We introduce the set K = {v ∈ W , ‖v‖W 1,∞ ≤ ρ} , for some ρ > 0 to
be fixed. It is clear that K is convex and weakly compact in the star topology
of W 1,∞(I). For q̂ ∈ K, we define the map

S(q̂)(x) :=
∫ d

x
f̄(s, u(s))ds,

with u ∈ H1(I) solution of∫
I
(u− ũ)ϕ+ τ

∫
I
uxϕx + τ

∫
I
(uq̂)xϕ+ (u(0)− ũ(0))ϕ(0) = 0, (33)

for any ϕ ∈ H1(I). The existence of a unique solution of (33) is guaranteed
by the Theorem of Lax-Milgram (see, for instance, [9]). In addition, we have

‖uxx‖L2 ≤ 1

τ
‖u− ũ‖L2 + ‖u‖L2‖f̄‖L∞ + ‖ux‖L2‖q‖L∞ , (34)

i.e., u ∈ H2(I). Since ũ ∈ H1(I) ⊂ C(Ī), a boot-strap argument allows us
to deduce u ∈ W 2,r(I), for any r < ∞. A standard argument allows us to
conclude that u satisfies (30) and (32) (with q̂ replaced by q).

Observe that a fixed point of S is a solution of (30)-(32). We prove the existence
of such a fixed point using a theorem by [5], for which we need to show:
(i) S(K) ⊂ K and (ii) S is weakly-weakly continuous in the star topology
of W 1,∞(I). Showing S(K) ⊂ K is straightforward since for any q̂ ∈ K,
‖S(q̂)‖W 1,∞ ≤ 2‖f̄‖L∞ =: ρ.

To prove the weak continuity, (ii), we consider a sequence q̂j and a function
q̂ in K such that q̂j → q̂ weakly star in W 1,∞(I). Let uj and u be the cor-
responding solutions of problem (33). Taking ϕ = uj in (33) we obtain, after
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using Schwarz’s inequality,

uj(0)2 + (1− τ‖q̂j‖2
L∞ − 2τ‖q̂jx‖L∞)‖uj‖2

L2 + τ‖ujx‖2
L2 ≤ ‖ũ‖2

L2 + ũ(0)2.

For τ small enough and independent of j we get Ej + τ‖ujx‖2
L2 ≤ c, with c

independent of τ and j, and with

Ej = uj(0)2 + ‖uj‖2
L2 . (35)

Therefore, we obtained a uniform bound which allows us to extract a sub-
sequence of uj (not relabelled) such that uj → v weakly in H1(I), for some
v ∈ H1(I). Since the embedding H1(I) ⊂ C(Ī) is compact, extracting a new
subsequence if necessary we have uj → v uniformly in C(Ī). Next we show
that, actually, v = u. All the terms in (33) corresponding to (uj, q̂j) are well
defined in the limit j →∞. For instance,

∫
I
(uj q̂j)xϕ =

∫
I
ujxq̂jϕ+

∫
I
uj q̂jxϕ→

∫
I
(vq̂)xϕ,

due to the convergences uj → u weakly in H1(I) and uniformly in C(Ī), and
q̂j → q̂ weakly star in W 1,∞(I) and uniformly in C(Ī) (by compact embedding,
again). Then, by the uniqueness of solution of problem (33) we deduce v = u.
Hence,

S(q̂j)(x) =
∫ d

x
f̄(s, uj(s))ds→

∫ d

x
f̄(s, u(s))ds = S(q̂)(x),

uniformly in C1(Ī) and, in particular, weakly star in W 1,∞(I). Therefore, (ii)
is proven and the existence of a fixed point deduced. 2

We now construct piecewise constant in time approximations of solutions of
Problem P̄. Let (0, T ] =

⋃K
k=1((k − 1)τ, kτ ], with τ = T/K and K ∈ N. For

k = 1, . . . , K, define recursively (uk, qk) as the solution of problem (30)-(32)
with ũ = uk−1, u = uk and q = qk. Let the initialization of this recursion be
the initial data of Problem P̄, u0. We define the following piecewise constant
in time functions: u(τ)(x, t) = uk(x), q

(τ)(x, t) = qk(x),

∂
(τ)
t u(τ)(x, t) =

uk(x)− uk−1(x)

τ
, E(τ)(t) =

1

2

(
|u(τ)(0, t)|2 +

∫
I
|u(τ)|2

)
,

if x ∈ I, t ∈ ((k − 1)τ, kτ ], for k = 1, . . . , K.

Lemma 2 As τ → 0 there exist a subsequence of (u(τ), q(τ)) (not relabelled)
such that
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u(τ) → u weakly star-weakly in L∞(0, T ;H1(I)), (36)

∂
(τ)
t u(τ) → ∂tu weakly in L2(QT ), (37)

∂
(τ)
t u(τ)(0, ·) → ∂tu(0, ·)weakly in L2(0, T ), (38)

u(τ) → u weakly in L2(0, T ;H2(I)), (39)

u(τ) → u uniformly in C((0, T ];C(Ī)), (40)

q(τ) → q uniformly-strongly in C((0, T ];W). (41)

Proof. Replacing in (30) functions u, q and ũ by uk, qk and uk−1, respectively,
and using ϕ = uk in the weak formulation (33) (with q̂ = q) , we obtain, after
using the inequalities of Schwarz and x(x− y) ≥ (x2 − y2)/2,

Ek + τ‖ukx‖2
L2 ≤ Ek−1 + τcfEk,

for

Ek =
1

2

(
uk(0)2 +

∫
I
u2

k

)
,

and with cf := ‖f̄‖2
L∞ +‖f̄‖L∞ . Then, from the Gronwall’s discrete inequality

and kτ ≤ K, we deduce Ek ≤ cE0, for k = 1, . . . , K, and for some constant,
c, independent of τ . Therefore,

Ek − Ek−1

τ
+ ‖ukx‖2

L2 ≤ ccfE0.

Integrating in (0, t), for any t ∈ (0, T ), we obtain

E(τ)(t) +
∫

Qt

|u(τ)
x |2 ≤ ccfE0,

which gives a uniform estimate for u(τ) in the norm of L2(0, T ;H1(I)) ∩
L∞(0, T ;L2(I)). On the other hand, from (31) we obtain ‖qk‖W 1,∞ ≤ ‖f̄‖L∞ ,
which implies the uniform bound

‖q(τ)‖L∞(W 1,∞) ≤ ‖f̄‖L∞ .

We now choose ϕ = (uk − uk−1)/τ in (33) (with q̂ = q). We get

∫
I
|uk − uk−1

τ
|2+

∫
I
ukx(

uk − uk−1

τ
)x+

∫
I
(ukqk)x

uk − uk−1

τ
+

∣∣∣uk(0)− uk−1(0)

τ

∣∣∣2 = 0.

Using again the inequality x(x− y) ≥ (x2 − y2)/2, we obtain

∫
I
ukx(

uk − uk−1

τ
)x ≥

1

2τ

∫
I
(|ukx|2 − |u(k−1)x|2),

and therefore
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∫
I
|uk − uk−1

τ
|2 +

1

2τ

∫
I
(|ukx|2 − |u(k−1)x|2) +

∫
I
(ukqk)x

uk − uk−1

τ

+|uk(0)− uk−1(0)

τ
|2 ≤ 0.

Integrating in ((k − 1)τ, kτ) and adding from k = 1 to K leads to

1

2

∫
I
|u(τ)

x |2(T, ·) +
∫

QT

|∂(τ)
t u(τ)|2 +

∫ T

0
|∂(τ)

t u(τ)(0, ·)|2 ≤ 1

2

∫
I
|u0x|2

−
∫

QT

(u(τ)q(τ))x∂
(τ)
t u(τ).

Using Hölder’s inequality we deduce

‖u(τ)
x ‖2

L∞(L2) + ‖∂(τ)
t u(τ)‖2

L2(L2) + ‖∂(τ)
t u(τ)(0, ·)‖2

L2(0,T ) ≤ c
(
‖u0‖2

H1

+‖q(τ)‖2
W 1,∞‖u(τ)‖2

L2(H1)

)
,

i.e., additional uniform bounds for

u(τ) in L∞(0, T ;H1(I)),

∂
(τ)
t u(τ) in L2(QT ), (42)

∂
(τ)
t u(τ)(0, ·) in L2(0, T ). (43)

Once we have the uniform bound on the time derivative, (42), we deduce from
(34) a uniform bound for u(τ) in L2(0, T ;H2(I)), i.e. (39). Therefore, there
exist u ∈ L∞(0, T ;H1(I)) ∩ H1(0, T ;L2(I)) and q ∈ L∞(0, T ;W) such that
(36) and (37) hold. In addition, the compactness result of [31] implies (40).
Therefore, since f̄ ∈ L∞(I;C(R)) we have q(τ)

x = f̄(·, u(τ)) → f̄(·, u) = qx
uniformly-strongly in C((0, T ];L∞(I)), and then (41). Finally, from (43) we
deduce (38). 2

End of proof of Theorem 1

We are now ready to pass to the limit τ → 0. The pair (u(τ), q(τ)) satisfies

∫
QT

∂
(τ)
t u(τ)ξ +

∫
QT

u(τ)
x ξx +

∫
QT

(u(τ)q(τ))xξ +
∫ T

0
∂

(τ)
t u(τ)(0, ·)ξ(0, ·) = 0, (44)

for ξ ∈ L2(0, T ;H1(I)), and

q(τ)
x + f̄(·, u(τ)) = 0 a.e. in QT , q(τ)(d, t) = 0 for all t ∈ (0, T ]. (45)
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Taking the limit τ → 0 in (44)-(45), and using (36)-(41) we obtain that (u, q)
satisfies ∫

QT

utξ +
∫

QT

uxξx +
∫

QT

(uq)xξ +
∫ T

0
ut(0, ·)ξ(0, ·) = 0, (46)

and

qx + f̄(·, u) = 0 a.e. in QT , and q(d, t) = 0, for all t ∈ (0, T ].

Due to (39) we deduce uxx ∈ L2(QT ). Integrating by parts in (46) and using
f̄ ∈ L∞(I, C(R)), we deduce that (u, q) satisfies the strong formulation (14)-
(18) and it is, therefore, a strong solution of Problem P̄.

Finally, using ξ := min {0, u−m}, with m = minĪ u0, and ξ := max {0, u− 1}
as test functions in (46) one easily shows that m ≤ u ≤ 1 in Q̄T . We note at
this point that this property implies f̄(·, u) = f(·, u) in Q̄T and therefore the
pair (u, q) is also a strong solution of Problem P.

Finally, if function f and the initial condition satisfy the additional regularity
and compatibility conditions stated in Theorem 1 then u ∈ C(Q̄T ) which
implies uf(·, u), qx ∈ Cp(Q̄T ) and, therefore, ut − uxx ∈ Cp(Q̄T ), implying the
additional regularity assertion. 2

Proof of Theorem 2. Let (u1, q1) and (u2, q2) be solutions of Problem P and
set (u, q) := (u1 − u2, q1 − q2). Then (u, q) satisfies Problem PD

ut + (uq1 + u2q)x − uxx = 0 in Qτ ,

qx + f(x, u1)− f(x, u2) = 0 in Qτ ,

ut(0, ·) = ux(0, ·) on (0, T ),

ux(d, ·) = q(d, ·) = 0 on (0, T ),

u0 = 0 on I.

We first discuss the case in which f is Lipschitz continuous. Multiplying the
first equation of Problem PD by u and integrating by parts we obtain

1

2

d

dt

(
u(0, t)2 +

∫
I
u2

)
+

∫
I
|ux|2 ≤

1

2
q1(0, t)u

2(0, t) +
1

2

∫
I
f(·, u1)u

2

+u2(0, t)|q(0, t)||u(0, t)|+
∫

I
u2|q||ux|. (47)

Using the second equation of Problem PD, assumption (23) and the continuous
embedding L2(I) ⊂ L1(I), we deduce

|q(x, t)|2 ≤
( ∫ d

x
|f(·, u1)− f(·, u2)|

)2
≤ C2

L

( ∫
I
|u|

)2
≤ cC2

L

∫
I
u2, (48)
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with CL the constant of Lipschitz of f(·, s) and c > 0. Using Schwarz’s in-
equality and ‖u2‖L∞ ≤ 1 we then get from (47)

1

2

d

dt

(
u(0, t)2 +

∫
I
u2

)
+

1

2

∫
I
|ux|2 ≤ c1u

2(0, t) + c2

∫
I
u2

with c1 = (‖q1‖L∞ + 1)/2 and c2 = ‖f‖L∞/2 + cC2
L. Applying the Lemma of

Gronwall with u0 = 0 we deduce u = 0 a.e. in QT , i.e., u1 = u2. Then, from
(48) we also deduce q1 = q2 a.e. in QT .

We now let f be a general function satisfying H1-H3 and assume that condition
(24) holds for u2. Multiplying the differential equations of Problem PD by
smooth functions ϕ, ψ satisfying

ϕt(0, t) + ϕx(0, t) = 0, ϕx(d, t) = ψ(0, t) = 0 for any t ∈ [0, T ], (49)

integrating in Qτ , with τ ∈ (0, T ), and adding the resulting integral identities
we obtain

u(0, τ)ϕ(0, τ) +
∫

I
u(·, τ)ϕ(·, τ) =

∫
Qτ

u
(
ϕt + q1ϕx + ϕxx

)
−

∫
Qτ

q
(
ψx + u2xϕ

)
+

∫
Qτ

(f(x, u1)− f(x, u2))
(
u2ϕ+ ψ

)
+

∫ τ

0
u(0, t)q1(0, t)ϕ(0, t). (50)

We consider the function defined in Qτ by

h =
f(·, u1)− f(·, u2)

u
if u 6= 0, h = 0 if u = 0 (51)

which is non-positive because f(x, ·) is non-increasing and possibly unbounded,
since f is not Lipschitz continuous. For m ∈ N, m ≥ 1, we consider the func-
tions hm = T (h) − 1/m, where T (s) = s if −m < s ≤ 0, and T (s) = −m if
s ≤ −m. We regularize these functions in such a way that we obtain a smooth
sequence {hm} ⊂ C2(Qτ ) satisfying

hm+1 ≤ hm in Qτ , 0 > hm ≥ −m, hm → h a.e. in Qτ .

The regularity of solutions of Problem P allows us to introduce sequences
{qn

1 }n≥1, {un
2}n≥1 ⊂ C2(QT ) such that, as n→∞,

qn
1 → q1 and un

2 → u2 strongly in L2(0, T ;H1(I))∩C((0, T ];C(Ī)) (52)
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and un
2 satisfying (24). Using these approximations we rewrite (50) as

u(0, τ)ϕ(0, τ) +
∫

I
u(·, τ)ϕ(·, τ) =

∫
Qτ

u
(
ϕt + qn

1ϕx + ϕxx + hm (un
2ϕ+ ψ)

)
−

∫
Qτ

q
(
ψx + un

2xϕ
)

+
∫

Qτ

u (h− hm) (u2ϕ+ ψ)

−
∫

Qτ

ux (q1 − qn
1 )ϕ−

∫
Qτ

u(q1x − qn
1x)ϕ

+
∫

Qτ

uhm (u2 − un
2 )ϕ−

∫
Qτ

q (u2x − un
2x)ϕ

+
∫ τ

0
u(0, t)q1(0, t)ϕ(0, t). (53)

Next we select the functions ϕ and ψ, being the solutions of

ϕt + qn
1ϕx + ϕxx + hm (un

2ϕ+ ψ) = 0 in Qτ , (54)

ψx + un
2xϕ = 0 in Qτ , (55)

ϕ(τ) = ξ on Ω, (56)

with ϕ, ψ satisfying (49) and with ξ ∈ C∞(Ī).

Lemma 3 Assume (24). Then, for each n and m there exists a unique solu-
tion ϕ, ψ ∈ C2,1(Q̄τ ) of (54)-(56) and (49) such that ‖ϕ‖L∞(Qτ ) and ‖ψ‖L∞(Qτ )

are uniformly bounded with respect to n and m.

End of proof of Theorem 2. Using the functions provided by Lemma 3 we
obtain from (53)

u(0, τ)ξ(0) +
∫

I
u(·, τ)ξ =

∫
Qτ

u (h− hm) (u2ϕ+ ψ)−
∫

Qτ

ux (q1 − qn
1 )ϕ

−
∫

Qτ

u(q1x − qn
1x)ϕ+

∫
Qτ

uhm (u2 − un
2 )ϕ−

∫
Qτ

q (u2x − un
2x)ϕ

+
∫ τ

0
u(0, t)q1(0, t)ϕ(0, t). (57)

By the uniform estimates from Lemma 3 and (52), we can pass to the limit in
(57) and obtain for n→∞ and then m→∞

u(0, τ)ξ(0) +
∫

I
u(·, τ)ξ =

∫ τ

0
u(0, t)q1(0, t)ϕ(0, t). (58)

We choose ξ = ξj ∈ C∞(Ī) with ξj → sign(u(·, τ)) pointwise and in L2(I),
as j → ∞, where sign(s) = 1 if s ≥ 0 and sign(s) = −1 if s < 0. Then, by
Lemma 3

u(0, τ)ξj(0) +
∫

I
u(·, τ)ξj ≤ c

∫ τ

0
|u(0, t)|,
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with c independent of j. Passing to the limit j →∞ we deduce

|u(0, τ)|+
∫

I
|u(·, τ)| ≤ c

∫ τ

0
|u(0, t)|, (59)

and Gronwall’s Lemma with u0 = 0 implies u(0, t) = 0 in (0, τ). Hence, from
(59) we also deduce u = 0 in Qτ , and therefore u1 = u2 a.e. in Qτ for any
τ ∈ (0, T ). Checking that this implies q1 = q2 is straightforward. 2

Proof of Lemma 3. Since problem (54)-(56) and (49) is linear with smooth
coefficients and data, existence, uniqueness and regularity of solutions is well
known, see for instance [22]. We assert that the global maximum of |ϕ|, given
by max |ϕ| = max {maxϕ,−minϕ}, is attained initially at t = τ . On the
contrary, suppose that max |ϕ| = maxϕ (positive) is attained at (x0, τ0) ∈
Ī × (0, τ). Then ϕt(x0, τ0) = 0. If x0 ∈ I then we also have ϕx(x0, τ0) = 0.
And, in fact, this is also the case at the boundaries x = 0 and x = d due to
the boundary conditions (49) satisfied by ϕ. Then, the ϕ–equation at (x0, τ0)
yields

ϕxx(x0, τ0) = −hm(x0, τ0)(u2n(x0, τ0)ϕ(x0, τ0) + ψ(x0, τ0)). (60)

We assert that the right hand side of (60) is positive, leading then to a con-
tradiction to the assumption of (x0, τ0) being a maximum of ϕ. Suppose the
contrary. Then using hm < 0,

un
2 (x0, τ0)ϕ(x0, τ0) + ψ(x0, τ0) ≤ 0. (61)

Integrating the ψ–equation of (55) in (0, x) gives

ψ(x, t) =
∫ x

0
(−un

2x(y, t))ϕ(y, t)dy. (62)

Therefore, from (61), (62) and assumption (24) we obtain

un
2 (x0, τ0)ϕ(x0, τ0) ≤

∫ x0

0
un

2x(y, τ0)ϕ(y, τ0)dy

≤
∫ x0

0
|un

2x(y, τ0)| dy sup
y∈(0,x0)

|ϕ(y, τ0)|

=
∫ x0

0
|un

2x(y, τ0)| dy ϕ(x0, τ0) < un
2 (x0, τ0)ϕ(x0, τ0), (63)

a contradiction. Therefore, (60) is non-negative and a maximum of ϕ can not
be attained at τ0 > τ . The case of max |ϕ| = −minϕ at τ0 > τ is treated in a
similar way. Since max |ϕ| = 0 is overridden by the initial condition, we deduce
that the global maximum of ϕ must be attained at t = τ , i.e., ‖ϕ‖L∞ = ‖ξ‖L∞ ,
which is independent of m and n. To finish the proof we use (62) and (52) to
find ‖ψ‖L∞(Qτ ) ≤ ‖ϕ‖L∞(Qτ ) ‖u2‖L∞(0,τ ;W 1,1(I)) , which is also independent of
m and n. 2
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Proof of Proposition 1. We first show that ux ≤ L in QT . Due to the regu-
larity and compatibility assumptions (21)-(22), we may differentiate the first
equation of Problem P with respect to x to obtain the following problem for
v := ux

vt + qvx − vxx − (2f + ufu)v = fxu in QT , (64)

with v(0, ·) = ut(0, ·), v(d, ·) = 0 on (0, T ), and v(·, 0) = u0x on I. By assump-
tion H1 and (26), we may apply the maximum principle to (64) to deduce
that the maximum of v must be non-negative and located on the parabolic
boundary. If the maximum is at x = d then we finished, since v(d, t) = 0. Let
us examine the cases in which the maximum is at x = 0 or at t = 0. Since,
by assumption, u0x ≤ L in I, we have v(x, t) ≤ max

{
maxt∈(0,T ) v(0, t), L

}
in

QT . Suppose that the maximum of v is attained at (0, t0). Particularizing the
differential equation satisfied by u at (0, t0) and using the dynamic boundary
condition we deduce

ux(0, t0)(1 + q(0, t0)) = u(0, t0)f(0, u(0, t0)) + uxx(0, t0).

Since at a maximum of v, uxx(0, t0) = vx(0, t0) ≤ 0, we obtain

v(0, t0)(1 + q(0, t0)) ≤ u(0, t0)f(0, u(0, t0)),

and then v(0, t0) ≤ f(0, um) ≤ L, by (25). Therefore, ux = v ≤ L in QT .

Define w(x, t) := u(x, t) − Lx for (x, t) ∈ QT . Then wx ≤ 0 in QT and
|ux| ≤ −wx + L. Using (20) and (25) we obtain∫ x

0
|ux| ≤ u(0, t)− u(x, t) + 2L ≤ 1− um + 2L < um ≤ u(x, t) in QT .2

Proof of Theorem 3. First, we analyze the case in which q(0, t0) = 0 for
some t0 ≥ 0. From equation (15) and the boundary condition (17) we deduce∫
I f(·, u(·, t0)) = 0, which implies u(·, t0) ≡ 1 in [0, 1] by assumption H1 and

the continuity of u. If the interval I = (0, d) has d = 1 then we finished.
Otherwise, in (1, d) × (t0,∞) function u satisfies the equation ut − uxx = 0,
the boundary conditions u(1, t) = 1 and ux(d, t) = 0, for t ≥ t0 and the initial
data u(·, t0) ≥ 0, and function q is identically zero. It is then a standard result
that u→ 1 in L2(1, d) as t→∞.

Let us now assume that q(0, t) > 0 for all t ≥ 0, and let η : [0, T ] → [0, 2] be
given by η(t) = u(0, t)+

∫
I u(x, t)dx. Integrating the u–equation (14) in I and

using (20), we find

η(T )− η(0) =
∫ T

0
q(0, t)u(0, t)dt > um

∫ T

0
q(0, t), (65)

and therefore ∫ ∞

0
q(0, t) is bounded. (66)
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We now obtain uniform estimates in time for ux and ut in the norms of
L∞((0,∞);L2(I)) and L2(Q∞). Multiplying the u–equation (14) by u, in-
tegrating in QT and using (15) we get

u2(0, T ) +
∫

I
u2(·, T ) + 2

∫
QT

|ux|2 = u2
0(0) +

∫
I
u2

0 +
∫

QT

f(·, u)(u2 + u2(0, t))

≤ 2 + 2
∫

QT

f(·, u) = 2 + 2
∫ T

0
q(0, t).

Therefore, estimate (66) implies

‖ux‖L2(Q∞) is bounded. (67)

Multiplying the u–equation by ut, integrating in QT and defining φ′(·, s) =
sf(·, s) with φ(·, 0) = 0, we get

∫
QT

|ut|2 +
∫ T

0
|ut(0, ·)|2 +

1

2

∫
I
|ux(·, T )|2 +

∫
I
φ(·, u0) ≤

1

2

∫
I
|u0x|2

+
∫

I
φ(·, u(·, T )) +

1

2
‖q‖2

L∞‖ux‖2
L2 +

1

2

∫
QT

|ut|2.

Therefore, using (67) we deduce

‖ux‖L∞(0,∞;L2(I)), ‖ut‖L2(Q∞) and ‖ut(0, ·)‖L2(0,∞) are bounded. (68)

Now we argue as in [21]. Let ω(u0) be the ω−limit set of the semi-orbits u(·, t),
for t ≥ t∗, given by

ω(u0) =
{
U ∈ H1(I) : ∃tn →∞ such that u(·, tn) → U in L2 as n→∞

}
.

Due to the bound of the gradient (68) the ω−limit set is well defined and
non-empty. Let U = limn→∞ u(·, tn) in L2(I) and a.e. in I. By the dominated
convergence theorem, function Q given by

Q(x) = lim
n→∞

q(x, tn) = lim
n→∞

∫ d

x
f(·, u(·, tn)) =

∫ d

x
f(·, U(·)) (69)

is well defined for a.e. x ∈ I. Consider the function Un(x, s) = u(x, tn + s) for
x ∈ I, and s ∈ (−1, 1). We have∫

I
|Un(·, s)−u(·, tn)|2 ≤

∫
I

∫ tn+1

tn−1
|ut|2 and |Un(0, s)−u(0, tn)| ≤

∫ tn+1

tn−1
|ut(0, ·)|2.

Hence, both

‖Un − u(·, tn)‖2
L2(I×(−1,1)) and ‖Un(0, ·)− u(0, tn)‖2

L2(−1,1)
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tend to zero as n→∞, due to the time derivative bounds (68). Define

Qn(x, s) = q(x, tn + s) =
∫ d

x
f(·, u(·, tn + s)) =

∫ d

x
f(·, Un(·, s)).

By the dominated convergence theorem, we have Qn → Q in L2(I × (−1, 1))
and a.e. in I × (−1, 1). Finally, showing that the limit is (U,Q) = (1, 0) is
standard. Let ζ ∈ C2(I) with ζ ′(0) = ζ ′(d) = 0, and ρ ∈ C2

0((−1, 1)) such that
ρ ≥ 0 and

∫ 1
−1 ρ = 1. Multiplying the u–equation (14) by ξ(t, x) = ρ(t−tn)ζ(x),

integrating in Qtn+1 and changing to the variable s = t− tn leads to∫ 1

−1

[(
ρ′(s)ζ(0) + ρ(s)ζ(0)Qn(0, s)

)
Un(0, s) +

∫
I

(
ρ′ζ + ρζxx + ρζxQn

)
Un

]
= 0.

Passing to the limit n→∞ and using the properties of function ρ we find∫
I
(ζxxU + ζxUQ) + ζ(0)U(0)Q(0) = 0. (70)

Choosing ζ(x) = 1, we deduce U(0)Q(0) = 0. Since for all t > 0 we have
u(0, t) ≥ um > 0, we deduce U(0) > 0, and then Q(0) = 0, implying Q ≡ 0
in I and U = 1 in [0, 1], due to (69) and the properties of f . Finally, since
U ∈ H1(I) we may integrate by parts in (70) to get, for any ζ ∈ C2(I) with
ζ ′(0) = ζ ′(d) = 0, ∫

I
ζxUx = 0,

so U is constant in I, i.e., U ≡ 1 in I. 2

Proof of Corollary 1. Let (u, q) be a solution of Problem P corresponding
to the initial data u0. By Theorem 3 we have that u(·, t) → 1 in L2(I) and
u(0, t) → 1 pointwise as t→∞. Therefore, for all M > 0 there exists T0 <∞
such that ∫

I
(1− u(·, T0))

2 + (1− u(0, T0))
2
(
1 +

∫
QT

f(·, u)
)
< M.

We finish using (29) and Theorem 4 for Problem P with u0 := u(·, T0). 2
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