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Abstract

In [19], Sighesada, Kawasaki and Teramoto presented a system of partial
differential equations for modeling spatial segregation of interacting species.
Apart from competitive Lotka-Volterra (reaction) and population pressure
(cross-diffusion) terms, a convective term modeling the populations atraction
to more favorable environmental regions is included. In this article, we intro-
duce a modification of their convective term to take account for the notion
of spatial adaptation of populations. After describing the model we briefly
discuss its well-possedness and propose a numerical discretization in terms
of a mass-preserving time semi-implicit finite differences scheme. Finally, we
provied the results of two biologically inspired numerical experiments show-
ing qualitative differences between the original model of [19] and the model
proposed in this article.

Keywords: Population dynamics, evolution problem, cross-diffusion, time
non-local convection, finite differences, spatial adaptation, segregation.

1. Introduction

In [19], Shigesada, Kawasaki and Teramoto introduced a model for ana-
lyzing the spatial segregation patterns arising in the evolution of populations
of two species which are ruled by

• competition for similar resources,

• population pressure, and
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• environmental quality.

These biological interactions are realized mathematically in the form of a
time evolution drift-cross diffusion system of partial differential equations,

∂tui − ∂xJi = fi(u1, u2), Ji = (ciui + ai1uiu1 + ai2uiu2)x − diuiUx, (1)

for i = 1, 2, where ui denotes population density, U is the environmental
potential, modeling areas where the environmental conditions are more or
less favorable [19, 18], the non-negative diffusion coefficients ci and aij model
the random diffusion of individuals and the inter- and intra-specific popula-
tion pressure, respectively, and di are usually assumed to be real constants
determining the attraction strength of the potential maxima. Function fi is
a competition Lotka-Volterra type function,

fi(u1, u2) = (αi − βi1u1 − βi2u2)ui, i, j = 1, 2,

where αi ≥ 0 is the intrinsic growth rate of the i−species, and βij ≥ 0 are
the coefficients of inter- and intra-specific competition.

In this article, for simplicity, we assume Equations (1) to be satisfied in
the bounded domain Ω× (0, T ), with Ω ⊂ R an open interval, and T > 0, al-
though the multi-dimnsional case Ω ⊂ RN with N ≤ 3 could be also treated.
The problem is completed by prescribing non-flux boundary conditions and
non-negative initial data:

Ji · ν = 0 on ∂Ω× (0, T ), (2)

u(·, 0) = ui0 on Ω, (3)

for i = 1, 2, where ν denotes the exterior unit normal to ∂Ω.
Problem (1)-(3) has received much attention since its introduction due

to the interesting spatial pattern formation of solutions, referred to as seg-
regation. These patterns do not arise in the linear diffusion model, i.e. for
aij = 0, i, j = 1, 2, where, if in addition di = 0, then the steady state solutions
are constants determined by the zeros of the Lotka-Volterra terms. These
constant solutions correspond, in general terms, to two kind of competitions:
weak, which implies coexistence, and strong which implies extinction of at
least one population. Lou and Ni [15, 16] analyzed the steady state problem
corresponding to (1) (with di = 0) and proved the existence of non-constant
solutions for some parameter combinations including weak and strong com-
petition. Their results seem to indicate that while the intensity of diffusion
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(ci) and self-diffusion (aii) tend to suppress pattern formation, those of cross-
diffusion (a12, a21) seems to help create segregation patterns.

The first results on the existence of solutions of problem (1)-(3) were
proven under certain restrictions on the self- and cross-diffusion coefficients.
For instance, for sufficiently small cross-diffusion terms (or small initial data)
and vanishing self-diffusion coefficients a11 = a22 = 0, Deuring proved the
global existence of solutions in [6]. For the case c1 = c2 a global existence
result in one space dimension was obtained by Kim [14]. Furthermore, under
the condition

8a11 > a12, 8a22 > a21, (4)

Yagi [20] showed the global existence of solutions in two space dimensions
assuming a12 = a21. A global existence result for weak solutions in any space
dimension under assumption (4) can be found in [8]. Condition (4) can
be easily understood by observing that in this case, the diffusion matrix is
positive definite, hence yielding an elliptic operator. If the condition (4) does
not hold, there are choices of ci, aij, ui ≥ 0 for which the diffusion matrix
is not positive definite. In [9] (see also [10] for some extensions of the result)
the existence of global weak solutions for any aij > 0 was proven by using a
suitable entropy functional. However, the proof uses the embedding H1(Ω) ⊂
L∞(Ω) in a crucial way, restricting the result to one space dimension. The
one-dimensional result was later generalized by Chen and Jüngel [2] to up
to three space dimensions without any additional restrictions than those
given in [9]. We refer to [15, 16] for the corresponding stationary problem
and notice that related models appear, among other fields, in chemotaxis,
granular material and semiconductor theories [7, 17, 11, 3].

On the numerical side, a first approach based on a time Euler semi-
discrete scheme was proven to be convergent in [9], in the one dimensional
spatial case. More recently, other numerical approaches have been introduced
in the context of Euler-Galerkin approximations (N ≤ 3) by Chen and Jüngel
[2], of finite element methods (N ≤ 3) by Barret and Blowey [1] and of
particle methods (N = 1) by Gambino et al. [12]. However, for the 1D case,
the results of all these methods seems to be similar.

In all these works the focus is set either on finding conditions on the
diffusion coefficients ci and aij, and the Lotka-Volterra coefficients αi and
βij which ensure the existence of solutions of problem (1)-(3), allowing to
define a convergent numerical method to approximate them, either on finding
conditions which imply qualitative properties such as the co-existence or the
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extinction of populations in the steady state problem. However, the drift
term responsible of directing the populations towards the maxima of the
environmental potential has been always assumed to be linear and depending
on constant coefficients (di) which express the strength of attraction of the
different populations to these maxima. In this article we introduce a new
drift coefficient dependence which allow us to modelize spatial adaptation by
means of a memory mechanism which strengthen the attraction of population
to a point if the population density in such point has been high in the past.
More explicitly, we assume di to have the form

di(x, t) =
1

t

∫ t

0

ui(x, s)ds. (5)

It is proven in [9] that under the regularity Ux ∈ L2(QT ) (and other conditions
on the data) the existence of weak solutions of (1)-(3) satisfying (among
other properties) ui ∈ L∞(QT ), holds true. The extension of this result to
considering non-constant coefficients di of the form (5) is then straightforward
since di is linear with respect to ui and diUx ∈ L2(QT ) due to the estimate

‖di‖L∞ ≤ ‖ui‖L∞ . (6)

In fact, the existence of solutions of the N−dimensional problem (N ≤ 3)
with these new convection coefficients and assuming the additional regularity
∇U ∈ L∞(QT ) may be proven by adapting the proof of Chen and Jüngel
[2]. As a last modification of the original problem, we consider the intrinsic
growth rate coefficients αi to be non-constant. Indeed, once that we con-
sider an heterogeneous space domain in which populations are driven to the
environmental potential maxima, it seems reasonable to assume a depen-
dence of αi on U such that larger growth of populations takes place in better
environmental regions. We set

αi ≡ αi(U) (7)

with α′i ≥ 0. As in the case of the modified convective term, minor changes in
the proof of Theorem 1 of [9] (or Theorem 1.1 of [2], for N ≤ 3) allow to prove
the existence of weak solutions of problem (1)-(3), with αi defined by (7) and
di by (5). In this context, let us finally mention a related population model,
the evolution of conditional dispersal model, introduced and developed in a
series of papers by Lou et al., see [5, 4, 13] and the references therein, in which
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the system (1) is particularized with aij = 0, i.e., without cross-diffusion,
with αi(U) = U and with di constant. For this model, the authors were able
to provide analytical conditions on the coefficients of the equations which
ensure the stability of either positive (coexistence) or semi-trivial (extinction
of one specie) steady state solutions. Although the complexity of the model
described in the present paper does not allow to extract this kind of detailed
information, we have numerically observed similar phenomena than those
described for the conditional dispersal model.

2. Numerical discretization and examples

In this section we present numerical simulations illustrating differences
between the behaviors of solutions corresponding to constant or variable
convective coefficients di. In the first example, of qualitative nature, we sim-
ulate the situation in which a catastrophic natural event changes abruptly
the spatial location of the maxima of the environmental potential, i.e., the
more favored environmental region. We see that in the case of spatial adap-
tation, represented by di given by (5), the extinction of the population more
intensely adapted to the initial potential maximum is possible as a result of
the very low population density left in areas far from this maximum, which
implies a bad competitive positioning near the new potential maximum after
the catastrophic event. However, for constant di the population is able to
recover and dominate again in the new favored region.

The second example, in which the potential maximum is kept time inde-
pendent, shows two interesting biological properties. First, that the segre-
gation of populations is more intense in the case of spatial adaptation than
in the case of constant convective coefficients. Second, that intense spatial
adaptation may lead to coexistence in cases where the constant convection
coefficients lead to extinction.

For the numerical discretization, we use a time semi-implicit finite differ-
ences scheme similar to that used by Barret and Blowey [1] in the context of
the finite elements method. We look for time independent functions uk

1 and
uk

2 approximating the continuous solution u1, u2, respectively, in the time
interval (kτ, (k + 1)τ ], for k = 0, ..., N , for some N ∈ N and τ = T/(N + 1).
Naturally, for k = 0 we set u0

1 = u10, u0
2 = u20. For tk = kτ , let uk−1

1 , uk−1
2
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be given. We compute uk
1, uk

2 by means of the following iterative algorithm:

1

τ
(uk,n

1 − uk−1
1 )− (

(c1 + 2a11u
k,n−1
1 + a12u

k,n−1
2 )uk,n

1x

)
x
− (8)

(
uk,n−1

1 (a12u
k,n
2x − dk,n−1

1 Uk
x )

)
x

= α1(U
k)uk,n

1 − (β11u
k,n−1
1 + β12u

k,n−1
2 )uk,n−1

1 ,

1

τ
(uk,n

2 − uk−1
2 )− (

(c2 + 2a22u
k,n−1
2 + a21u

k,n−1
1 )uk,n

2x

)
x
− (9)

(
uk,n−1

2 (a21u
k,n
1x − dk,n−1

2 Uk
x )

)
x

= α2(U
k)uk,n

2 − (β21u
k,n−1
1 + β22u

k,n−1
2 )uk,n−1

2 ,

in Ω, for n = 1, 2, . . ., with uk,0
i = uk−1

i , Uk = U(x, tk) and dk,n−1
i = di, if di

is constant or

dk,n−1
i =

1

k

k∑
j=1

uj,n−1
i ,

if di is defined by (5). We solve equations (8)-(9) together with the non-flux
boundary conditions given by

(c1 + 2a11u
k,n−1
1 + a12u

k,n−1
2 )uk,n

1x + a12u
k,n−1
1 (uk,n

2x − dk,n−1
1 Uk

x ) = 0, (10)

(c2 + 2a22u
k,n−1
2 + a21u

k,n−1
1 )uk,n

2x + a21u
k,n−1
2 (uk,n

1x − dk,n−1
2 Uk

x ) = 0, (11)

on ∂Ω. We iterate the scheme (8)-(11) until the stopping criterium

max
i=1,2

‖uk,n
i − uk,n−1

i ‖L∞ < tol (12)

is reached, and then we set uk
i = uk,n

i . In (12), tol is a small number that we
take of the order 10−5 for the experiments with variable di and of the order
10−7 for those with constant di. In both cases, we observed good convergence
properties of the iterative scheme.

For the spatial discretization we used a scheme based on centered differ-
ences, which preserves the mass of populations for zero Lotka-Volterra terms.
Let xj = a+j(b−a)/M , j = 0, . . . , M be a partition of the interval Ω = (a, b)
and let us introduce the notation

U j
i = uk,n

i (xj), wj
i = uk,n−1

i (xj), U j,k = U(xj, tk) dj,k
i = di(xj, tk)

α1 = c1 + 2a11w1 + a12w2, and α2 = c2 + 2a22w2 + a21w1.
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Then, for the unknowns (U j
1 , U

j
2 ), for j = 1, . . . , M − 1 Eq. (8) leads to

1

τ
(U j

1 − wj
1)−

1

h2

(
α

j+1/2
1 U j+1

1 − (α
j+1/2
1 + α

j−1/2
1 )U j

1 + α
j−1/2
1 U j−1

1

)−
a12

h2

(
w

j+1/2
1 U j+1

2 − (w
j+1/2
1 + w

j−1/2
1 )U j

2 + w
j−1/2
1 U j−1

2

)
+

a12

h

(
w

j+1/2
1 d

j+1/2,k
1 U j+1/2,k

x − w
j−1/2
1 d

j−1/2,k
1 U j−1/2,k

x

)
=

α1(U
j,k)U j

1 − (β11w
j
1 + β12w

j
2)w

j
1,

where h = (b − a)/M and v
j±1/2
i = (vj

i + vj±1
i )/2. An analogous expression

is obtained from Eq. (9), The corresponding mass preserving discretization
of the boundary conditions is

α
1/2
1 (U1

1 − U0
1 ) + a12w

1/2
1 (U1

2 − U0
2 ) = ha12w

1/2
1 d

1/2,k
1 U1/2,k

x , (13)

α
1/2
2 (U1

2 − U0
2 ) + a21w

1/2
2 (U1

1 − U0
1 ) = ha21w

1/2
2 d

1/2,k
2 U1/2,k

x , (14)

for j = 0, and similar expressions for j = M . Observe that the condition for
(13)-(14) to have a unique solution is

α
1/2
1 α

1/2
2 − a12a21w

1/2
1 w

1/2
2 6= 0, (15)

which, for the continuous version of the problem, leads to condition (4).
Although the continuous version of (15), for any (x, t) ∈ QT , is difficult to
establish, the proof of existence of non-negative solutions given in [9] seems to
indicate that this quantity remains always positive. For the discrete version
(15), we force the solution to be positive by substituting in each time iteration
ui by uiε = max {ui, ε}, for ε = 10−7 in the experiments.

Unless otherwise stated, in all the experiments we use the data given in
Table 1.

Experiment 1. Intensive adaptation may lead to extinction after a catas-
trophic environmental event. In this example we explore the effects that
sudden environmental changes may have on the extinction of populations
which have adapted intensively to some region. For this experiment we use
the following Lotka-Volterra functions

fi(u1, u2) = (αi(U)− βi1u1 − βi2u2)ui, (16)
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Table 1: Parameter values common for all the experiments

Parameter Symbol Value

Spatial domain Ω (0, 1)
Nodes number N 101
Time step τ 0.001
Diffusion coefficients c1, c2 0
Cross diffusion coefficients aij 0.25
Initial densities u10, u20 0.5

Environmental potential U exp(− (x−x0)2

0.001
)

with α1(U) = 320U , α2(U) = 300(0.99U +0.01), and βij = 150 for i, j = 1, 2.
For the case of variable di, we define them by (5). When running for constant
di, we take

di = lim
t→0

1

t

∫ t

0

u(x, t)dt = ui0,

which is constant due to the election of the initial datum, see Table 1. The
environmental potential, given also in Table 1, is first set with the maximum
at x0 = 0.2. We run the simulation until t = 0.3 is reached and a sudden
change of the potential maximum, to x0 = 0.8, is produced. Then we continue
till the steady state is nearly reached, which we assume to be when ‖u(·, tk)−
u(·, tk−1)‖L∞ < 5×10−6. For the case of constant di this happens at t = 4.29
while for di variable it takes till t = 12.86. Notice that the only difference
between equations and data for populations 1 and 2 is the definition of the
growth rate coefficients αi.

In Fig. 1 we show time slices of the evolution (left to right and up to
down) of both populations (u1 continuous line, u2 dotted line) for the case of
variable di. In the first four slices, a notorious progressive concentration and
growing of population 1 in the neighborhood of x0 = 0.2 is accompanied by
an almost extinction of population 2, due to α1 > α2 in that region. However,
although hardly visible from the plots, we checked that u2 > u1 in regions
far from the potential maximum. After the catastrophic event, at t = 0.3,
population 2 is able to grow faster than population 1 as a result of the low
population 1 density left in the surroundings of x0 = 0.8 after the period of
concentration at x0 = 0.2. The subsequent evolution leads to extinction of
population 1.

In Fig. 2 we show time slices of the evolution of both populations for the
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case of constant di. We see that the initial behavior of the system is similar to
the case of variable di. However, after the change of location of the potential
maximum, at t = 0.3, we see a significant qualitative change: population 1,
that in the case of variable di becomes extinct, is able to recover and win the
competition against population 2, which is extincted.

Finally, in Fig. 3 we plot the spatial adaptation terms produced in the
case of variable di, which rule the strength of the convection term. We observe
that property (6) is satisfied. It also interesting to note that the biological
notion of spatial adaptation represented by these terms is time varying and
that intense adaptation to some region, x0 = 0.2 in this example, may be
weakened and practically disappear if the region is left uninhabitated for a
long time.

In Figs. 1-3, time t = 3 gives a good approximation to the steady state.

Experiment 2. Adaptation in a stable environment may enhance segregation
and promote coexistence. In this example we compare the segregation mag-
nitudes for the cases of variable and constant di. We run two experiments,
one with zero Lotka-Volterra functions, implying mass conservation for the
continuous model, and another with similar Lotka-Volterra functions than
those of Experiment 1. The environmental potential, given in Table 1, is
time independent and with the maximum at x0 = 0.5, to check the symme-
try preserving property of the discretization scheme. In order to have some
distinction between populations, we set, for the case of variable di,

di(x, t) =
εi

t

∫ t

0

ui(x, τ)dτ,

with ε1 = 2 and ε2 = 1. The convection coefficients for the corresponding
problem with constant di are given by di = εiui0. We run the simulation
until the steady state is nearly established, using the same criterium than in
Experiment 1. Notice that the only difference between equations and data
for populations 1 and 2 is in the parameters εi.

In Fig. 4 we show the steady state for constant di (left) and variable
di (right), which is reached for t∗ ≈ 0.714 and t∗ ≈ 8.186, respectively.
Continuous line corresponds to population 1 and dotted line to population
2. The mass conservation property is well captured by the discrete model,
being the relative difference

max
i=1,2

∫

Ω

|ui(x, t∗)− u0i|dx
( ∫

Ω

|u0i|dx
)−1
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lower than 8× 10−4 for di constant and an order greater for di variable. The
symmetry of the solution is also conserved, being the relative difference

max
i=1,2

‖ui(·, t∗)− ũi(·, t∗)‖‖ui(·, t∗)‖−1

of the order of 10−15, for both di cases, where ũi(x, t) = ui(1 − x, t). The
concentration of mass in the neighborhood (0.45, 0.55) of x0 = 0.5 is, for the
variable case

∫ 0.55

0.45

u1(x, t∗)dx = 0.216 ≈ 40%,

∫ 0.55

0.45

u2(x, t∗)dx = 0.055 ≈ 10%

where the percentage points are in terms of the total mass, while, for the
constant case is

∫ 0.55

0.45

u1(x, t∗)dx = 0.122 ≈ 25%,

∫ 0.55

0.45

u2(x, t∗)dx = 0.060 ≈ 12.5%.

The qualitative differences between the solutions of constant or variable di

are clearly seen in Fig. 4. In the case of variable di, the population with more
intensive adaptation capacity (population 1 due to ε1 > ε2) concentrates in
the surroundings of the potential maximum x0 while population 2 reaches,
in fact, its minimum density at this point. However, in the case of constant
di, both populations reach their maximum value at the potential maximum
x0 = 0.5.

For the second example of this experiment we use the Lotka-Volterra
functions given in (16) with αi(U) = 300U , for i = 1, 2 and βij = 150 for
i, j = 1, 2. In Fig. 4 we show the steady state for constant di (left) and
variable di (right), which is reached for t∗ ≈ 8.1 and t∗ ≈ 3.11, respectively.
Continuous line corresponds to population 1 and dotted line to population
2. Notably, the effect of rapid concentration of population 1 around the
maximum, for the case of variable di, leads the system to a coexistence steady
state, although with a high degree of segregation in the surroundings of x0,
where population 2 attains a minimum. However, for the case of constant di,
population 2 is extincted.

3. Conclusions

The mathematical model (1)-(3) introduced by Shigesada, Kawasaki and
Teramoto (1979) [19] to reproduce the behaviour of interacting species which

10



are affected not only by competition or random displacement but by popu-
lation pressure and attraction to favorable environmental regions has been
a source of interesting mathematical and biological discussion. One of the
more remarkable properties of the model is the formation of segregation pat-
terns, which are observed in the field, and which lead to non-trivial steady
state configurations. In this article we proposed the consideration of a new
term in the equations, the time non-local term (5), which may be interpreted
as a spatial adaptation intensity or capacity of the populations. From the
mathematical point of view, the introduction of this new term do not pose
additional difficulties for the achievement of results on existence and regu-
larity of solutions. Moreover, the numerical discretization seems to behave
well in a similar range of parameters and data than the original model since
the way in which the new term induces the concentration of one of the pop-
ulations in a narrow region is always bounded. However, the introduction
of this new term produces important quantitative and qualitative differences
with respect to the original model. We showed numerical experiments in
which the behavior of solutions is qualitatively different in terms of coex-
istence and extinction. We also showed that the segregation-concentration
effect already present in the original model is enhanced quantitatively with
the introduction of the spatial adaptation term.
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[3] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semicon-
ductor model with electron-hole scattering, Commun. Part. Diff. Eqs.
32 (2007), 127–148.

[4] X. Chen, R. Hambrock, Y. Lou, Evolution of conditional dispersal: a
reaction-diffusion-advection model, J. Math. Biol. 57 (2008) 361-386.

[5] C. Cosner, Y. Lou, Does movement toward better environments always
benefit a population?, J. Math. Anal. Appl. 277 (2003) 489-503.

11



[6] P. Deuring, An initial-boundary value problem for a certain density-
dependent diffusion system, Math. Z. 194 (1987), 375-396.

[7] H. Gajewski, K. Zacharias, Global behaviour of a reaction-diffusion sys-
tem modelling chemotaxis, Math. Nachr. 195 (1998), 77-114.
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Figure 1: Experiment 1. Populations evolution for variable di. Time slices at t =
0.05, 0.15, 0.25, 0.3, 0.35, 0.45, 0.6, 1, 3, with the sudden change of environmental
potential maximum at t = 0.3, which relocates from x = 0.2 to x = 0.8. The
horizontal line corresponds to the initial populations densities.
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Figure 2: Experiment 1. Populations evolution for constant di. Time slices at t =
0.05, 0.15, 0.25, 0.3, 0.35, 0.45, 0.6, 1, 3, with the sudden change of environmental
potential maximum at t = 0.3, which relocates from x = 0.2 to x = 0.8. The
horizontal line corresponds to the initial populations densities.
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Figure 3: Experiment 1. Evolution of the adaptation intensity terms, di. Time
slices at t = 0.05, 0.25, 0.45, 3, with the sudden change of environmental potential
maximum at t = 0.3, which relocates from x = 0.2 to x = 0.8.
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Figure 4: Experiment 2. Lotka-Volterra terms set to zero and environmental po-
tential maximum at x0 = 0.5. Case of variable di (left) and constant di (right).
The horizontal line corresponds to the initial populations densities.
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Figure 5: Experiment 2. Competitive Lotka-Volterra terms and environmental
potential maximum at x0 = 0.5. Case of variable di (left) and constant di (right).
The horizontal line corresponds to the initial populations densities.
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