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Abstract

We investigate the combination of two PDE-based image processing techniques ap-
plied to the image produced by time-frequency representations of one-dimensional
signals, such as the spectrogram. Specifically, we consider the energy transport
equation associated to the lagrangian coordinates corresponding to the spectro-
gram differential reassignment proposed by Chassandre-Mottin, Daubechies, Auger
and Flandrin as a spectrogram readability improving method, together with the
image restoration model proposed by Álvarez, Lions and Morel for noise reduction
and edge enhancement. Our aim is to produce a transformation of the spectrogram
in which the instantaneous frequency lines are easier to track, for using it as an
input for a (wolves howls) counting algorithm.

After presenting the model derivation, we show some analytical properties of it,
such as the existence of a unique solution and a comparison principle, and perform
later a discretization to numerically investigate its performance for the cases of
synthetic signals and field recorded wolves choruses. We finally compare our results
with those obtained from well established techniques.
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1 Introduction

Wolf is a protected specie in many countries around the world. Due to their
predator character and to their proximity to human settlements, wolves often
kill cattle interfering in this way in farmers’ economy. To smooth this inter-
ference, authorities reimburse the cost of these lost to farmers. Counting the
population of wolves inhabiting a region is, therefore, not only a question of
biological interest but also of economic interest, since authorities are willing
to estimate the budget devoted to costs produced by wolf protection, see for
instance [1]. However, estimating the population of wild species is not an easy
task. In particular, for mammals, few and not very precise techniques are
used, mainly based on the recuperation of field traces, such as steps, excre-
ments and so on. Our investigation is centered in what it seems to be a new
technique, based on signal and image theory methods, to estimate the pop-
ulation of species which fulfill two conditions: living in groups, for instance,
packs of wolves, and emitting some characteristic sounds, howls and barks,
for wolves. The basic initial idea is to produce, from a given recording, some
time-frequency distribution which allows to identify the different howls cor-
responding to different individuals by estimating the instantaneous frequency
(IF) lines of their howls.

Unfortunately, the real situation is somehow more involved due mainly to the
following two factors. On one hand, since natural sounds, in particular wolf
howling, are composed by a fundamental pitch and several harmonics, direct
instantaneous frequency estimation of the multi-signal recording leads to an
over-counting of individuals since various IF lines correspond to the same in-
dividual. Therefore, more sophisticated methods are indicated for the analysis
of these signals, methods capable of extracting additional information such
as the slope of the IF, which allows to a better identification of the harmon-
ics of a given fundamental tone. Chirplet type transforms [2,3] or the use of
the Fourier fractional transform [4] are possibilities which are under current
development [5]. On the other hand, despite the quality of recording devices,
field recordings are affected for a variety of undesirable signals which range
from low amplitude broad spectrum long duration signals, like wind, to signals
localized in time, like cattle bells, or localized in spectrum, like car engines.
Clearly, the addition of all these signals generates an unstructured noise in the
background of the wolves chorus which impedes the above mentioned methods
to work properly.

In a previous work [6], we investigated the noise reduction and edge (IF lines)
enhancement on the spectrogram image by a PDE-based image processing
algorithm. Considering the spectrogram as the initial image, the algorithm in-
duces isotropic diffusion (noise smoothing) in regions with low gradient values,
and anisotropic diffusion (edge-IF enhancement) in regions with high gradient

2



values. We showed several numerical demonstrations applied to both synthetic
and field recorded signals confirming a good performing of the algorithm.
Moreover, in [7] we performed comparisons with several denoising techniques
such as the nonlinear spectral substraction method and the 2D-stationary
wavelet transform, showing that although the PDE method is more expen-
sive in terms of time execution it is also more stable under threshold values
perturbations in the denoised images. However, we found two main difficul-
ties which motivated the present work. In one hand, the broadening effect of
the spectrogram when compared to the WV distribution is still present if not
slightly increased by this diffusive transformation. On the other hand, there
is not a natural stopping time for the evolution of the algorithm, being this to
be found by a trial and error mechanism, preventing therefore from getting a
fully automatic algorithm.

In this article we address these difficulties partly by using the ideas introduced
in [8] to improve the readability of the spectrogram through the so-called
reassignment techniques, later developed in [9–11]. Let x ∈ L2(R) denote an
audio signal and consider the Short Time Fourier transform (STFT)

Gϕ(x; t, ω) =
∫

R
x(s)ϕ(s− t)e−iωsds, (1)

corresponding to the real, symmetric and normalized window ϕ ∈ L2(R). The
energy density function or spectrogram of x corresponding to the window ϕ is
given by

Sϕ(x; t, ω) = |Gϕ(x; t, ω)|2, (2)

which may be expressed also as [12]

Sϕ(x; t, ω) =
∫

R2
WV (ϕ; t̃, ω̃)WV (x; t− t̃, ω − ω̃)dt̃dω̃, (3)

with WV (y; ·, ·) denoting the Wigner-Ville distribution of y ∈ L2(R),

WV (y; t, ω) =
∫

R
y(t +

s

2
)y(t− s

2
)e−iwsds.

The Wigner-Ville (WV) distribution has received much attention for IF esti-
mation due to its excellent concentration and many other desirable mathemat-
ical properties, see [12]. However, it is well known that it presents high am-
plitude sign-varying cross-terms for multi-component signals which makes its
interpretation difficult, see Fig. 1. Expression (3) represents the spectrogram
as the convolution of the WV distribution of the signal, x, with the smooth-
ing kernel defined by the WV distribution of the window, ϕ, explaining the
mechanism of attenuation of the cross-terms interferences in the spectrogram.
However, an important drawback of the spectrogram with respect to the WV
distribution is the broadening of the IF lines as a direct consequence of the
smoothing convolution. To override this inconvenient, it is suggested in [8]
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Fig. 1. Detail of the Wigner-Ville distribution, spectrogram and reassigned spectro-
gram corresponding to (clean) signal x1 of Experiment 1.

that instead of assigning the averaged energy to the geometric center of the
smoothing kernel, (t, ω), as it is done for the spectrogram, one assigns it to
the center of gravity of these energy contributions, (t̂, ω̂), which is certainly
more representative of the local energy distribution of the signal, see Fig. 1. As
deduced in [9], the gravity center may be computed by the following formulas

t̂(x; t, ω) = t−<
{GTϕ(x; t, ω)

Gϕ(x; t, ω)

}
, ω̂(x; t, ω) = ω + =

{GDϕ(x; t, ω)

Gϕ(x; t, ω)

}
,

where the STFT’s windows in the numerators are Tϕ(t) = tϕ(t) and Dϕ(t) =
ϕ′(t). The reassigned spectrogram, RSϕ(x; t, ω), is then defined as the ag-
gregation of the reassigned energies to their corresponding locations in the
time-frequency domain

RSϕ(x; t, ω) =
1

2π

∫

R2
Sϕ(x; t′, ω′)δ(t− t̂(t′, ω′))δ(ω − ω̂(t′, ω′))dt′dω′. (4)

Observe that energy is conserved through the reassignment process. Other
desirable properties, among which non-negativity and perfect localization of
linear chirps, are proven in [13] For our application, it is of special interest
the fact that the reallocation vector, r(t, ω) = (t̂(t, ω) − t, ω̂(t, ω) − ω), may
be expressed through a potential related to the spectrogram [11],

r(t, ω) =
1

2
∇ log(Sϕ(x; t, ω)), (5)

when ϕ is a Gaussian window of unit variance. Let τ ≥ 0 denote an artifi-
cial time and consider the dynamical expression of the reassignment given by
Φ(t, ω, τ) = (t, ω) + τr(t, ω) which, for τ = 0 to τ = 1, connects the initial
point (t, ω) with its reassigned point (t̂, ω̂). Rewritting this expression as

1

τ
(Φ(t, ω, τ)− Φ(0, ω, τ)) = r(t, ω),

and taking the limit τ → 0, we may identify the displacement vector r as the
velocity field of the transformation Φ. In close relation with this approach is
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the process referred to as differential reassignment [11], defined as the trans-
formation given by the (autonomous) dynamical system corresponding to such
velocity field, 




dχ

dτ
(t, ω, τ) = r(χ(t, ω, τ)),

χ(t, ω, 0) = (t, ω),
(6)

for τ > 0. Observe that, in a first order approximation, we still have that χ
connects (t, ω) with some point in a neighborhood of (t̂, ω̂), since

χ(t, ω, 1) ≈ χ(t, ω, 0) + r(χ(t, ω, 0)) = (t, ω) + r(t, ω) = (t̂, ω̂).

In addition, for τ →∞, each particle (t, ω) converges to some local extremum
of the potential log(Sϕ(x; ·, ·)), among them the maxima and ridges of the
original spectrogram. The conservative energy reassignation analogous to (4)
for the differential reassignment is obtained by solving the following problem
for u(t, ω, τ) and τ > 0,

∂u

∂τ
+ div(ur) = 0, (7)

u(·, ·, 0) = u0, (8)

where we introduced the notation u0 = Sϕ(x; ·, ·) and, consequently, r =
1
2
∇ log(u0). Since in applications both signal and spectrogram are defined in

bounded domains, we assume (7)-(8) to hold in a bounded time-frequency
domain, Ω, in which we assume non energy flow conditions on the solution
and the data

∇u · n = 0, r · n = 0 on ∂Ω× R+, (9)

being n the unitary outwards normal to ∂Ω. Finally, observe that the positivity
of the spectrogram [12] and the fact that it is obtained from a convolution with
a C∞ kernel implies the regularity u0, r ∈ C∞ and, therefore, problem (7)-(9)
admits a unique smooth solution.

As noted in [11], differential reassignment can be viewed as a PDE based
processing of the spectrogram image in which the energy tends to concentrate
on the initial image ridges (IF lines). As mentioned above, our aim is not only
to concentrate the diffused IF lines of the spectrogram but also to attenuate the
noise present in our recordings. It is clear that noise may distort the reassigned
spectrogram due to the change of the energy distribution and therefore of
the gravity centers of each time-frequency window. Although even a worse
situation may happen to the differential reassignment, due to its convergence
to spectrogram local extrema (noise picks among them) an intuitive way to
correct this effect comes from its image processing interpretation. As shown in
[6], when a strong noise is added to a clean signal better results are obtained
for approximating the clean spectrogram if we use a noise reduction edge
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enhancement PDE based algorithm than if we simply threshold the image
spectrogram. This is due to the local application of gaussian filters in regions
of small gradients (noise, among them) while anisotropic diffusion (in the
orthogonal direction to the gradient) is applied in regions of large gradients
(edges-IF lines). Therefore, a possible way to improve the image obtained by
the differential reassigned spectrogram is to modify (7) by adding a diffusive
term with the mentioned properties.

Let us make a final observation before writing the model we shall work with.
In the derivation of both the reassigned and the differential reassigned spec-
trogram the property of energy conservation is imposed, implying that energy
values on ridges increase. Indeed, let B be a neighborhood of a point of maxi-
mum for u0, in which div r = ∆ log u0 < 0, and let (t0, ω0) ∈ B. Let χ0(t, ω, τ)
denote the characteristic defined by (6) starting at (t0, ω0). Evaluating Eq. (7)
along χ0 we obtain

d

dτ
u =

∂u

∂τ
+ r · ∇u = −u div r, (10)

implying that u experiments exponential increase in B. For image processing,
it is desirable the maximum principle to hold, i.e., that the bounds min u0 ≤
u ≤ max u0 hold for any (t, ω, τ) ∈ Ω×R+, ensuring that the processed image
is within the range of image definition ([0, 255], usually). A simple way, which
we shall address, to ensure this property is by dropping the right hand side
term of Eq. (10), i.e., replacing Eq. (7) by the transport equation

∂u

∂τ
+ r · ∇u = 0. (11)

However, no energy conservation law will apply anymore (note that u is con-
stant along the characteristics).

The combination of the differential reassignment problem (8), (9) and (11)
with the edge-detection image-smoothing algorithm [14] is written as

∂u

∂τ
+

ε

2
∇ log(u0) · ∇u− g(|Gs ∗ ∇u|)A(u) = 0 in Ω× R+, (12)

∇u · n = 0 on ∂Ω× R+, (13)

u(0, ·, ·) = u0 in Ω, (14)

where ε ≥ 0, see Remark 1, and

A(u) = (1− h(|∇u|))∆u + h(|∇u|) ∑

j=1,...,n

fj(
∇u

|∇u|)
∂2u

∂x2
j

.

Let us briefly remind the properties and meaning of the diffusive term com-
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ponents in equation (12):

• Function Gs is a Gaussian of variance s. The variance is a scale parameter
which fixes the minimal size of the details to be kept in the processed image.

• Function g is non-increasing with g(0) = 1 and g(∞) = 0. It is a contrast
function, which allows to decide whether a detail is sharp enough to be kept.

• The composition of Gs and g on ∇u rules the speed of diffusion in the
evolution of the image, controlling the enhancement of the edges and the
noise smoothing.

• The diffusion operator A combines isotropic and anisotropic diffusion. The
first smoothes the image by local averaging while the second enforces the
diffusion only on the orthogonal direction to ∇u (along the edges). More
precisely, for θj = (j − 1) ∗ π/n, j = 1, . . . , n we define xj as the orthogonal
to the direction θj, i.e., xj = −t sin θj +ω cos θj. Then, smooth non-negative
functions fj(cos θ, sin θ) are designed to be active only when θ is close to
θj. Therefore, the anisotropic diffusion is taken in an approximated direc-
tion to the orthogonal of ∇u. The combination of isotropic and anisotropic
diffusions is controlled by function h(s), which is nondecreasing with

h(s) =





0 for s ≤ ε,

1 for s ≥ 2ε,
(15)

being ε the enhancement parameter.

Remark 1 A re-parametrization τ → τ/ε transforms Eq. (11) to the equiva-
lent form ∂u/∂τ +εr·∇u = 0. Parameter ε > 0 allows us to play with different
balances between transport and diffusion effects.

2 Mathematical properties

For ε = 0, the following theorem is proven in [14].

Theorem 1 Let u0 ∈ W 1,∞(Ω) and ε = 0. (i) Then, for any T > 0, there
exists a unique (viscosity) solution, u ∈ C([0,∞) × Ω) ∩ L∞(0, T ; W 1,∞(Ω)),
of problem (12)-(14). Moreover,

inf
Ω

u0 ≤ u ≤ sup
Ω

u0 in R+ × Ω. (16)

(ii) Let v be a solution of problem (12)-(14) corresponding to the initial data
v0 ∈ L∞(Ω). Then, for all T ≥ 0, there exists a constant K which depends
only on ‖u0‖W 1,∞ and ‖v0‖L∞ such that

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ K‖u0 − v0‖L∞(Ω). (17)

7



A straightforward modification of the proof of Theorem 1 given in [14], affect-
ing only to the constant K that now, in addition, depends on ‖u0‖W 2,∞ , allows
us to produce a similar proof for probem (12)-(14) with ε > 0. We, therefore,
omit the proof. Let us note that the solution ensured by this theorem is not,
in general, a classical solution. The notion of solution employed in [14] is that
of viscosity solution, which coincides with the classical solution if it is regular
enough. Since we will not enter in further discussions about regularity, we refer
the reader to [15] for technical details about this notion of solution.

Part (ii) of Theorem 1 is specially useful to us for the following reasons. Spec-
trograms of a signal are computed relative to windows, i.e, for each window a
different spectrogram (image) is got. Then, the time-frequency characteristics
of the signal, like instantaneous frequency, look in a slight different way if two
different windows are employed. It, therefore, arises the question of stability of
the final images with respect to the windows, i.e., is it possible that starting
from two spectrograms of the same signal for different windows the corre-
sponding final images are very different from each other? Another stability
question solved with the help of Theorem 1 is whether the transformed spec-
trograms of two close signals, for instance of a signal x and a signal x + δn,
where n denotes a noise and δ > 0 is small, are close or not. We have the
following result.

Corollary 1 (1) Let ϕ, ψ ∈ W 1,∞(R) be real, symmetric and normalized win-
dows and denote by u0 and v0, respectively, the corresponding spectrograms of
a given signal x ∈ L2(R). Let u and v be the solutions of problem (12)-(14)
corresponding to the initial data u0 and v0, respectively. Then

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ c‖ϕ− ψ‖L2(R),

where the constant c depends only on ‖x‖L∞ and K.

(2) Let x, y ∈ L2(R) be two signals and ϕ ∈ W 1,∞(R) be a real, symmetric and
normalized window. Let u0 and v0 be, respectively, their spectrograms. Finally,
let u and v be the solutions of problem (12)-(14) corresponding to the initial
data u0 and v0, respectively. Then

sup
0≤τ≤T

‖u(τ, ·, ·)− v(τ, ·, ·)‖L∞(Ω) ≤ c‖x− y‖L2(R),

where c depends only on K.

We omit the proof, which is a straightforward modification of that given for
Corollaries 1 and 2 in [6].
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3 Numerical Experiments

In this section we present numerical demonstrations of the diffusive differential
reassignment method applied to spectrograms of synthetic and field signals,
and some comparisons with other methods. Computation of the spectrogram
is a standard operation performed by applying the discrete fast fourier trans-
form (dfft) to the convolution of the signal with the window, being the latter
imposed by relation (5) between the displacement vector and the spectrogram,
which only holds for a unit variance Gaussian window. To facilitate the com-
parisons with other methods, we used the Matlab ToolBox [16] for computing
both the spectrogram and the reassigned spectrogram. Once the spectrogram
is produced, it is normalized in the usual digital image range [0, 255], obtain-
ing in this way the initial datum and transport term for problem (12)-(14).
We use a time semi-implicit Euler scheme of the form

uk+1 − uk

δτ
=−ε

2
∇ log u0 · ∇uk + g(|Gs ∗ ∇uk|)

(
1− h(|∇uk|)∆uk+1 +

h(|∇uk|) ∑

j=1,...,n

fj(
∇uk

|∇uk|)
∂2uk+1

∂x2
j

)
,

together with a finite differences discretization in space to find the numerical
approximation of the solution, u. For the finite differences approximation of
the diffusive term, we follow the discretization indicated in [14], considering
four directions based in a nine nodes local grid to implement the anisotropic
diffusion operator, and use these nodes to compute also the discretized lapla-
cian and gradient, according to the formulas given in [14]. The convolution
Gs ∗ ∇u is done in a nine nodes local grid, with variance s = 1, and normal-
ized to get a partition of the unity in the discrete grid, and the enhancement
parameter, ε, shaping function h and controlling the combination of isotropic
and anisotropic diffusion applied to the image, is taken as ε = 0.75 max |∇u0|,
implying that isotropic diffusion dominates over anisotropic diffusion, see (15).
For the convective term we use an upwind scheme involving also the nine nodes
of the local grid. Since the distance between time-frequency nodes (pixels) is
set equal to one, we choose constant evolution steps dτ < 1/(ε‖∇ log u0‖), for
stability issues. Observe that since the scheme is semi-implicit in time, the
discrete comparison principle holds, see (16), and therefore the range of the
discrete solution is always within the range of image definition.

A important advantage of our algorithm is that it provides us with a clue for
stopping the evolution of the spectrogram transformation. As mentioned in the
Introduction, for τ = 1 (τ = 1/ε, after the re-parametrization, see Remark
1), the solution of the transport equation (7) must be close to the reassigned
spectrogram (4), while for τ → ∞, the solution converges to the extrema of
the spectrogram. Therefore, it seems reasonable to stop the algorithm for some
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τend of the order of 1/ε, for which a good concentration on ridges should be
achieved without affecting to the main geometric features of the image. On
the other hand, the parameter ε has also a clear physical meaning. For the
situation of a signal free of noise, the effect of the diffusion operator, which is
intended mostly to smoothen the noise, is not necessary and therefore ε = ”∞”
(no diffusion) should be considered. When noise appears and increases, i. e.,
when the signal to noise ratio (SNR) decreases, more weight should be given
to the diffusion operator, which means decreasing ε. Therefore, parameter ε
may be regarded as an increasing function of the SNR.

Finally, to show more clearly the advantages of our technique, in the subse-
quent plots we used a simple algorithm to produce candidates to instantaneous
frequency lines of the corresponding spectrograms. Let Ω = [0, T ] × [0, F ] be
the time-frequency domain of the image and u : Ω → [0, 255] be the starting
image. We consider its truncation v(t, ω) = u(t, ω) if u(t, ω) ≥ β, and v(t, ω) =
0 elsewhere, with β = MeanΩ (u) in the experiments. For each t ∈ [0, T ] we
consider the N connected components of the set {ω ∈ (0, F ) : v(t, ω) > 0}, say
Cn(t), for n = 1, . . . , N(t), and define the function

IF(t, n) =

∫
Cn(t) ωv(t, ω)dω
∫
Cn(t) v(t, ω)dω

,

which is the frequency gravity center of the component Cn(t). In this way, we
shrink each connected component to one point to which we assign the average
image intensity through the function INT(t, n) = MeanCn(t) (v(t, ·)). Finally,
we plot function IF only for components with averaged intensity, INT, greater
than a certain threshold, i ∈ [0, 255]. This final image does not seem to be
very sensible under small perturbations of the parameters β and i.

Experiment 1. We use a one second 4KHz synthetic signal composed by
the addition of two signals. The first is the addition of pure tones and chirps:

x1(t) = c1(sin 2π1000t + sin 2π1100t + sin 2π1000t2 + sin 2π600t3),

while the second, x2, is a uniformly distributed real random variable. We nor-
malize them to have ‖xi‖L2 = 1 (so the constant c1) and define the test signal
as x = x1 + x2, i.e., with SNR = 0. After computing the spectrogram (SP)
and the reassigned spectrogram (RSP), we transform the former with three
algorithms: the one presented in this paper (convective-diffusive, CD), with
dτ = 0.1, ε = 0.2 and τend = 1/ε = 5 (50 iterations), the corresponding only-
diffusive (D) algorithm (ε = 0) for the same dτ and τend, and the 2D-Stationary
Wavelet Transform (SWT) for the biorthogonal basis with five levels and hard
thresholding [17]. The results are shown in Figure 2. First column corresponds
to the images obtained with the different algorithms, second shows a detail
of these images, and third the corresponding IF functions for threshold level
INT = 10. In the first column we observe that noise is smoothen efficiently by
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the three algorithms D, CD and SWT. However, only for the CD we obtain
narrower instantaneous frequency lines which approach quite well those of the
RSP, specially in the horizontal direction. The details of the pure tones confirm
this observation. Finally, the third column is intended to show more clearly
the noise elimination of these algorithms, which is evident upon comparison of
the plots produced for the SP or RSP, and those produced for the D, CD, and
SWT. Differences among the latter are almost imperceptible, partly due to
the fact that our IF algorithm computes averages of the true IF lines, hiding
therefore the shrinking property of the CD algorithm.

Experiment 2. We used a recording done in wilderness, see [18], from where
we extracted a signal of 0.5 seconds which is affected by a strong background
noise. Since field data recorders are set to 44.1 KHz meanwhile wolves signals
are rarely out of the range 200− 3000 Hz, we start by filtering and downsam-
pling the signal to speed up computations. After computing the spectrogram
and the reassigned spectrogram, we again transform the former with the three
algorithms mentioned in Experiment 1. In this case we take ε = 2 in the CD
algorithm and dτ = 0.01, τend = 2/ε = 1 (100 iterations) in both the CD
and D algorithms. The 2D-SWT is again computed for the biorthogonal ba-
sis with five levels and hard thresholding. The results are shown in Figure 3.
The first column corresponds to the images obtained with the different algo-
rithms, and the second to the corresponding IF functions for threshold level
INT = 6. Although the results are not as neat as for the synthetic signal, we
still appreciate the smoothing of the most disperse noise components and an
enhancement of the strongest IF lines. In addition, the CD algorithm clearly
shrinks these lines. In the images at the right hand side, the IF lines are much
better identified in the CD processed image. However, some of them appear
broken due to the fact that the intensity of noise and some portions of the IF
lines are similar, and therefore, treated by the algorithm in the same way.

Experiment 3. We used a recording done in captivity, see [19], from where we
extracted a rather clean signal of 1 second. We again filtered and downsampled
the signal to the range 200−2000 Hz. After computing the spectrogram and the
reassigned spectrogram, the former was transformed with the CD algorithm
to test the possible convergence towards the reassigned spectrogram. In this
case we took ε = 1000, dτ = 0.00005 and τend = 5/ε = 0.005 (100 iterations).
The results are shown in Figure 4. In the first row we show the complete
spectrogram, reassigned spectrogram and the CD algorithm output. In the
second to fourth columns we show a detailed plot of the howl contained within
the range 200 − 500 Hz. We observe that the CD algorithm gives a better
concentration of the IF lines and, moreover, produces smoother lines than the
RS algorithm. However, execution time plays against the CD algorithm: the
RS takes about 2 sec. while the CD takes about 70 sec. in a standard laptop.
Execution time is, anyway, not an important issue for our application since it
does not requires real time processing of the data.
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Stat. Wavelet Transform

Fig. 2. Experiment 1. First column shows the images obtained with the different
algorithms. Second column gives a detail of the pure tones in the previous image.
Third column shows the corresponding transformation with the IF procedure.
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Fig. 3. Experiment 2. Images obtained with the different algorithms and their cor-
responding transformation with the IF routine.
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Fig. 4. Experiment 3. First row: Spectrogram, reassigned spectrogram and CD al-
gorithm output. Subsequent plots: detail of the howl contained within the range
200 − 500 Hz. The CD algorithm seems to concentrate and smoothen the IF lines
better than the reassigned spectrogram.
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