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Abstract

In [8], a one-dimensional model describing the vertical movement
of water and salt in a porous medium in which a continuous extraction
of fresh water takes place was studied. Among other results, it was
shown that for some range of parameter values, a heavier layer of water
is formed above a lighter one in the transient state, having, however, a
unique stable steady state. In this paper, we study the N -dimensional
spatial model, for which Darcy’s law must be introduced in the flow
description. We prove the existence of weak solutions to the time
evolution problem and perform a heuristic stability analysis in two
ways: analytically, for a related problem, to find an approximation of
the bifurcation curve in terms of the Raighley number, and numerically,
to show the formation of instabilities in the original problem and their
influence on the speed of convergence towards the stable steady state.

1 Introduction

Consider a water saturated bounded porous medium with horizontal upper
and lower boundaries containing a solute, and suppose that a extracting
mechanism within the upper part of the medium produces an upward flow
of fresh water out through the upper boundary while keeping most of the
solute content within the medium. If the fresh water extraction is strong
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enough then a solute high concentration layer is created in the extraction
region, on the top of a lower concentration region and therefore gravitational
driven instabilities are expected to arise. This is a well known phenomenon
observed in the ecology of mangroves, see [15, 4]. In Section 4 we deduce the
following mathematical model. Let u ∈ [0, 1] be the solute concentration,
q the water flow discharge and p the pressure, and consider the domain
QT = Ω × (0, T ) for T > 0 and Ω = B × (0, 1), with B ⊂ RN−1 bounded.
Find u, p : Q̄T → R and q : Q̄T → RN such that

ut + div(Ruq−∇u) = 0, (1)

div q + mf(·, u) = 0, (2)

q +∇p− uez = 0, (3)

in QT . Positive parameters R and m stand for the Rayleigh and the ex-
traction numbers of the physical system, see (73)-(74). The vector ez is the
canonical vertical vector pointing downwards. In (2), the extraction function
f : B̄ × [0, 1]× [0, 1] → R+ is usually assumed to have the form

f(x, z, σ) := s(z)(1− σ)r
+, (4)

with r > 0 and s describing the localization of the extraction region, given
by (for d ∈ (0, 1))

s(z) :=
{

1 if z ∈ [0, d],
0 if z ∈ (d, 1].

(5)

The spatial boundary is decomposed as ∂Ω = ΓD ∪ ΓN , with ΓD = B ×{0}
and ΓN =

(
B×{1}

)
∪

(
∂B× (0, 1)

)
. The following boundary conditions are

prescribed

u = uD, p = 0 on ΓD × (0, T ), (6)
∇u · n = q · n = 0 on ΓN × (0, T ). (7)

A non-negative initial distribution, u0, is considered to close the problem

u(·, 0) = u0 in Ω. (8)

In this article we are interested in two questions: first is proving the existence
of solutions of problem (1)- (3) and (6)-(8), which we shall refer to as Problem
P. Second is a stability issue. In [8], in the context of one dimensional spatial
variable (depth) it is proven that if the exponent r in function f , see (4),
is smaller than one then the solute concentration may reach the threshold
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value u = 1 in finite time in some subset of (0, d) while u < 1 below that
layer for all T < ∞. This is clearly an instable situation and it is therefore
expectable to observe gravitational instabilities when perturbations of the
one-dimensional profile are considered in the N -dimensional setting. Our
aim is to provide a range of values for the bifurcation parameter, R, for
which these instabilities appear.

Existence of solutions for Darcy flows is already established for a large va-
riety of physical situations which translate into different mathematical mod-
els, among which the most treated in the literature are the porous medium
equation, the black oil system (two-phase filtration problem) and the dam
problem see, for instance, [18, 2, 11, 7] and the references therein. Many of
these problems neglect the gravity effects expressed by the term uez in the
Darcy’s equation (3) and set the problem only in terms of the concentration
and the pressure. Similarly, system (1)-(3) may be reduced to equations

ut − div(Ru(∇p− uez) +∇u) = 0, (9)

−∆p +
∂u

∂z
+ mf(·, u) = 0. (10)

Note that when gravity effects, expressed by the term ∂u/∂z, may be ne-
glected then the resulting problem lies in the general setting studied, for
instance, in [1]. However, if gravity effects have to be taken into account
then this reduction is not appropriate. The reason is that the key role of
div q ∈ L∞ is hidden in formulation (9)-(10), and a usual fixed point tech-
nique for proving existence of solutions by compactness arguments lead to
the consideration of Sobolev spaces with somehow rare dimension-dependent
exponents. On the contrary, direct consideration of system (1)-(3) leads to
a simpler proof of existence of solutions by uncoupling the original system in
two sets of equations with independent physical meaning: concentration evo-
lution with prescribed convection, in one hand, and flow-pressure balance
with prescribed concentration, on the other. In addition, the numerical
scheme corresponding to this approach is more efficient, see [5, 13].

The stability properties of equations (1)-(3) has also received attention
for a variety of data, and phenomena like cellular convection or fingering
have been proven to arise when the bifurcation parameter, R, is large enough.
For instance, the steady state one-dimensional solution of the model problem
L = ∞, f = 0, q·n = 0 on ∂Ω×(0, T ) and u = 1 on ΓD×(0, T ) is known to be
instable for values R > 4π2, see for instance [16]. Other interesting models
related to ours which also lead to gravitational instabilities are the salt lake
formation by evaporation (q · n = −const. on ΓD × (0, T )), see [9], or the
peat moss formation (f = 0 and the temperature u = uD(t) on ΓD), see [17].
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The common feature of these models is the existence of an instable ground
state, i.e., a steady one-dimensional solution which may be gravitationally
instable. Analysis of the perturbation equations (linearized or not) and the
study of a maximization problem for the bifurcation parameter is the usual
approach for finding the threshold value of R above which instabilities occur.

For Problem P, due to the non-zero extraction term f and to the non-flow
boundary condition q · n = 0 on ΓN × (0, T ), the one-dimensional steady
state solution is stable, see [8]. Therefore, what we mean by instabilities
associated to solutions of Problem P is slightly different from the common
use. Instabilities in solutions of Problem P appear, if they do, only in
the transient state, when there exists the possibility of the formation of a
layer of heavier fluid above a layer of lighter fluid. However, when t → ∞
these instabilities diminish in size and do disappear in infinite time. A
rigorous mathematical analysis of this phenomenon is out of our scope but
its physical interest, which resides in the shortening of the time rate at which
solutions to the evolution problem approach to the steady state, induce us
to study certain approximations which may be treated rigorously, and to
demonstrate by means of numeric simulations that the behavior of solutions
to the approximated problems and to the original problem are similar, at
least in the selected parameters range.

The outline of the paper is the following: in Section 2 we give the precise
assumptions and definitions for the theorem on existence of solutions and
we perform the stability analysis together with the numerical simulations.
In Section 3 we give the proof of existence of solutions. Finally, we present
the mathematical modelling of the physical problem in Section 4.

2 Main results

Although in the stability analysis and subsequent numerical experiments
we assume N = 2, with B a bounded interval in R, and we take f of the
form (4), we may generalize these assumptions for the proof of existence of
solutions. The main property of f , apart from regularity requirements, is
to switch off the dynamics of the system when the solute concentration, u,
takes the threshold value u = 1.

2.1 Hypothesis and definitions

We shall refer to problem (1)-(8) as to Problem P, for which we assume the
following hypothesis:
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H1. The spatial domain Ω ⊂ RN is bounded with a Lipschitz continuous
boundary, ∂Ω, which is decomposed as ∂Ω = ΓD∪ΓN , with ΓD∩ΓN =
∅ and with ΓD of positive N − 1 dimensional measure.

H2. The function f : Ω̄× [0, 1] → R satisfies

f(x, ·) ∈ C([0, 1]) for a.e. x ∈ Ω,

f(·, s) ∈ L∞(Ω) for all s ∈ [0, 1],
f(x, ·) is non-increasing in [0, 1] and f(x, 1) = 0 for a.e. x ∈ Ω.

Note that, in particular, f ≥ 0 in Ω̄× [0, 1].

H3. The initial and boundary data posses the regularity

u0 ∈ L∞(Ω) and 0 ≤ u0 ≤ 1 a.e. in Ω,

uD ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and 0 ≤ uD ≤ 1 a.e. in QT .

H4. The numbers R and m are positive.

There are several reasons because we can not expect to find classical so-
lutions of Problem P. Among them, the regularity of the domain (corners),
the mixed boundary conditions, and the possible degeneration of the prob-
lem through the semilinear term f . Thus, we introduce the following notion
of solution.

Definition 1. We say that (u,q, p) is a weak solution of Problem P if
u : Q̄T → (0, 1], q : Q̄T → RN and p : Q̄T → R satisfy the following
properties:

1. Regularity of solutions:

u ∈uD + L2(0, T ;V) ∩H1(0, T ;V ′) ∩ L∞(QT ),

q ∈L2(0, T ;H0,N (div,Ω)) ∩WT ,

p ∈L2(0, T ;V),

with

V :=
{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓD

}
,

H0,N (div,Ω) :=
{
φ ∈ L2(Ω)N : div φ ∈ L2(Ω),φ · n = 0 on ΓN

}
,

WT :=
{
φ ∈ L2(QT )N : div φ ∈ L∞(QT )

}
.
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2. For all test function ϕ ∈ V, ξ ∈ L2(Ω), φ ∈ H0,N (div,Ω) and for a.e.
t ∈ (0, T ), we have

< ut, ϕ > −
∫

Ω
(Ruq−∇u) · ∇ϕ = 0, (11)∫

Ω
q · φ−

∫
Ω

p div φ−
∫

Ω
uez · φ = 0, (12)∫

Ω
(div q + mf(·, u))ξ = 0, (13)

with < ·, · > denoting de duality product V ′ × V.

3. The initial distribution is satisfied in the sense

lim
t→0

‖u(·, t)− u0‖L2(Ω) = 0.

2.2 Existence of solutions

We prove the following theorem in Section 3.

Theorem 1. Assume H1-H4. Then there exists a weak solution of Problem
P.

2.3 Stability analysis

As mentioned in the Introduction, in [8] the one dimensional setting of prob-
lem (1)-(8) is studied neglecting the horizontal dependence of all unknowns
of the problem. It is proven that if the exponent in function f is r < 1 then
the concentration may reach the threshold value, u = 1, in finite time in
some subset of the extraction region (0, d), while u < 1 below, in (d, 1), for
all T < ∞. Therefore, when we consider the one-dimensional profile as a
solution of the N-dimensional problem (with data independent of the hori-
zontal variables) then it is possible for perturbations of this solution to grow.
However, this situation only may take place in the transient state since the
steady state for the one dimensional problem is given by a concentration
function which is increasing with depth, i.e., stable. The mathematical ex-
planation for such a stable solution after a possibly instable transient state
is given by the non-flow boundary condition at the bottom of the domain,
condition which allows the solute produced in the extraction zone to fill up
the region below this zone till the bottom boundary in infinite time.

Therefore, the question of stability for Problem P is not whether the
steady state one-dimensional profile is stable or not under perturbations
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(which it is) but if the solutions of Problem P may develop transient insta-
bilities which, in fact, will be attenuated when t →∞.

To give some clues to this question, we shall consider a related problem
which is simpler to deal with but which keeps relevant information about
solutions of Problem P. In this section and for the numerics, we fix N = 2,
although it is not an essential assumption for the analysis that follows.

Figure 1: Time evolution of concentrations of the one (circles) and two-dimensional
(continuous line) models at the bottom boundary, z = 1. Transient instabilities are
reflected in the steep increase of the concentration of the 2D model. However, the
concentration of the 1D model grows slowly. R = 500.

We consider the situation in which, after some time T ∗ < T , the solution
to the one-dimensional problem has developed a dead core, i.e., an interval
(a, b) ⊂ (0, d) in which u = 1 for all t > T ∗. For simplicity, we assume
b = d, i.e., the dead core reaches the boundary of the no extraction region.
Following, we investigate the stability of this one-dimensional configuration
in the two-dimensional setting, with a modified boundary condition on z = 1.
Consider the domain Ωd = (0, L)× (d, 1), where f ≡ 0. The top boundary,
z = d, corresponds to the boundary between the dead core and the no-
extraction region so we prescribe u = 1 on this boundary. On the bottom
boundary, z = 1, we take constant Dirichlet data u∗ < 1 instead of the
non-flow boundary data, assuming that the value of u in z = 1 for the one-
dimensional problem does not vary too fast for the time scale of the transient
instabilities we are studying, see Figure 1. Therefore, we set the following
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boundary conditions

u(x, d, t) = 1, u(x, 1, t) = u∗ for x ∈ (0, L) (14)
p(x, d, t) = p0, q2(x, 1, t) = 0 for x ∈ (0, L), (15)

∂u

∂x
(0, z, t) =

∂u

∂x
(L, z, t) = 0 for z ∈ (d, 1), (16)

q1(0, z, t) = q1(L, z, t) = 0 for z ∈ (d, 1), (17)

for t > T ∗, q = (q1, q2) and a constant p0. Since T ∗ will not play any
important role in the analysis, we set T ∗ = 0. In the domain Ωd × (0, T ),
functions (u,q, p) satisfy

ut + Rq · ∇u−∆u = 0, (18)

div q = 0, (19)

q +∇p− uez = 0. (20)

Stability conditions for equations (18)-(20) is a well known issue and has
been established for different types of boundary conditions, see for instance
[9, 16]. In fact, problem (14)-(20) only differs from the one treated in [16] in
two points: the domain is bounded in the horizontal direction (L < ∞) and
the non-flow boundary condition on the top domain, q2(d, x, t) = 0 of [16]
is replaced by our condition on the pressure p(d, x, t) = p0. The stability
analysis is based on the expansion

ũ = U0 + u, q̃ = Q0 + q and p̃ = P0 + p, (21)

with ũ, q̃ and p̃ satisfying problem (14)-(20) and with U0, Q0 and P0 the
solution to the corresponding one dimensional steady state problem, given
by

U0(z) = 1− γ(z − d), Q0(z) = 0, P0(z) = p0 +
∫ z

d
U0(s)ds,

for z ∈ (d, 1) and γ = (1−u∗)/(1−d). Substituting (21) into equations (18)-
(20) and omitting tildes, yields the following system for the perturbations

ut + Rq · ∇u−∆u = γRq2, (22)
div q = 0, (23)
q +∇p− uez = 0, (24)

in Ωd× (0, T ), satisfying the homogeneous boundary conditions correspond-
ing to (14)-(17). Conditions for nonlinear stability are deduced in the usual
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way. Multiplying (22) by u, integrating by parts and using (23) and the
boundary conditions we obtain

1
2

d

dt

∫
Ωd

u2 +
∫

Ωd

∇u2 = γR

∫
Ωd

q2u. (25)

Multiplying (24) by αq, α > 0 and adding the result to (25) we obtain

1
2

d

dt

∫
Ωd

u2 +
∫

Ωd

∇u2 + α

∫
Ωd

|q|2 = (γR + α)
∫

Ωd

q2u. (26)

Then, if

1
γR + α

≥ 1
γR∗(α) + α

= sup

∫
Ωd

q2u∫
Ωd
∇u2 + α

∫
Ωd
|q|2

, (27)

where the supremo is taken among the admissible functions, i.e., satisfy-
ing (i) the regularity requirements of a weak solution of Problem P, (ii)
the homogeneous boundary conditions corresponding to (14)-(17), and (iii)
div q = 0, we have

1
2

d

dt

∫
Ωd

u2 ≤ 0. (28)

Therefore, the stability criterium for solutions of problem (14)-(20) is re-
duced to solving the maximization problem of the right hand side of (27).
We observe that, as in [16], the Euler-Lagrange equations associated to the
maximization problem are just the time independent linearized version of
(22)-(24), implying that the linear and nonlinear estimates for the bifur-
cation parameter coincide. We note that the above mentioned differences
between the problem treated in [16] and problem (14)-(20) affect to the max-
imization problem via the set of admissible functions. Indeed, our condition
p = 0 on ΓD × (0, T ) implies that the linear problem to be solved is coupled
for the three unknowns and not only for u and q, as in [16]. Nevertheless,
the similarities between both problems are evident.

Assuming periodic behavior in the horizontal variable for the steady state
solution of the perturbation problem (22)-(24), namely u(x, z) = eiaxU(z),
p(x, z) = eiaxP (z) and q2(x, z) = eiaxQ(z), we are led to solve the following
problem: Find the minimum R∗ such that there exist a non-trivial solution
U,P,Q : (d, 1) → R of

−U ′′ + a2U = γR∗Q, U(d) = 0, U(1) = 0, (29)
−P ′′ + a2P = −U ′, P (d) = 0, P ′(1) = 0, (30)
−Q′′ + a2Q = a2U, Q(d) + P ′(d) = 0, P ′(1) = 0. (31)
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Figure 2: Bifurcation parameter, R∗, as a function of wave number, a. Circles
line, for boundary condition q2 = 0 on z = d, as in [16]. Continuous line, for p = 0
on z = d (Problem (14)-(20)). Crosses: some values of R∗ for which instabilities
arise in the problem with extraction.

Eigenvalue problem (29)-(31) was solved numerically using a standard rou-
tine of [19]. In Figure 2 we summarize the results concerning to the size of
the bifurcation parameter, R∗:

• We considered Problem P with the non-flow bottom boundary con-
dition ∇u · n = 0 replaced by the fixed Dirichlet boundary condition
u = u∗, as in (14). In other words, we investigate the importance of
the extraction region and the dead core formation for the development
of transient instabilities. We computed numerical solutions for param-
eters values which imply no dead core formation (u < 1 on z = d), and
even in this case we checked the formation of instabilities for values of
R which are very close to those of problem (14)-(20). Therefore, the
actual formation of a dead core in the extraction region seems not to
be relevant for instabilities occurrence as long as the concentration on
the bottom boundary keeps lower than that on the extraction region.

• We compare the bifurcation curves corresponding to our problem (14)-
(20) and to the problem studied in [16], i.e., with our condition p = 0
on z = d replaced by q2 = 0 on z = d. The non-flow boundary
condition seems to give more stability to the system, possibly as a
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consequence of the shortening of the region in which they may devel-
ope.

2.4 Numerical simulations

We used a stabilized mixed finite element method in space and implicit
finite differences scheme in time to approximate solutions of an equivalent
formulation of Problem P, consisting on combining equations (1) and (2) to
replace (1) by

ut + Rq · ∇u−∆u = Rmuf(·, u). (32)

The main advantage on using a mixed formulation instead of a simpler
formulation based only in concentration-pressure, see (9)-(10), is that the
flow, q, is obtained directly from the discrete solution and there is no need
of deducing it by numerical differentiation of the pressure, with the loss of
accuracy it implies. Since our investigation is centered on stability, keeping
a good grade of accuracy in the flow approximation is important. Moreover,
as we already mentioned in the Introduction, the study of the existence
of solutions indicates that the decoupling of the system inherent to the
mixed formulation is more natural than that of the concentration-pressure
formulation in the sense that it produces energy estimates which allow to
obtain a simpler proof of the existence of solutions.

It is well known that classical mixed variational formulations need an
adequate election of the discrete spaces for the flow and the pressure in
order to satisfy the Babuska-Brezzi stability condition, see for instance [5].
Following [13], we consider a stabilized mixed finite element method for
Darcy flows which allows to consider piecewise linear approximations and
the same mesh for both pressure and flow. The only differences between
our problem and the problem treated in [13] are the boundary condition for
the pressure and the existence of a source term in (39). In any case, the
adaptation to our problem is straightforward.

Let tn = nδt, for δt = T/N , and n = 0, ...N , and consider the discrete
time approximation given by

un + δt(Rqn · ∇un −∆un) = δtRmunf(·, un) + un−1, (33)
div qn = −mf(·, un), (34)
qn = −∇pn + unez, (35)

in Ω, where the super-index n stands for the approximations in time tn. The
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boundary conditions are

un = uD, pn = 0 on ΓD, (36)
∇un · n = qn · n = 0 on ΓN . (37)

We solve this nonlinear system of equations by a fixed point method based
on the proof of Theorem 1. We consider the map S : L2(Ω) → L2(Ω) given
by S(û;un−1) = u, where u is the solution of

u− δt∆u = −δtRq · ∇û + δtRmûf(·, û) + un−1, (38)
div q = −mf(·, û), (39)
q = −∇p + ûez, (40)

with the mentioned boundary conditions (36)-(37). A fixed point of S(· ;un−1)
is denoted by un. The formulation of the stabilized mixed finite element
method for problem (39)-(40) is: Find q ∈ H0,N (div,Ω) and p ∈ V solutions
of ∫

Ω
(q +∇p) · φ =

∫
Ω

ûez · φ for all φ ∈ H0,N (div,Ω), (41)∫
Ω
(∇p− q) · ∇ϕ =

∫
Ω
(ûez · ∇ϕ− 2fϕ) for all ϕ ∈ V. (42)

Once that q and p are determined, we set the following problem for equation
(38): Find u ∈ uD + V solution of∫

Ω
uϕ+δt

∫
Ω
∇u·∇ϕ = δtR

∫
Ω
(mûf(·, û)−q·∇û)ϕ+

∫
Ω

un−1ϕ for all ϕ ∈ V.

(43)
We use the spatial discretization of (41)-(42) given in [13], and adapt it
also for equation (43). It consists of finite triangular elements, continuous
piecewise linear base functions and the same mesh for all the unknowns.
For the practical implementation of the fixed point method, we consider
that a discrete solution of (41)-(43) is a fixed point of S(· ;un−1) if a norm
of S(un

k ;un−1)−un
k , for k = 0, 1, . . ., with un

0 = un−1, is smaller than a fixed
tolerance.

Remark 1. When studying problem (14)-(20), we replace Ω by Ωd and re-
define the space V in (43) by VD = {u ∈ H1(Ωd) : u = 0 on (0, L)× {d, 1}}.

For the numerical simulations we considered the spatial domains Ω =
(0, 1) × (0, 1) and Ωd = (0, 1) × (0.5, 1), i.e., the extraction zone is above
z = 0.5, and the parameter values R = 300, m = 1 and r = 1. We used
an uniform triangular mesh with 900 triangles and an initial time step of
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δt = 0.001. The time step is adapted according to the size of ‖un − un−1‖.
Although instable regimes are found for values of R smaller than 300, see Fig.
2, we used this value to show more clearly in the pictures the phenomena
we are interested in. We remark that even in the case r = 1 in which a dead
core does not appear, the approximated problem studied in the stability
analysis produces similar patterns than Problem P.

Figure 3: Flow and solute concentration for the approximated problem (14)-(20).
R = 300, t = 0.05.

In Figures 3 and 4, flow and concentration contour lines are plotted.

• Figure 3. Solution of approximated problem (14)-(20) for time t =
0.05, showing the typical Benard instability cells corresponding to the
selected data.

• Figure 4 (a). Solution of problem P for same time than in Figure
3, t = 0.05. Similar instability patterns than in the approximated
problem do appear.

• Figure 4 (b). Long time behavior of solution of problem P, for time
t = 0.2. Transient instabilities tend to disappear.

• Figure 5. We compare the speed of approach to the steady state
between the one and the two-dimensional solutions of Problem P when
instabilities in the transient state are present. We plot, against time,
the ratio

minx∈(0,L) u2(x, 1, t)
u1(1, t)

,
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(a) t = 0.05 (b) t = 0.2

Figure 4: Flow and solute concentration for Problem P. (a) Transient state, t =
0.05. (b) Long time profile, t = 0.2. R = 300.

where u1 and u2 are the one and two-dimensional solutions, respec-
tively, of Problem P. Different curves correspond to different values of
R. For large values of R, we observe three time intervals with different
behaviors of this ratio. Initially, when instabilities did not develop yet,
both solutions are practically equal. Afterwards, when instabilities ap-
pear, the mixing in the two-dimensional model is accelerated and the
increase of the solute concentration, u2, at the bottom boundary is up
to the fifty per cent greater than the corresponding one-dimensional
solution, u1. Finally, for later times, this ratio decreases and slowly
approaches to one, since the stationary states are the same for both
models.

For smaller values of R, the behavior is more complicated. For R =
200, the minimum value of u2 on z = 1 is smaller than u1(1, ·) for
all plotted times. However, we checked that the maximum value of
u2 on this boundary is always greater than u(1, ·) implying, perhaps,
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Figure 5: Two to one dimensional solutions ratio at z = 1.

that while the mixing accelerates the increase of solute concentration
in some parts of the bottom boundary, it may not reach to the whole
boundary, and regions such as corners may be free of this influence.

3 Proof of Theorem 1

In this section, for clarity, we set R = 1 and we replace the term mf by just
f . Observe that defining f̂ := mf , we have that f̂ satisfies Hypothesys H2.
The proof of Theorem 1 is based in the Schauder’s fixed point theorem. We
consider the map S : L2(QT ) → L2(QT ) given by S(û) = u, where u is the
solution of

u ∈ uD + L2(0, T ;V) ∩H1(0, T ;V ′) ∩ L∞(QT )

< ut, ϕ > +
∫

Ω
ϕq̂ · ∇u +

∫
Ω
∇u · ∇ϕ =

∫
Ω

uf(·, u)ϕ, (44)

lim
t→0

‖u(·, t)− u0‖L2(Ω) = 0,
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for all ϕ ∈ V ∩L∞(Ω) and for a.e. t ∈ (0, T ), and where q̂ is one component
of the solution, (q̂, p̂), of

q ∈L2(0, T ;H0,N (div,Ω)) ∩WT , p ∈ L2(0, T ;V),∫
Ω

q · φ−
∫

Ω
p div φ =

∫
Ω

ûez · φ, (45)

−
∫

Ω
ξ div q =

∫
Ω

f(·, û)ξ, (46)

for all ξ ∈ L2(Ω), φ ∈ H0,N (div,Ω) and for a.e. t ∈ (0, T ).
Observe that if u is a fixed point for S, i.e. u = û, then ξ = u(·, t)ϕ ∈

L∞(Ω) ⊂ L2(Ω) for a.e. t ∈ (0, T ) since u, ϕ ∈ L∞(QT ). Using ξ as
a test function in (46), substituting in (44) and integrating by parts, we
obtain a weak solution of our original problem in the sense of Definition 1.
In particular, the regularity ϕ ∈ L∞(Ω) for the test functions of problem
(44) can be removed. We start studying the uncoupled problems (44) and
(45)-(46).

Lemma 1. For any û ∈ L2(QT ), there exists a unique solution, (q, p), of
problem (45)- (46) such that q ∈ WT and p ∈ L2(0, T ;V). The norms

‖q‖L2(0,T ;H0,N (div,Ω)), ‖p‖L2(0,T ;V)

are bounded by c(‖û‖L2(QT ) + 1), with c independent of û. In addition,
‖q‖WT

≤ 1.

Proof. We use Propositions 1.1 and 1.3 of [5]. Consider the bilinear forms
a : H0,N (div,Ω)×H0,N (div,Ω) → R and b : H0,N (div,Ω)×L2(Ω) → R given
by

a(q,φ) =
∫

Ω
q · φ, b(φ, p) = −

∫
Ω

p div φ,

and observe that the linear operator corresponding to b is B = −div :
H0,N (div,Ω) → L2(Ω). Problem (45)-(46) may be stated as: find q ∈
L2(0, T ;H0,N (div,Ω)) and p ∈ L2(0, T ;L2(Ω)) solutions of

a(q,φ) + b(φ, p) =< g, φ ><V ′×V >, ∀φ ∈ H0,N (div,Ω), (47)
b(q, ξ) =< h, ξ ><Q′×Q>, ∀ξ ∈ Q, (48)

a.e. in (0, T ), where g = û(·, t)ez ∈ L2(Ω) ⊂ (H0,N (div,Ω))′ and h =
f(·, û(·, t)) ∈ L∞(Ω) ⊂ L2(Ω), for a.e. t ∈ (0, T ). To use the results in [5]
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we have to check that a is coercive on KerB and that B is surjective. First
assertion is straightforward since a is an equivalent norm of H0,N (div,Ω) on
Ker B. For the second assertion, B surjective, let w ∈ L2(Ω) and consider
the unique solution φ ∈ V of

−∆φ = w in Ω, φ = 0 on ΓD, ∇φ · n = 0 on ΓN .

Taking q = ∇φ we get q ∈ L2(Ω)N , −div q = w ∈ L2(Ω) and q · n = 0 on
ΓN , i.e., q ∈ H0,N (div,Ω) and Bq = w. Propositions 1.1 and 1.3 of [5] ensure
the existence of a unique solution (q(t), p(t)) ∈ H0,N (div,Ω)×L2(Ω) for a.e.
t ∈ (0, T ) of problem (45)- (46) such that the norms ‖q(t)‖H0,N (div,Ω) and
‖p(t)‖L2(Ω) are bounded by a constant times ‖û(t)‖L2(Ω) + ‖f(·, û(t))‖L2(Ω).
Finally, from identity (46) we obtain ‖q‖WT

≤ 1 and from identity (45) we
obtain, for a.e. t ∈ (0, T )

−
∫

Ω
p div φ =

∫
O
(ûez − q) · φ, for all φ ∈ H0,N (div,Ω).

Since ûez,q ∈ L2(QT )N , we deduce ∇p ∈ L2(QT )N and

‖p‖L2(0,T ;V) ≤ c
(
‖û‖L2(QT ) + ‖q‖L2(QT )N

)
≤ c(‖û‖L2(QT ) + 1).

Lemma 2. For any q̂ ∈ L2(0, T ;H0,N (div,Ω)) ∩WT there exists a unique
solution, u, of problem (44) such that the norms

‖u‖L∞(QT ), ‖u‖L2(0,T ;V), ‖ut‖L2(0,T ;V ′),

are bounded in terms of the norms ‖u0‖L∞(Ω), ‖q̂‖L2(0,T ;H0,N (div,Ω))∩WT
, and

‖uD‖H1(0,T ;L2(Ω))∩L2(0,T ;H1(Ω))∩L∞(QT ).

Proof. We consider a sequence {q̂n} ⊂ L∞(QT )N ∩L2(0, T ;H0,N (div,Ω))∩
WT such that

q̂n → q̂ strongly in L2(0, T ;H0,N (div,Ω)),

and apply Theorem 1.7 of [1] to problem (44), with q̂ replaced by q̂n, which
ensures the existence of a unique weak solution, un. We now obtain some
uniform estimates for norms of un.
L∞(QT ) estimate. We prove that min{uD, u0} ≤ un ≤ 1 a.e. in QT . Using
in (44) (with q̂ replaced by q̂n) the admissible test function T (un), where T
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is the Stampaccia truncature function T (s) = s− 1 for s > 1 and T (s) = 0
for s ≤ 1, we obtain, after integration by parts

d

dt

∫
Ω
T (un) ≤ ‖div(q̂n)‖L∞(QT )

∫
Ω
T (un).

where T is the primitive of T with T (0) = 0. Gronwall’s Lemma implies
T (un) = 0 in QT , and then un ≤ 1 in QT . Since q̂n → q̂ strongly in
L2(0, T ;H0,N (div,Ω)) and div q̂ ∈ L∞(QT ), the estimate un ≤ 1 is valid
for all n. To prove un ≥ min{uD, u0} one first prove that un ≥ 0 using
a Stampaccia trunctaure function, as above. Then, once we know that
unf(·, un) ≥ 0, we apply the maximum principle to conclude.
Energy estimate. We use ϕ = un − uD ∈ L2(0, T ;V) ∩ L∞(QT ) as test
function. Standard inequalities give us, after integration in (0, T ),

1
4

∫
Ω

un
2(T ) +

1
2

∫
QT

|∇un|2 ≤
1
2

∫
Ω

u2
0 + 2

∫
QT

un
2 + 4

∫
Ω

u2
D(T )

+ 4
∫

QT

|q̂n|2 + 4
∫

QT

(u2
Dt + |∇uD|2 + u2

D), (49)

and Gronwall’s Lemma implies

‖un‖L∞(L2) + ‖un‖L2(V) ≤ C,

with C depending only on norms of uD, u0 and on the L2(QT ) norm of q̂n.
Observe that since q̂n → q̂ strongly in L2(QT ), C may be taken independent
of n.
Time derivative estimate. Integrating by parts in the convective term of
(44) we obtain

< unt, ϕ >=
∫

Ω
un div(ϕq̂n)−

∫
Ω
∇un · ∇ϕ +

∫
Ω

unf(·, un)ϕ,

from where
< unt, ϕ >≤ c1‖∇ϕ‖L2(Ω) + c2‖ϕ‖L2(Ω),

with c1 = (‖q̂n‖L2(Ω) + ‖∇un‖L2(Ω)) and c2 = (‖div q̂n‖L∞(Ω) + ‖un‖L2(Ω)).
Therefore ‖unt‖V ′ ≤ C, with C independent of n for similar reasons than
above.

We deduced that the sequence un is uniformly bounded with respect to
n in the space L2(0, T ;V)∩H1(0, T ;V ′)∩L∞(QT ). Therefore, there exists a
subsequence un and a function u ∈ L2(0, T ;V)∩H1(0, T ;V ′)∩L∞(QT ) such
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that un → u weakly in L2(0, T ;V)∩H1(0, T ;V ′) and weakly star in L∞(QT ).
In addition, applying Aubin’s Lemma we deduce that un → u strongly in
L2(QT ) and that u ∈ C((0, T ], L2(QT )). Passing now to the limit n → ∞
in the formulation (44) is straightforward.

End of Proof of Theorem 1. We now check the hypothesis of the fixed
point theorem, which are: (i) S : L2(QT ) → L2(QT ) is continuous, (ii) S is
compact, and (iii) the set

Λ := {u ∈ L2(QT ) : u = λS(u), for all λ ∈ [0, 1]} is bounded.

(i) S is continuous. Consider a sequence ûn such that ûn → û strongly in
L2(QT ). We have to prove that S(ûn) → S(û) strongly in L2(QT ). We have
that S(ûn) = un with un the solution of problem (44) corresponding to q̂n,
where q̂n is the first component of the solution, (q̂n, p̂n), of problem (45)-(46)
corresponding to ûn. Lemma 1 implies q̂n ∈ L2(0, T ;H0,N (div,Ω))∩WT and
p̂n ∈ L2(0, T ;V) with uniform bounds in these spaces. Therefore, Lemma 2
implies that the norms

‖un‖L∞(QT ), ‖un‖L2(0,T ;V), ‖unt‖L2(0,T ;V ′),

are uniformly bounded with respect to n. Hence, there exist functions u ∈
uD + L2(0, T ;V) ∩H1(0, T ;V ′) ∩ L∞(QT ), q̂ ∈ L2(0, T ;H0,N (div,Ω)) ∩WT

and p̂ ∈ L2(0, T ;V), and subsequences un, q̂n, p̂n in these spaces such that

q̂n → q̂ weakly in L2(0, T ;H0,N (div,Ω)), (50)
div q̂n → div q̂ weakly star in L∞(QT ), (51)

p̂n → p̂ weakly in L2(0, T ;V), (52)
un → u weakly star in L∞(QT ), (53)
un → u weakly in L2(0, T ;V), (54)

unt → ut weakly in L2(0, T ;V ′). (55)

From (54) and (55) and Aubin’s theorem we deduce that

un → u strongly in L2(QT ), u ∈ C([0, T ];L2(Ω)).

From the formulations of problems (45)-(46) and (44) we have∫
Ω

q̂n · φ−
∫

Ω
p̂n div φ =

∫
Ω

ûnez · φ, (56)

−
∫

Ω
ξ div q̂n =

∫
Ω

f(·, ûn)ξ, (57)
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for all ξ ∈ L2(Ω), φ ∈ H0,N (div,Ω) and for a.e. t ∈ (0, T ), and

< unt, ϕ > +
∫

Ω
ϕq̂n · ∇un −

∫
Ω
∇un · ∇ϕ =

∫
Ω

unf(·, un)ϕ, (58)

for all ϕ ∈ V ∩L∞(Ω) and for a.e. t ∈ (0, T ). Since, by assumption, ûn → û
strongly in L2(QT ) and f(x, ·) is continuous for a.e. x ∈ Ω, taking the limit
n →∞ in (56)-(57) and using (50)-(52) we obtain∫

Ω
q̂ · φ−

∫
Ω

p̂ div φ =
∫

Ω
ûez · φ, (59)

−
∫

Ω
ξ div q̂ =

∫
Ω

f(·, û)ξ, (60)

for all ξ ∈ L2(Ω), φ ∈ H0,N (div,Ω) and for a.e. t ∈ (0, T ). Passing to the
limit n →∞ in (58) is straightforward, with the exception of the convective
term, since both sequences are only weakly convergent. Integrating by parts,
we obtain ∫

Ω
ϕq̂n · ∇un = −

∫
Ω

ϕun div q̂n −
∫

Ω
unq̂n · ∇ϕ.

For the first term at the right hand side we use that un → u strongly
in L2(QT ) and that div q̂n → div q̂ weakly star in L∞(QT ). For the sec-
ond, again that un → u strongly in L2(QT ), that ‖un‖L∞(QT ) is uniformly
bounded, and that q̂n → q̂ weakly in L2(QT ).

Finally, observe that the uniqueness of solutions of problems (56)-(57)
and (58) implies that not only a subsequence but the whole sequence con-
verges.

(ii) S is compact. From the previous analysis, we know that for all û ∈
L2(QT ), u = S(û) ∈ L2(0, T ;V)∩H1(0, T ;V ′), which is compactly embedded
in L2(QT ), and therefore S is compact.

(iii) Λ is bounded. For λ = 0 is trivial. For λ ∈ (0, 1] it is straightforward
too. Condition û = λS(û) is equivalent to

< ût, ϕ > +
∫

Ω
ϕq̂ · ∇û +

∫
Ω
∇û · ∇ϕ =

∫
Ω

ûf(·, û/λ)ϕ, (61)∫
Ω

q̂ · φ−
∫

Ω
p̂ div φ =

∫
Ω

ûez · φ, (62)

−
∫

Ω
ξ div q̂ =

∫
Ω

f(·, û)ξ, (63)
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for all ϕ ∈ V ∩ L∞(Ω), ξ ∈ L2(Ω), φ ∈ H0,N (div,Ω) and for a.e. t ∈ (0, T ).
Therefore, the only change estimating the L2(QT ) norm of the solution of
equation (61) is in the right hand side term. Since ‖f‖L∞ ≤ 1 we obtain the
same estimates than in Lemma 2, and therefore, the boundedness of Λ.

Therefore, the hypothesis of the fixed point theorem are verified, and we
deduce the existence of a fixed point, u, which as already mentioned is a
weak solution of problem (1)-(8).

4 Appendix: The physical model

Our main motivation to study the mathematical model described in the
Introduction is found in the ecology of mangroves. Mangrove forests or
swamps are located on low, muddy, tropical coastal areas around the world.
Mangroves are woody plants that form the dominant vegetation of mangrove
forests. They are characterized by their ability to tolerate regular inundation
by tidal water with salt concentration cw close to that of sea water see, for
example, [12]. The mangrove roots take up fresh water from the saline soil
and leave behind most of the salt, resulting in a net flow of water downward
from the soil surface, which carries salt with it. As pointed out by Passioura
et al. [15], in the absence of lateral flow, the steady state salinity profile in
the root zone must be such that the salinity around the roots is higher than
cw, and that the concentration gradient is large enough so that the advective
downward flow of salt is balanced by the diffusive flow of salt back up to the
surface. In [15] the authors presented steady state equations governing the
flow of salt and uptake of water in the root zone, assuming that there is an
upper limit cc to the salt concentration at which roots can take up water,
and that the rate of uptake of water is proportional to the difference between
the local concentration c and the assumed upper limit cc. They also assumed
that the root zone is unbounded, and that the constant of proportionality for
root water uptake is independent of depth through the soil. In [8], the model
was extended in two important ways. First, considering more general root
water uptake functions and second, limiting the root zone to a bounded
domain. The authors proved mathematical properties of the spatial one-
dimensional model, such as the existence and uniqueness of solutions of
the evolution and steady state problems, the conditions under which the
threshold level of salt concentration is attained in finite time, and others.

In [8], as in the present work, it is assumed that tides, or other sources
of fresh or not too saline water, renew the water on the soil-water inter-
face allowing to prescribe the salt concentration at this boundary (Dirichlet
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boundary data). Although this is the usual environment in which mangroves
live, other situations leading to different boundary conditions may also be
considered. In [10], the authors focused in the situation in which the inflow
of fresh or sea water is impeded due to some physical barrier, such as shore
highways or flooding control dikes. Balance equations for salt and water
content lead to a dynamical boundary condition at such interface, i.e., a
boundary condition involving the time derivative of the solution. The main
interest of that model is its ability to describe the complete salinization of
the system, as reported in the biological literature, see for instance [4].

In this article we retake the model in [8] to study the problem in spatial
dimension N > 1. We consider the case where the mangroves are present
in the horizontal x, y plane, with an homogeneous porous medium located
below this plane and a water flow above it. This is a significant change since
in dimension N = 1 (only vertical coordinate) the fluid volume balance
expressed by

div q + S = 0, (64)

where q is the water discharge and S is the volume of water taken up by
the roots per unit volume of porous material per unit time, is enough to
determine the flow q through the equation qz + S = 0, being z the vertical
coordinate. However, if due to the loss of uniformity in the x–y plane more
spatial variables have to be considered then equation (64) is not enough to
determine the flow and an additional law must be taken into account. Since
we are modelling a viscous flow through a porous medium, the soil in which
mangroves roots grow, this law is Darcy’s law,

q +
κ

µ
(∇p− ρgez) = 0, (65)

where κ is the permeability, µ the viscosity and g, the gravitational acceler-
ation constant. By ez we denote the downwards vertical unitary vector, i.e.
z denotes vertical depth: z = 0 is the soil surface and z = H is the bottom of
the spatial domain, under the soil surface. In (65), we assume the following
equation of state for the density

ρ ≡ ρ(c) = ρ0 + αc, (66)

with ρ0 ≥ 0 and α > 0. We further assume S to have the form

S(·, c) :=

 s(·)
(

1− c

cc

)r

for 0 ≤ c ≤ cc,

0 for c > cc,
(67)
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where r > 0, cc is the upper limit of salt concentration at which mangroves
may uptake water and s is the root distribution. This root distribution
function is non-negative, and non-increasing with z. We keep in mind the
following characteristic example

s(z) :=

{
s0/z∗ for 0 < z < z∗,

0 for z∗ < z < H.
(68)

The quantity s0 is the total amount of root water uptake with no salt present,
in volume per unit surface per unit time, i.e. the transpiration rate of the
mangrove plants in the absence of salinity.

In addition to equations (64)-(65) for the fluid discharge, we have the
following equation for the evolution of salt concentration, see [3],

θct + div(cq− θD∇c) = 0. (69)

Here, we assume that the porous medium is characterized by a constant
porosity θ ∈ (0, 1), indicating that the mangroves roots are homogenized
throughout the porous medium, without affecting its properties. We as-
sume further that the hydrodynamic dispersion tensor, D = DI, with I the
identity matrix, is constant and isotropic, i.e. the velocity dependence in
the mechanical dispersion is neglected.

Equations (64), (65) and (69) stand on the domain B × (0,H) × (0, τ),
with H denoting depth, τ the size of the time interval to be considered
and B ⊂ RN−1, bounded, tipically N = 2, 3. Concerning the boundary
conditions, we prescribe the concentration and a reference pressure on the
soil surface,

c = cD, p = pair on B × {0} × (0, τ), (70)

and consider no flow boundary condition in the rest of the boundary:

q · n = ∇c · n = 0 on
(
∂B × (0,H)× (0, τ)

)
∪

(
B × {H} × (0, τ)

)
, (71)

with n denoting the unitary outwards normal vector to B×(0,H). We finally
add to this formulation a given initial distribution of salt concentration

c(·, 0) = c0 in B × (0,H). (72)

Finally, the system is rendered to dimensionless form by introducing the
following variables, unknowns and parameters:

t̃ := Dt/H2, x̃ := x/H, z̃ := z/H,
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u := c/cc, q̃ := q/q̂, q̂ := καccg/µ p̃ := (p− pair − ρ0gHz)/αccgH,

s̃(x̃, z̃) := s(Hx̃,Hz̃), d := z∗/H, L̃ := L/H.

Let us mention that in the recasting of our model there appear two constants
capturing the important physical parameters: the Rayleigh number

R := KH/θD, (73)

and the extraction number

m := s0z∗/K, (74)

with K = καccg/µ, the hydraulic conductivity.
Remark 2. Using [15] and [14] as references we find the following values for
the physical constants: D ≈ 10−5 m2day−1, θ ≈ 0.5, s0 ≈ 1 ` m−2day−1 and
K in the range 10−4–10−1 m day−1. Taking z∗ in the range 0.2–0.5 m and
H in the range 0.5–1 m, this implies a time scale in the range 5–30 yr, R in
the range 10–104 and m in 1–100.
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