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Abstract

We investigate the use of image processing techniques based on partial differential
equations applied to the image produced by time-frequency representations of one-
dimensional signals, such as the spectrogram. Specifically, we use the PDE model
introduced by Álvarez, Lions and Morel for noise smoothing and edge enhance-
ment, which we show to be stable under signal and window perturbations in the
spectrogram image. We demonstrate by numerical examples that the corresponding
numerical algorithm applied on the spectrogram of a noisy signal reduces the noise
and produce an enhancement of the instantaneous frequency lines, allowing to track
this lines more accurately than with the original spectrogram. We apply this tech-
nique both for synthetic signals and for wolves chorus field recorded signals, which
was the original motivation of this work.

Key words: Spectrogram, time-frequency distribution, noise, partial differential
equation, instantaneous frequency, image processing, population counting.

1 Introduction

Wolf is a protected specie in many countries around the world. Due to their
predator character and to their proximity to human settlements, wolves often
kill cattle interfering in this way in farmers’ economy. To smooth this inter-
ference, authorities reimburse the cost of these lost to farmers. Counting the
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population of wolves inhabiting a region is, therefore, not only a question of
biological interest but also of economic interest, since authorities are willing
to estimate the budget devoted to costs produced by wolf protection, see for
instance [1]. However, estimating the population of wild species is not an easy
task. In particular, for mammals, few and not very precise techniques are used,
mainly based on the recuperation of field traces, such as steps, excrements and
so on. In this article we propose what it seems to be a new technique to esti-
mate the population of species which fulfill two conditions: they live in groups,
for instance, packs of wolves, and they emit some characteristic sounds, howls
and barks, for wolves. This technique consists of three steps. The first step
is the spatial localization of wolves packs and the recording of their chorus.
Despite the quality of the recording devices, these recordings are affected for
a variety of undesirable signals, that we shall call noise, which range from low
amplitude broad spectrum long duration signals, like wind, to more localized
signals in time, like cattle bells, or more localized in spectrum, like car engines.
Clearly, the addition of all these signals generates an unstructured noise in the
background of the wolves chorus.

Reducing noise in the recorded signal is the second step and the main issue
of this article. Before dealing with this subject let us explain the third step,
which consists on identifying how many different voices are emitting in a given
recording, task that can be seen as a simplified version of speech recognition,
and that we shall approach by instantaneous frequency estimation using time-
frequency analysis. Time-frequency analysis has proven to be an effective tool
for analyzing the behavior of non-stationary signals such as speech, music and
biological and geophysical signals, among others. By displaying a signal over a
joint time-frequency plane using a time-frequency representation it is possible
to reveal certain structures that are not apparent neither in the time domain
nor in the frequency domain alone. The most popular analysis tool in many
cases is the spectrogram, which has been extensively used in speech analysis,
see for instance [2,3].

A time-frequency representation, like the spectrogram, which is essentially an
energy distribution in the time-frequency plane, ideally must be localized along
the instantaneous frequency of the signal. Instantaneous frequency is a notion
which generalizes the usual notion of frequency for signals with frequencies
changing in time. For instance, a cosine modulation x(t) = a cos(ω0t+φ0) has
a frequency ω0 that is the derivative of the phase φ(t) = ω0t+φ0. To generalize
this notion, real signals x are written as an amplitude, a, modulated with a
time varying phase, φ:

x(t) = a(t) cosφ(t),

with a(t) ≥ 0. Then, the instantaneous frequency is defined as a positive
derivative of the phase: ω(t) = φ′(t) ≥ 0. In our context, and for a clean
recording, instantaneous frequencies represent the different voices (up to har-
monics of a given tone) contained in a chorus of wolves and thus, their esti-
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mation correspond to an estimation of the number of wolves singing in that
chorus.

Time-frequency representations may be divided into parametric and nonpara-
metric methods. Among nonparametric approaches, the Wigner-Ville distri-
bution has received much attention due to its excellent concentration and
many other desirable mathematical properties, see [3]. However, it is well
known that the Wigner-Ville distribution presents high amplitude cross-terms
for multi-component signals which makes its interpretation difficult. Various
distributions have been introduced to reduce cross-term while preserving a
high time-frequency resolution, but none of them give satisfactory results in
all possible applications, see [3–6,8]. Parametric approaches assume a priori
knowledge about the signal. This is the case in a wide range of scenarios where
the signal to be analyzed can be assumed to follow some model and then the
problem becomes that of estimating the parameters of that model, see for
instance [7,8].

As mentioned above, the main concern of this article is the noise reduction of
the signal for latter estimation of instantaneous frequencies. Since the noise
is unstructured, it is difficult to obtain a good general denoising algorithm
working only in the time domain. In addition, being the instantaneous fre-
quency estimation our objective, it seems reasonable to work directly with a
time-frequency energy representation and to apply our denoising algorithm
to the image produced by that representation, which should be robust with
respect to noise perturbation and to the multi-component character of even an
ideal clean signal containing only the wolves chorus. It seems then clear that
Wigner-Ville type distributions are not adequate for our purpose. Parametric
representations are not to be rejected, specially those related to chirplet trans-
forms which, in fact, is a line of current research in our work. However, we
prefer to present here our results for the most commonly used representation,
the spectrogram, which presents good properties of robustness against noise
corruption and multi-component character of signals as well as having a very
intuitive interpretation and a low computational cost.

Considering the spectrogram of a signal corrupted with noise as an image,
we propose in this article the use of an image processing technique for edge
enhancement and noise reduction based on a regularization of the mean curva-
ture motion equation, as introduced in [9]. There exist a variety of PDE-based
models for smoothing and enhancing images that could be used instead of that
introduced in [9]. We refer the readers to the books [10,11] for further insight
into the problem. In few words, the parabolic partial differential equation in-
troduced in [9], takes, in our application, the spectrogram, S, of a signal as
initial data and transform it in the following way: in points (t, ω) in which the
mean of |∇S| in a neighborhood of (t, ω) is large (edges of instantaneous fre-
quency strips), diffusion is almost inhibited and edges are therefore preserved.
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If this mean is small, diffusion takes place according to two main situations.
If |∇S| is relatively large, diffusion on the orthogonal direction to the gradi-
ent is applied, resulting in an enhancement of the edge. When |∇S| is small,
isotropic diffusion takes place, making the neighborhood of the point more
homogeneous.

Finally, let us mention that signal theory is a well known tool in other branches
of animal behavior research such as the analysis of acoustic recognition (whale
songs [12], dolphin whistles [13], penguin sounds [14]), or of space location, as
in bats [15], for which our technique could also be applied.

2 An outline of the method

In this section we present a simple example aimed to introducing the main
intuitive ideas underlying the technical aspects of our method. Therefore, rig-
orous mathematical arguments will be substituted by approximate calculations
for simplicity in the exposition.

Let x ∈ L2(R) denote an audio signal and consider the Gabor’s transform
G : R

2 → C given by

Gx(t, ω) =
∫

R

x(s)ϕ(s− t)e−iωsds, (1)

corresponding to the real, symmetric and normalized window ϕ : R → R. The
energy density function or spectrogram of x corresponding to the window ϕ is
given by

Sx(t, ω) = |Gx(t, ω)|2. (2)

Assume that the signal x is composed by the addition of two signals, x =
λ1x1 + λ2x2, for positive λ1 and λ2. Let x1 be a sinusoidal complex wave, rep-
resenting a wolf’s steady howl, x1(t) = exp(iω0t), and x2 be a white Gaussian
noise. We have taken x1 complex for simplicity in the computations, but it
could be given by a real signal like cos(ω0t). For a Gaussian window of variance
σ, ϕ(t) = (πσ2)−1/4 exp[−t2/(2σ2)], the Gabor’s transform of x1 is given by
Gx1(ω, t) = ϕ̂(ω − ω0) exp[−it(ω − ω0)], with ϕ̂(ω) = (4πσ2)1/4 exp[−σ2ω2/2],
and then

Sx1(t, ω) ≡ Sx1(ω) = 2
√
πσ exp[−σ2(ω − ω0)

2]. (3)

We observe that the energy of x1 is concentrated. For instance, in the frequency
interval of length 2/σ

ωf = [ω0 −
1

σ
, ω0 +

1

σ
] (4)

we have Sx1(ω) > kσ with k = 2
√
π/e, and

∫

ωf

Sx1 = 2π Erf(1) > 5
∫

R\ωf

Sx1. (5)
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In numerical applications, time and frequency domains have a compact sup-
port for which the above computations are not exact. However, for a time-
frequency domain given by [0, T ]× [0, F ], with ω0 separated from zero and F ,
let us say 4/σ < ω0 < F − 4/σ, the formulas (3)-(5) are good approximations.

In order to normalize x1 in L2(0, T ), we redefine it as x1 = exp(iω0t)/
√
T ,

and without loss of generality, we assume as well ‖x2‖L2 = 1. Then, the
spectrograms defined in [0, T ] × [0, F ] satisfy ‖Sxi‖L2 ≈ 2π. In addition, we
observe that since x2 is a white Gaussian noise, its power spectrum is constant
and therefore Sx2 is a uniformly distributed random variable. The spectrogram
of x is

Sx = λ2
1Sx1 + λ2

2Sx2 + 2λ1λ2<(Gx1Gx2), (6)

where <(z) denotes the real part of z. Since Sx1 is concentrated and large
around ω0, Sx2 is uniformly distributed, and both have the same L2 norm, we
may expect (if λ1 ∼ λ2) that setting Sx to zero below certain level curve Sx =
c will result in an attenuation of the noise. But not having local information
on Sx2, it is not clear how to fix c. However, we do have global information.
Set Qf = (0, T ) × ωf and QF = (0, T ) × ((0, F )\ωf ), with ωf given by (4).
Due to the uniform distributed character of Sx2,

∫

Qf

Sx2 ≈ 2π
|ωf |
F

=
4π

σF
and

∫

QF

Sx2 ≈
2π(σF − 2)

σF
. (7)

On these sets, we also have the information on Sx1 provided by (5). Let us
consider the averages of Sx/π on the sets Qf and QF given by

Af =
σ

2πT

∫

Qf

Sx, AF =
σ

π(σF − 2)T

∫

QF

Sx. (8)

If Af � AF then we may expect that the regions Qf and QF will be clearly
separated by some small range of level curves of S, and then it will be possible
to select a cutting value, c, related to these averages. Using (5)-(7) in (8) and
the inequality |<(Gx1Gx2)| ≤ (Sx1Sx2)

1/2, we obtain

Af �
Erf(1)σ

T
λ2

1 +
2

TF
λ2

2 −
σ

πT
λ1λ2

∫

Qf

(Sx1Sx2)
1/2, (9)

AF � 2(1 − Erf(1))σ

T (σF − 2)
λ2

1 +
2

TF
λ2

2 +
2σλ1λ2

π(σF − 2)T

∫

QF

(Sx1Sx2)
1/2, (10)

where the symbol � expresses that some terms of the left hand side are ap-
proximately equal than the corresponding of the right hand side and that the
others are bigger. The cross terms in (9) and (10) may be estimated using the
Hölder’s inequality and our knowledge about the explicit form of Sx1, see (3):
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Fig. 1. Spectrogram of x, truncated spectrogram (c = 2AF ), and processed spectro-
gram. Parameter values are λ1 = 1, λ2 = 4, σ = 1/6, T = 1 and F = 3000.

∫

Qf

(Sx1Sx2)
1/2 ≤

(

∫

Qf

Sx1

)1/2(
∫

Qf

Sx2

)1/2
= (8π2 Erf(1)/σF )1/2,

∫

QF

(Sx1Sx2)
1/2 ≤max

QF

√

Sx1|QF |1/2
(

∫

QF

Sx2

)1/2
= (σF − 2)(2πc/σF )1/2.

Introducing these expressions in (9)-(10) and taking typical values of param-
eters such as σ = 1/6, T = 1 and F = 10000 we get

Af � o(10−1)λ2
1 + o(10−4)λ2

2 − o(10−3)λ1λ2,

AF � o(10−5)λ2
1 + o(10−4)λ2

2 + o(10−3)λ1λ2.

Therefore, if the orders of magnitude of λ1 and λ2 are similar and we select
the cutting value on, approximately, the average value of Sx1 in Qf then most
of the contribution of the signal x1 to the spectrogram Sx will be conserved,
being that of x2 drastically attenuated, see Fig 1.

However, it is clear that even with a very sharp and even lucky election of the
cutting value c for S and due to the random character of x2 there will remain
isolated points of magnitude bigger than c in the region (0, T ) × ((0, F )\ωf )
which will perturb the modified spectrogram and the eventual procedure for in-
stantaneous frequency estimation. In fact, this perturbation may be large if the
signal to noise ratio λ1/λ2 is small and/or if the signal x1 is a multi-component
time varying signal, which is the case of interest. To try to smoothen this effect,
our idea is to introduce an image processing based algorithm such that pre-
serves the edges of an approximation to (0, T )× ωf , i.e., the level set Sx = c,
averaging the values of S in the exterior and interior of this level set. The
ideal result of the application of this algorithm to the previous example is a
function S̃ with constant value in (0, T ) × ωf given, approximately, by (9)
and a constant value in (0, T )× ([0, F ]\ωf ) given, approximately, by (10). The
final approximation to the spectrogram of x1 would be given by truncating
function S̃, see Fig 1.
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3 The mathematical model

Let x ∈ L2(R) and denote u0 to the spectrogram defined by (2) corresponding
to the real, symmetric and normalized window ϕ. The regularity of u0 is that
inherited from the window ϕ, which we assume to be Lipschitz continuous. In
particular, u0 is a bounded function and then we may think of it as an image
and consider its transformation given as the solution u(τ, t, ω) of the following
problem introduced in [9] as an edge-detection image-smoothing algorithm:

∂u

∂τ
− g(|Gs ∗ ∇u|)A(u) = ξ(u) in R+ × Ω, (11)

∇u · n = 0 on R+ × ∂Ω, (12)

u(0, ·, ·) = u0 in Ω, (13)

where

A(u) = (1 − h(|∇u|))∆u+ h(|∇u|)
∑

j=1,...,n

fj(
∇u
|∇u|)

∂2u

∂x2
j

,

and the time-frequency domain Ω ⊂ R
2 is an open set that we shall con-

sider bounded in applications: bounded in time, since the signal is of finite
length, and bounded in frequency, by physical restrictions. Let us remind the
properties and meaning of the terms in equation (11):

• Function Gs is a two-dimensional smoothing kernel, typically a Gaussian of
variance s. The variance is a scale parameter which fixes the minimal size
of the details to be kept in the processed image.

• Function g is non-increasing with g(0) = 1 and g(∞) = 0. It is a contrast
function, which allows to decide whether a detail is sharp enough to be kept.

• The combination of actions of Gs and g on ∇u rules the speed of diffusion
in the evolution of the image, controlling the enhancement of the edges
and the smoothing of noise. For points (t, ω) for which |∇u| is large in a
neighborhood of (t, ω) (being the size of the neighborhood determined by
s), the value of |Gs ∗ ∇u| is large and therefore, the diffusion coefficient
g(|Gs ∗∇u|) is small. Then, (for ξ = 0), the evolved image keeps very close
to the original image at (t, ω), i.e., (t, ω) is an edge point. On the other
hand, if ∇u is not large locally, then g is close to one and diffusion takes
place according to the operator A.

• The diffusion operator A combines isotropic and anisotropic diffusion. The
first smoothes the image by local averaging while the second enforces the
diffusion only on the orthogonal direction to ∇u (along the edges). More
precisely, for θj = (j − 1) ∗ π/n, j = 1, . . . , n we define xj as the orthogonal
to the direction θj, i.e., xj = −t sin θj +ω cos θj. Then, smooth non-negative
functions fj(cos θ, sin θ) are designed to be active only when θ is close to θj.
Therefore, the anisotropic diffusion is taken in an approximated direction
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to the orthogonal of ∇u. The combination of isotropic and anisotropic dif-
fusions is controlled by function h(s), which is nondecreasing with h(s) = 0
if s ≤ ε, h(s) = 1 if s ≥ 2ε, being ε the enhancement parameter.

• Function ξ is a force term designed to accelerate the suppression of noise.
It takes non-positive values for u ≤ u∗ − ε and non-negative values for
u > u∗ + ε, for some cutting parameter u∗ > 0 and a small ε > 0.

3.1 Mathematical properties

The following theorem is proven in [9].

Theorem 1 Let u0 ∈ W 1,∞(Ω). (i) Then, for any T > 0, there exists a
unique solution, u ∈ C([0,∞) × Ω) ∩ L∞(0, T ;W 1,∞(Ω)), of problem (11)-
(13). Moreover,

inf
Ω
u0 ≤ u ≤ sup

Ω
u0 in R+ × Ω. (14)

(ii) Let v be a solution of problem (11)-(13) corresponding to the initial data
v0 ∈ L∞(Ω). Then, for all T ≥ 0, there exists a constant K which depends
only on ‖u0‖W 1,∞ and ‖v0‖L∞ such that

sup
0≤τ≤T

‖u(τ, ·, ·) − v(τ, ·, ·)‖L∞(Ω) ≤ K‖u0 − v0‖L∞(Ω). (15)

Remark 1 The solution ensured by this theorem is not, in general, a classical
solution. The notion of solution employed in [9] is that of viscosity solution,
which coincides with the classical solution if it is regular enough. Since we will
not enter in further discussions about regularity, we refer the reader to [9,16]
for technical details about this notion of solution.

Part (ii) of Theorem 1 is specially useful to us for the following reason. Spec-
trograms of a signal are computed relative to windows, i.e, for each window a
different spectrogram (image) is got. Then, the time-frequency characteristics
of the signal, like instantaneous frequency, look in a slight different way if
two different windows are employed. It, therefore, arises the question of sta-
bility of the final images with respect to the windows, i.e., is it possible that
starting from two spectrograms of the same signal for different windows the
corresponding final images are very different from each other?

Corollary 1 Let ϕ, ψ ∈W 1,∞(R) be real, symmetric and normalized windows
and denote by u0 and v0, respectively, the corresponding spectrograms of a
given signal x ∈ L2(R). Let u and v be the solutions of problem (11)-(13)
corresponding to the initial data u0 and v0, respectively. Then

sup
0≤τ≤T

‖u(τ, ·, ·) − v(τ, ·, ·)‖L∞(Ω) ≤ c‖ϕ− ψ‖L2(R),
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where the constant c depends only on ‖x‖L∞, ‖u0‖W 1,∞, ‖u0‖L∞ and ‖v0‖L∞.

Proof. Let Gηx denote the Gabor’s transform of x relative to the window η.

The standard inequality
∣

∣

∣|a| − |b|
∣

∣

∣ ≤ |a− b| implies

∣

∣

∣

∣

|Gϕx(ω, t)|2 − |Gψx(ω, t)|2
∣

∣

∣

∣

≤ c1

∣

∣

∣

∣

|Gϕx(ω, t)| − |Gψx(ω, t)|
∣

∣

∣

∣

(16)

≤ c1|Gϕx(ω, t) − Gψx(ω, t)|,

with c1 = ||Gϕx(ω, t)| + |Gψx(ω, t)||. We have

|Gϕx(ω, t) − Gψx(ω, t)| ≤
∫

R

|x(s)(ϕ(s− t) − ψ(s− t))e−iωs|ds
≤ ‖x‖L2‖ϕ− ψ‖L2 . (17)

Taking the supremo in the left hand side of (16) and using (17) we obtain

‖u0 − v0‖L∞(Ω) ≤ (‖u0‖1/2
L∞(Ω) + ‖v0‖1/2

L∞(Ω))‖x‖L2‖ϕ− ψ‖L2 . (18)

Finally, property (15) implies the result. 2

Another stability question solved with the help of Theorem 1 is whether the
transformed spectrograms of two close signals, for instance of a signal x and
a signal x + εn, where n denotes a noise and ε > 0 is small, are close or not.
We have the following result. Since the proof is a trivial modification of the
proof of Corollary 1, we omit it.

Corollary 2 Let x, y ∈ L2(R) be two signals and ϕ ∈ W 1,∞(R) be a real, sym-
metric and normalized window. Let u0 and v0 be, respectively, their spectro-
grams. Finally, let u and v be the solutions of problem (11)-(13) corresponding
to the initial data u0 and v0, respectively. Then

sup
0≤τ≤T

‖u(τ, ·, ·) − v(τ, ·, ·)‖L∞(Ω) ≤ c‖x− y‖L2(R),

where c depends only on ‖u0‖W 1,∞, ‖u0‖L∞ and ‖v0‖L∞.

4 Numerical Experiments

In this section we present numerical demonstrations of the selective smoothing
edge enhancement algorithm of [9] applied to the spectrograms of synthetic
and field signals. The numerical implementation of the algorithm starts with
a pre-processing of the signal. Field data recorders are set to 44.1 KHz mean-
while wolves signals are rarely out of the range 200− 3000 Hz, so we start by
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filtering and downsampling the signal to speed up computations. We then pass
to the computation of the spectrogram by applying the discrete fast fourier
transform (dfft) to the convolution of the signal with the window. The dfft is
evaluated in time intervals of size 2w, with the width,w, usually in the range
8 − 12. To obtain an image as continuous as possible, the time intervals are
overlapped according to the value of p ∈ (0, 1). In each of these intervals, we
perform the convolution of the signal with a normalized discrete gaussian win-
dow with support on (−t0/2, t0/2) and variance σ = t0/6, where t0 is the size
of the time intervals. The size, t0, is an increasing function of w, implying that
for larger values of w we get a better frequency resolution in the spectrogram,
and therefore, a poorer time resolution, as a consequence of the Heinsenberg’s
Principle.

Once the spectrogram is produced, it is normalized in the usual digital image
range [0, 255], obtaining in this way the initial datum for problem (11)-(13).
We use a time explicit Euler scheme with finite differences in space to find
the numerical approximation of the solution, u. We follow the discretization
indicated in [9], considering four directions based in a nine nodes local grid to
implement the anisotropic diffusion operator, and use these nodes to compute
also the discretized laplacian and gradient, according to the formulas given in
[9]. The convolution Gs ∗∇u is done in a nine nodes local grid, with variance
s = 1, and normalized to get a partition of the unity in the discrete grid.
Since the distance between time-frequency nodes is set equal to one, we choose
constant evolution steps dτ < 0.5, for stability issues. The force term function,
ξ, is defined to enforce either exponential increase or exponential decrease of
u depending on its relative value with respect to some positive constant, µ,
which in the experiments we fix as µ =

∫

Ω u. This value is motivated by the
discussion in Section 2. More precisely, we use the function

ξ(s) =



























−s/µ if s ≤ µ− 1/µ,

s(s− µ) if |s− µ| < 1/µ,

s/µ if s ≥ µ+ 1/µ.

Finally, since the scheme is explicit in time, it can not be expected the discrete
comparison principle to hold, see (14). We therefore re-normalize the solution
in each time iteration to the range [0, 255].

Summarizing, the parameters in the model come from three sources: the spec-
trogram definition, the image processing partial differential equation, and its
numerical implementation. From the spectrogram we get the variance of the
gaussian window, σ, which is determined by the width, w, and the overlapping,
p. From the PDE we have the enhancement parameter, ε, the scale param-
eter (variance of the smoothing kernel), s, and the normalizing parameter,
µ. Finally, from the discretization we have the evolution step, dτ , and the
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number of advances or iterations, k. In the experiments, we keep fixed those
parameters which seems to be less sensible. More precisely, we always take

p = 0.99, ε =
1

2
max |∇u0|, s = 1, µ =

∫

Ω
u, dτ = 0.1.

Hence, the only parameters we play with in the experiments are the width and
the number of iterations. Both of them are very related with the computer
execution time since the width determines the time-frequency grid size. It is
not clear how to fix them a priori. On one hand, the width is related to the
smoothness of the discrete spectrogram and variations of this parameter may
induce breaks in the lines of instantaneous frequencies, among other effects.
Similarly, when the number of iterations increases the image gets more and
more diffused making possible that some not very neatly defined edges may
disappear.

Finally, to show more clearly the advantages of our technique, in the subse-
quent plots we used a simple algorithm to produce candidates to instantaneous
frequency lines of the corresponding spectrograms. Let Ω = [0, T ] × [0, F ] be
the time-frequency domain of the image and u : Ω → [0, 255] be the starting
image. We consider its truncation

v(t, ω) =











u(t, ω) if u(t, ω) ≥ β

0 elsewhere,

with β = MeanΩ (u) in the experiments. For each t ∈ [0, T ] we consider the
N connected components of the set {ω ∈ (0, F ) : v(t, ω) > 0}, say Cn(t), for
n = 1, . . . , N(t), and define the function

IF(t, n) =

∫

Cn(t) ωv(t, ω)dω
∫

Cn(t) v(t, ω)dω
,

which is the frequency gravity center of the component Cn(t). In this way, we
shrink each connected component to one point to which we assign the average
image intensity through the function INT(t, n) = MeanCn(t) (v(t, ·)). Finally,
we plot function IF only for components with averaged intensity, INT, greater
than a certain threshold, i ∈ [0, 255], which we take in the experiments as
low as i = 3. This final image does not seem to be very sensible under small
perturbations of the parameters β and i.

Experiment 1. We used a recording done in captivity, see [17], from where
we extracted a very clean signal of app. 0.7 seconds containing the howls of
two wolves. We filtered the signal to the range 200 − 1200 Hz and added a
synthetic white uniform noise with a signal to noise ratio (SNR) equal to
one. The width was set to 9 and we run 30 iterations of the algorithm. In the
first row of Fig. 2 we plot, respectively, the spectrogram of the signal with
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Fig. 2. Spectrograms and IF lines corresponding to Experiment 1, of a clean signal
containing two howls (one with two harmonics), corrupted with an artificial white
noise.

the added noise (initial datum), the processed spectrogram and the spectro-
gram of the original clean signal. In the second row we plot the corresponding
instantaneous frequency lines computed with a simple maxima localization
algorithm. Although the second harmonic of the less intense howl is broken,
we see that the instantaneous frequency lines are much better identified from
the processed spectrogram than from the original noisy spectrogram.

Experiment 2. We used a recording done in wilderness, see [18], from where
we extracted a signal of app. 0.55 seconds which is affected by a strong back-
ground noise. The width was set to 10 and we run 200 iterations of the algo-
rithm. Since the width is larger than in the previous experiment, the spectro-
gram is stretched in the frequency direction, producing a more diffused image.
In the first row of Fig. 3 we plot the spectrogram of the original signal (initial
datum) and the processed spectrogram, and in the second row, the correspond-
ing instantaneous frequency lines are plotted. We identify three possible howls,
one with two harmonics in the approximated steady frequencies 400 and 800
Hz, another in about 600 Hz (decreasing in time), and finally, another with
two harmonics starting at 1000 (decreasing) and 700 Hz, respectively, although
the latter becomes too weak to be detected, after a while.

Experiment 3. In this experiment we used a one second 6KHz synthetic
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Fig. 3. Spectrograms and IF lines corresponding to Experiment 2, of a very noisy
field recorded signal containing, apparently, three howls (two with two harmonics).

signal composed by the addition of two signals. The first is the addition of
pure tones and chirps:

x1(t) = c1(sin 2π1000t+ sin 2π1100t+ sin 2π1300t2 + sin 2π800t3),

while the second, x2, is a uniformly distributed real random variable. We nor-
malize them to have ‖xi‖L2 = 1 (so the constant c1) and define the test signal
as x = x1 + 4x2, i.e., with SNR = 4. The width is set to 10 and the number of
iterations to 50. As in previous figures, in the first row of Fig. 4 we plot the
spectrogram of the signal with the added noise, the processed spectrogram
and the spectrogram of the original clean signal, and in the second row, the
corresponding instantaneous frequency lines. It is interesting to observe that
even for very close instantaneous frequency lines, the processed spectrogram
keeps the separation, despite being produced by a diffusive transformation of
the noisy signal. We again notice the large qualitative difference between the
instantaneous frequency lines detection of the noisy and the processed image,
plotted in the second row.
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Fig. 4. Spectrograms and IF lines corresponding to Experiment 3, of a synthetic
signal with SNR = 4.
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