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Abstract

We propose a parametric model based in chirp decomposition to modelize wolf
chorus emissions. The problem consists on estimating the phase and amplitude
of chirps corresponding to each individual, as well as the number of individuals.
For the first task, we use a well known technique, the Chirplet Transform, which
allows us to obtain a first order approximation of the phase, improving the zero
order approximation given by the Short Time Fourier Transform (STFT). This
gain in accuracy allows to use criteria for a better chirp tracking, which is specially
important at crossing points and in the determination of harmonics of a fundamental
tone. We explore the efficiency of the method applying it to synthetic signals and
to wolves choruses recordings (original motivation of this work). The results show
good performance for chirps tracking even under strong noise corruption.

Key words: Chirp transform, instantaneous frequency estimation, parametric
method, voice separation, multiple instantaneous frequency tracking, population
counting.

1 Introduction

It is well known the social controversy caused by wolf in most of the countries
they are present. On one hand, in very populated regions, such as Europe, they
compete with human both for space and natural resources, causing, in many
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occasions, damages and costs to human interests, mainly through attacks to
livestock. On the other hand, due to extinction risk, wolf is a protected specie
around the world, being the costs they produce usually charged to public
budgets. Hence, it is a common interest to scientists and authorities to esti-
mate their populations. However, estimating wolf population is a difficult task
which, traditionally, relies either on the recuperation of field traces, such as
steps on the snow, or in the direct observation of wolf packs. The efficiency of
these methods is quite variable, depending on the specific habitat of interest
(existence of regular and long-lasting snowfalls, orographic characteristics of
the region, etc). As a complement to traditional techniques, we present in this
article a method based in Signal Theory to extract information about wolf
populations of a given area from field recordings of their choruses. In previous
papers [1,2] we dealt with the first step of our technique: denoising and enhanc-
ing the signals contained in recordings made, usually, in adverse situations.
In the present work, we study the utilization of a parametric model together
with the Chirplet Transform to extract the relevant information (howls and
barks) from the denoised recordings and give, after a suitable processing of the
signal, an estimation of the number of individuals emitting in such recording.

In our numerical experiments we use wolves choruses signals recorded both
in wilderness and in captivity [3,4]. The objective is to separate the differ-
ent howls composing the chorus and therefore may be considered as a source
separation problem. The literature on this subject is broad, ranging from sim-
pler situations like the n-microphone n-sources separation problem to more
complex analysis such as the one-microphone blind source separation problem
[5–7]. Our problem is placed somewhere in between since it is a one-microphone
multi-source separation problem, but it is not of a blind nature since a para-
metric representation based on a chirp decomposition of the signal seems to
be reasonable for the wolf howls modeling.

2 Howl tracking and separation

A wolves chorus is composed, mainly, by howls and barks which, from the
analytical point of view, may be regarded as chirp functions. The former has
a long time support and a small frequency range variation, while the latter is
almost punctually localized in time but posses a large frequency spectrum. It
is convenient, therefore, adopting a parametric model to represent the wolves
chorus as an addition of chirps given by the function f : [0, T ] → C,

f(t) =
N∑

n=1

an(t) exp[iφn(t)], (1)
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with T the length of the chorus emission, an and φn the chirps amplitude and
phase, respectively, and with N , the number of chirps contained in the chorus.
We notice that N is not necessarily the number of wolves since, for instance,
harmonics of a given fundamental tone are counted separately.

To identify the unknowns N , an and φn we proceed in two steps. Firstly, for a
discretization of the time interval [0, T ], say tk = k ∗ τ , for the time step τ > 0
and k = 0, . . . , K, we produce estimates of the amplitude an(tk) and the phase
φn(tk) of the chirps contained at such discrete times. Secondly, we establish
criteria which allow us deciding if the computed estimates at adjacent times
do belong to the same global chirp or do not. We shall describe the first step
in the present section and postpone the treatment of the second step to the
section of numerical experiments.

There exist a variety of methods for estimating the amplitude and phase of
a given signal, most of them relying in the previous estimation of its instan-
taneous frequency (IF), φ′(t) [8–15]. However, since in our problem we are
facing difficulties such as tracking the chirps at crossing points or identifying
harmonics of a given fundamental chirp, it is convenient approximating the
phase with more accuracy than just the first order IF estimation. The main
tools available in the literature to jump to a second order chirp rate estimation
are those based either in the Chirplet Transform [16,17], that we use in this
article, or in the Fourier Fractional Transform [18,19]. The Chirplet Transform
of a function f ∈ L2(R) is defined as

Ψf (to, ξ, µ;λ) =
∫

∞

−∞

f (t)ψto,ξ,µ,λ (t)dt, (2)
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Fig. 1. A field recorded signal containing several multi-harmonic howls and barks
together with a strong background noise.

3



with the complex window ψto,ξ,µ,λ given by

ψto,ξ,µ,λ (t) = vλ(t− to) exp
[
i(ξt+

µ

2
(t− to)

2)
]
. (3)

Here, v ∈ L2 (R) denotes a non-negative, symmetric and normalized real win-
dow, and vλ(·) = v(·/λ)/

√
λ, for λ > 0, and the parameters to, ξ, µ ∈ R, stand

for time, IF and chirp rate, respectively. Observe that

Ψf (to, ξ, µ, λ)=
∫

∞

−∞

f (t) vλ(t− to) exp
[
−i(ξt+

µ

2
(t− to)

2)
]
dt =

=
∫

∞

−∞

f̃λ,to (x) exp
[
−i
(
ξx+

µ

2
x2
)]
dx,

and therefore the chirp-linear transform provides a measure of the degree of
correlation between the linear chirp, exp

[
−i
(
ξx+ µ

2
x2
)]

, and the portion of

the signal centered at to, f̃λ,to (x) = f (x+ to) vλ (x) exp [−iξto]. It is, then,
clear (and straightforward to prove) that for a linear chirp of the form

f(t) = a(t) exp[i(
α

2
(t− to)

2 + β(t− to) + γ)],

and for fixed t0 and λ, the quadratic energy distribution Ψf(t0, ·, ·;λ) has a
global maximum at (α, β), allowing us to determine the IF and chirp rate
of a given linear chirp at a fixed time by computing the maximum point of
the energy distribution. For more general forms of mono-component chirps we
have the following localization result

Theorem 1 Let f (t) = a (t) exp[iφ (t)], with a ∈ L2 (R) non-negative and

φ ∈ C3 (R). For all ε > 0 and ξ, µ ∈ R there exists L > 0 such that if λ < L
then

P Ψf (to, ξ, µ;λ) 6 λε+ PΨf (to, φ
′ (to) , φ

′′ (to) ;λ) . (4)

In addition,

lim
λ→0

1

λ
P Ψf (to, φ

′ (to) , φ
′′ (to) ;λ) = a (to)

2 . (5)

In other words, for a general mono-component chirp the energy distribution
maximum provides an arbitrarily close approximation to the IF and chirp rate
of the signal. Moreover, its amplitude may also be estimated by shrinking the
window time support at the maximum point.

Proof. Consider the second order Taylor expansion of Ψf on to,

φ (t) = φ (to) + φ′ (to) (t− to) +
1

2
φ′′ (to) (t− to)

2 +Rto (t) ,
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with limt→to Rto(t) = 0. We have

|Ψf (to, φ
′ (to) , φ

′′ (to) , λ)| =

∣∣∣∣
∫

∞

−∞

a (t) vλ(t− to) exp [iRto (t)] dt

∣∣∣∣ ,

and we deduce (5) using that

lim
λ→0

vλ(t)√
λ

= δ (t) . (6)

To prove (4) we use the non-negativity of a and v to get

|Ψf (to, ξ, µ, λ)| 6

∫
∞

−∞

a (t) vλ(t−to)dt =
∣∣∣∣e

i(φ(to)−φ′(to)to)
∫

∞

−∞

a (t) vλ(t− to)dt
∣∣∣∣ .

(7)
Multiplying (7) by 1/

√
λ, adding and subtracting Ψf (to, φ

′ (to) , φ
′′ (to) , λ) /

√
λ

inside the absolute value of the right hand side of (7) and using the triangle
inequality we deduce

1√
λ
|Ψf (to, ξ, µ, λ)|6

∣∣∣∣∣e
i(φ(to)−φ′(to)to)

∫
∞

−∞

a (t)
vλ(t− to)√

λ
(1 − exp(iRto (t)))dt

∣∣∣∣∣

+
1√
λ
|Ψf (to, φ

′ (to) , φ
′′ (to) , λ)| .

But, again as a consequence of (6), we have

∫
∞

−∞

a (t)
vλ(t− to)√

λ
(1 − exp(iRto (t)))dt→ 0,

as λ→ 0. The assertion follows.

Finally, for a multi-component chirp f (t) =
∑N

n=1 an (t) exp[iφn (t)] the situ-
ation is somehow more involved since although the energy distribution still
has maxima at (φ′

n (to) , φ
′′

n (to)) for all n such that an (to) 6= 0, these are now
of local nature, and in fact, spurious local maxima not corresponding to any
chirp may appear due to the energy interaction among the actual chirps.

3 Numerical experiments

In this section, we present some results obtained with the algorithm described
in the previous section when applied to both synthetic and wolves choruses
field recorded signals.

In the first part of Experiment 1, we process a clean synthetic signal com-
posed by three nonlinear chirps with multiple crossings. The computation of

5



IF, chirp rate and amplitude approximations is very accurate and allows us
to separate the three chirps in their whole time support. In the second part of
this experiment, we add to the previous signal a Gaussian noise of the same
amplitude, i.e., with signal to noise ratio, SNR=0. We perform here two com-
putations. Firstly, we use the Chirp Transform directly to the signal for the
chirp separation. We observe that the algorithm is still capable of separating
the main (higher amplitude) pieces of the three chirps. However, noise corrup-
tion affects to the chirp identification of the low amplitude segments of the
signal, avoiding the recognition of these segments. Consequently, we restart
the analysis of the noisy signal by filtering it in advance with the noise reduc-
tion signal enhancement algorithm described in [2], and then use the Chirp
Transform based algorithm for separating the resulting signal. In this case,
the low amplitude tails of the original signal are captured more accurately,
although the computational cost is significantly increased.

The last two experiments involve actual wolves choruses field recorded signals
[3,4]. In Experiment 2, we deal with a signal of a unique wolf howling. As
expected, the signal is composed by a formant and a sequence of harmonics.
Due to the background noise, only one of the harmonics has enough intensity
to keep detectable. We use the noise reduction algorithm followed by the chirp
separation algorithm to track and separate the formant and its harmonic. We
notice that it is the fact that the chirps are separated what allow us to recog-
nize the formant-harmonic relationship among them. Finally, in Experiment 3,
we apply the separation algorithm to a very complex signal in which a chorus
of an unknown number of adults and sub-adults wolves are emitting. The re-
sult of the algorithm provides a lower estimation of the number of individuals
in the chorus which seems reasonable to the biologist of the team.

3.1 Implementation of the algorithm.

For the numerical simulations, we use the expression of the Chirplet Transform
given by (??). The window, vλ, is fixed in all the experiments as a Gaussian
window centered at the origin, with λ = 0.1 sec. We consider a discrete mesh
of chirp rates, µm, for m = 1, . . . ,M , and then, for each m, the discrete fast
Fourier transform (??) is computed. Thus, we obtain the discrete Chirplet
Transform Ψf (τk, ξℓ, µm, λ), with τk = τ∗k, for k = 1, . . . , K, and ℓ = 1, . . . , L,
and with K and L depending on the sample frequency and the duration of the
signal. The time step, τ , is fixed in advance and it is related to the window
overlapping in the DFFT computation. Observe that for a signal composed
by N samples, the number of operations is of order O (MN logN).

According to Theorem 1, when the signal is mono-component or the various
components of the signal are far from each other relative to the window width,
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Fig. 2. Left: STFT of a field recorded signal. Right: quadratic energy distribution
of the chirplet transform at t0 = 2. Maxima correspond to IF and chirp rate chirps
locations. We observe the different behavior in the ξ and µ directions at these
maxima.

the maximum of PΨf(τk, ·, ·;λ) is located at some (ξ, µ) arbitraryly closed
to the IF and chirp rate, (φ′

n (τk) , φ
′′

n (τk)), of a chirp modulated by φn(t).
However, when multi-component signals are close to each other or are crossing,
some spurious local maxima are produced which do not correspond to any
actual chirp. Therefore, some criterium must be used to select the correct
local maxima at each τk. Although we lack of an analytical proof, there are
evidences suggesting that maxima produced by chirps, i.e., at points of the
type (φ′

n (τk) , φ
′′

n (τk)) , decrease much faster in the ξ direction than in the µ
direction, see Fig. 2, a phenomenon that does not occur at spurious maxima.
We use this fact to choose the candidates first by selecting ξℓ, for ℓ = 1, . . . , L,
which are maxima for

sup
µ
PΨf (τk, ξ, µ;λ) ,

and, among them, selecting the maxima with respect to µ of PΨf (τk, ξℓ, µ;λ).
We finally establish a threshold parameter to filter out possible local maxima
located at points that do not correspond to any φ′

n (τk) but which are close to
two of them. We set this threshold such that the existence of two consecutive
maxima is avoided. In this way we obtain, for each τk, a set of points (ξik , µik),
for ik = 1, . . . , Ik, which correspond to the IF’s and chirp-rates of chirps with
time support including τk.

The next step is the chirp separation. We note that if the time step τ is small
enough, then

ξjk+1
− τ

µjk+1

2
≈ ξik + τ

µik

2
.

Introducing a new parameter, ν, we test this property by imposing the condi-
tion

1

v
<

2ξjk+1
− τµjk+1

2ξik + τµik

< ν, (8)
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for two points to be in the same chirp. In the experiments we take ν = 21/13 ≈
1.0548.

Finally, in the case in which test (8) is satisfied by more than one point, i.e.,

when there exist points
(
ξjk+1

, µjk+1

)
and

(
ξpk+1

, µpk+1

)
such that (8) holds for

the same (ξik , µik), we impose a regularity criterium and choose the point with
a closer chirp-rate to that of (ξik , µik). This is a situation typically arising at
chirps crossings points.

Summarizing, the chirp separation algorithm is implemented as follows:

• Each point (ξi1, µi1), for i1 = 1, . . . , I1, is assumed to belong to a different
chirp.

• For k = 2, 3, . . ., we use the described criteria to decide if (ξik , µik), for
: ik = 1, . . . , Ik, belongs to an already detected chirp. On the contrary, it is
established as the starting point of a new chirp.

• When the above iteration is finished and to avoid artifacts due to numerical
errors, we disregard chirps composed by a unique point.

Finally, once the chirps are separated, we use the following approximation,
motivated by Theorem 1, to estimate the amplitude

a (τk)
2 ≈ 1

λ
PΨf (to, φ

′ (τk) , φ
′′ (τk) , λ) ,

for small λ.

Again, to avoid artifacts due to numerical discretization, we neglect portions
of signals with an amplitude lower than certain relative threshold, ǫ ∈ (0, 1),
of the maximum amplitude of the whole signal, considering that in this case
no chirp is present.

Let us finally mention that all the experiments are performed on 16 bites–
44.1 KHz sampled signals, and that typical running times on a Centrino Duo
processor are in the range of minutes.

3.2 Experiment 1: Synthetic signals

In this first experiment we test our algorithm with: (i) a clean synthetic signal,
f , composed by the addition of three nonlinear chirps, and (ii) the same signal
corrupted with an additive noise of similar amplitude than that of f , i.e.,
SNR = 0. The clean signal is given by f (t) =

∑3
i=1 ai (t) cosφi (t), for t ∈

[0, 8], with amplitudes
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Fig. 3. Exact (solid line) and computed (dots) amplitudes, IF’s and chirp rates for
each voice of the clean signal of Experiment 1.

a1 (t) =
1

3
exp

(
−(t− 3.5)2

5

)
X[1,6] (t) , a2 (t) =

1

3
exp

(
−(t− 5)2

4

)
X[2,8] (t)

a3 (t) =
1

3
exp

(
−(t− 6)2

4

)
X[3.5,6.5] (t)

with X[a,b] denoting the characteristic function of the time sub-interval [a, b],
and with phases

φ1 (t) =−13.07t5 + 226.2t4 − 1434t3 + 4055t2 − 4408t,

φ2 (t) = 1.733t5 − 42.92t4 + 381.1t3 − 1459t2 + 2798t,

φ3 (t) =−4.973t5 + 166.3t4 − 2172t3 + 0.138t2 + 0.411t.

We used the same time step, τ = 0.2 sec, and window width, λ = 0.1 sec,
to process both clean and noisy signals, while we set the relative threshold
amplitude level to ǫ = 0.01 for the clean signal and to ǫ = 0.1 for the noisy
signal. The results of our algorithm of separation are shown in Fig. 3. We
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Fig. 4. Chirp separation for the noisy signal of Experiment 1 with and without
previous noise filtering (left and right plots, respectively).

observe that for the clean signal all chirps are captured with a high degree
of accuracy even at crossing points. However, although the number of chirps
is correctly computed for the noisy signal, we observe that the main effect of
noise corruption is the lose of information at chirps low amplitude range. A
way to improve this result is applying the noise reduction signal enhancement
algorithm described in [2] to the noisy signal and, afterwards, using the sepa-
ration algorithm. As can be seen in Fig. 4, the result is somehow better than
for the rough noisy signal. In Fig. 5 we show the amplitude, IF and chirp-rate
estimations of the chirp which is more affected by the noise corruption, for
both clean and noisy signals. The main effect of noise corruption is observed
in the amplitude computation and in the lose of information at the tails of the
three magnitudes.

3.3 Experiment 2. One wolf multi-harmonic emission

The signal analyzed in this experiment, with STFT showed in Fig. 6, is formed
by a howl of a unique individual which is composed by a formant-chirp and its
corresponding harmonic chirps among which only one is detected, due to the
high intensity noise level. Before using the separation algorithm, we filtered
the signal to the relevant frequency band [250, 1500] Hz and then applied the
noise reduction signal enhancement algorithm of [2].

Parameters were fixed as follows: time step to τ = 0.2 sec, amplitude threshold
to ǫ = 0.05 and window width to λ = 0.1 sec. The result is shown in Fig. 6.
We observe that a segment of the harmonic is not detected, as expected due
to the high SNR. However, the algorithm detects and separates both chirps
accurately enough to perform the computation plotted in Fig. 7, showing that
both chirps are harmonics and, therefore, allowing us to conclude that only
one individual is emitting.
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Fig. 5. Exact (solid line) and computed (dots) amplitudes, IF’s and chirp rates for
each voice of the filtered noisy signal of Experiment 1.
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Fig. 6. Left: Experiment 2 signal’s STFT. Right: Result of the separation algorithm.

3.4 Experiment 3. A wolves chorus

In this experiment we analyze a rather complex signal obtained from field
recordings of wolves choruses in wilderness, [3]. Due to the noise present in
the recording, we first use the PDE algorithm to enhance the signal and reduce
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Fig. 7. The separation algorithm allows us to check the harmonicity of chirps. We
plot the high frequency chirp and the diadic translation of the low frequency chirp
of Fig. 6.
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Fig. 8. Left: Result of the separation algorithm. Right: Zoom of the sub-interval
(1, 2.5), showing six chirps which correspond to five wolves emissions.

the noise, see [2] for details. For the separation algorithm, we fixed the time
step as τ = 0.03 sec, the relative amplitude threshold as ǫ = 0.01 and the
window width as λ = 0.0625 sec.

The output is composed by 32 chirps which should correspond to the howls
and barks (with all their harmonics) emitted by the wolves along the duration
of the recording. The result is shown in Fig. 1. Since our aim is giving an
estimate of how many individuals are emitting in a recording, we plot a zoom
of the separating algorithm result for the signals having time support at t = 2.
Here, the number of chirps reduces to six. However, it seems that one couple
of them are harmonics, the couple formed by the chirp around 1000 Hz and
the chirp with highest IF. Therefore, we may conclude that at least five wolves
are emitting during the interval of time plotted, t ∈ (1, 2.5). A similar analysis
may be carried out with other time slices until all the recorded signal is covered
and a global lower estimate of the number of individuals is thus obtained.

12



References

[1] B. Dugnol, C. Fernández, and G. Galiano. Wolves counting by spectrogram
image processing. Appl. Math. Comput., 186:820–830, 2007.

[2] B. Dugnol, C. Fernández, G. Galiano, and J. Velasco. Implementation
of a diffusive differential reassignment method for signal enhancement. an
application to wolf population counting. Appl. Math. Comput., 2007. To appear.

[3] L. LLaneza and V. Palacios. Field recordings obtained in wilderness in Asturias
(Spain) in the 2003 campaign. Asesores en Recursos Naturales, S.L.

[4] L. LLaneza and V. Palacios. Field recordings obtained in captivity in Spain
and Portugal in the 2005 campaign. Asesores en Recursos Naturales, S.L.

[5] M. Zibulevsky and B.A. Pearlmutter. Blind source separation by sparse
decomposition in a signal diccionary. Neural Computation, 13:863–882, 2001.

[6] L. Benaroya and F. Bimbot. Wiener based source separation with hmm/gmm
using a single sensor. In 4th International symposium on Independent
Component Analysis and Blind Signal Separation (ICA 2003), 957–961, Nara,
Japan, 2003.

[7] T. Roweis. One microphone source separation. In Advances in Neuronal
Information Processing Systems (NIPS 00), volume 13, 2001.

[8] S. Mallat. A wavelet tour of signal processing. Academic Press, London, 1998.
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