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Abstract

We consider an evolution model describing the spatial population distribution of two
salt tolerant plant species, such as mangroves, which are affected by inter- and intra-
specific competition (Lotka-Volterra), population pressure (cross-diffusion) and en-
vironmental heterogeneity (environmental potential). The environmental potential
and the Lotka-Volterra terms are assumed to depend on the salt concentration in
the roots region, which may change as a result of mangroves ability for uptak-
ing fresh water and leave the salt of the solution behind, in the saturated porous
medium. Consequently, partial differential equations modelling the population dy-
namics on the surface are coupled with Darcy-transport equations modeling the salt
and pressure-velocity distribution in the subsurface. We prove the existence of weak
solutions of the coupled problem and provide a numerical discretization based on a
stabilized mixed finite element method, which we use to numerically demonstrate
the behaviour of the system.

Key words: Population dynamics, cross-diffusion, Darcy flow, mixed formulation,
existence of solutions, ecology of mangrove.

1 Introduction

We present a model for analyzing the spatial distribution evolution of two
plant populations which are affected by
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• competition for similar resources,
• population pressure, and
• environmental quality.

These conditionings are realized mathematically in the form of a time evo-
lution drift-cross diffusion system of partial differential equations, introduced
by Shigesada, Kawasaki and Teramoto [30]:

∂tni − div Ji = fi(n1, n2), Ji = ∇(cini + ai1nin1 + ai2nin2) + dini∇U, (1)

for i = 1, 2, where ni denotes population density, fi is a competition Lotka-
Volterra type function,

fi(n1, n2) = (αi − βi1n1 − βi2n2)ni, αi, βij ≥ 0 i, j = 1, 2, (2)

and U is the environmental potential, modeling areas where the environmental
conditions are more or less favorable [30,28]. This model has received much
attention since its introduction due to the interesting spatial pattern formation
of its solutions, refered to as segregation. These patterns do not arise in the
linear diffusion model, i.e. for aij = 0, i, j = 1, 2, where, if in addition di = 0,
then the steady state solutions are constants determined by the zeros of the
Lotka-Volterra terms. These constant solutions correspond, in general terms,
to two kind of competitions: weak, which implies coexistence, and strong which
implies extinction of one population. Lou and Ni [24,25] analysed the steady
state problem corresponding to (1) (with di = 0) and proved the existence of
non-constant solutions for some parameter combinations including weak and
strong competition. Their results seem to indicate that while the intensity of
diffusion (ci) and self-diffusion (aii) tend to suppress pattern formation, those
of cross-diffusion (a12, a21) seem to help create segregation patterns.

Mangrove ecosystems are tropical or subtropical communities of mainly tree
species of great ecological importance due to the role they play as habitat
builders and shoreline stabilizers, among others, covering large areas through-
out the world [32]. They tipically grow in saline coastal soils, or muds, which
develop through a combination of two processes: mineral sediment deposition
and organic matter accumulation. This soil structure in conjunction to the
usual flatness of the area and the almost permanent sea water saturation of
the soil due to the regular inundation by tides, when not prolonged periods of
waterlogging [20], causes a poor soil draining and flushing of the intersticial
water. One of the decisive mangrove capabilities and perhaps the reason for
its comparative fitness to the coastal areas is their ability to exclude most of
the salt from the water their roots extract from the sea-water saturated soil,
[3]. Passioura et al. [29] provided an analytical approach to the mechanisms
of soil salinization produced by mangroves and investigated the consequences
of salt concentration increase on mangroves transpiration rate. In their work,
later generalized in a serie of papers [11,17,12], the authors presented one-
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dimensional (depth) steady state equations governing the flow of salt and
uptake of water in the root zone, for one mangrove specie, assuming that
there is an upper limit c1 to the salt concentration at which roots can take up
water, and that the rate of uptake of water is proportional to the difference
between the local concentration c and the assumed upper limit c1. The general
time-dependent N -dimensional model [12] reads

ct + div(Rcq −∇c) = 0, (3)

div q + g(·, c) = 0, (4)

q + ∇p + cez = 0, (5)

where c is the salt concentration, q the water flow, p the pressure, R a Rayleigh
number and g the mangroves water extraction function, see (14) for an ex-
ample. Observe that while the domain of equations (3)-(5) is the subsurface
saturated porous medium, the equations for the populations densities (1) are
defined only on the surface of the porous medium. The details of the model
are given in the next section.

Passioura et al. [29] already pointed out the interesting ecological implications
of the soil salinization induced by mangroves. Quoting the authors, “Differ-
ences between species in strategies of water use (i.e. the way in which water use
and water-use efficiency relate to growth) may affect the distribution of these
species. Species with high transpiration rates may dominate well-flushed habi-
tats [less saline] while those adapted to low transpiration rates may occupy
poorly flushed intertidal areas [more saline]”. In a related work, Su Yean Teh et
al. [31] focused on the situation in which a severe disturbance, such as a heavy
storm, may lead to an invasion of salt tolerant species, such as mangroves, in
geographical areas previously occupied by salt intolerant species, such as hard-
wood hammock species. They base their model upon the dynamics between
vegetation and soil salinity but have a different mathematical approach than
ours, since space is discretized in a grid of cells where some time differential
equations are solved with suitable cell transmission conditions.

The aim of this article is to provide a time-space model expressed in terms
of partial differential equations relating the population densities and their
particular abilities to modify the environment through soil salinization. The
feedback between populations and environment takes place in three ways:
(i) through the water extraction functions, gi, which depend on the relative
presence of roots of each specie in the subsurface and on their particular ability
to uptake fresh water from the soil. (ii) Through the salt distribution, c, which
determines the environmental potential (U = U(c)) directing, possibly with
different strengths, both populations towards lower salinized regions. And (iii),
through different growth rates and competing behaviour, captured by Lotka-
Volterra functions fi, due again to species’ ability to extract fresh water from

3



the salinized soil, i.e., through the dependence fi = fi(g1, g2).

Let us finally mention a related population model, the evolution of conditional
dispersal model, introduced and developed in a series of papers by Lou et al.,
see [9,7,19] and the references therein, in which the system (1) is particularized
with aij = 0, i.e., without cross-diffusion, and with fi(n1, n2) = (U−n1−n2)ni,
i.e., Lotka-Volterra terms depending on the (given and time independent) en-
vironmental potential, in a similar spirit that our water extraction dependent
Lotka-Volterra functions. For this model, the authors are able to provide con-
ditions on the coefficients of the equations under which stability of either
positive or semi-trivial steady state solutions hold. Although the complexity
of the model described in the present paper does not allow to extract this kind
of detailed information, we have numerically observed similar phenomena than
those described for the conditional dispersal.

The outline of the article is the following. In Section 2 we first present inde-
pendently the population model which develops on the soil surface and the
transport-Darcy model which governs the salt and water relations in the susb-
surface (porous medium). We then couple both models and state the problem
to be solved. In Section 3 we give appropriate mathematical assumptions on
the model data and prove the existence of solutions of the coupled surface-
subsurface model. In Section 4 we introduce a scheme to discretize the problem
and show some numerical simulations.

2 The mathematical model

2.1 On the surface: population dynamics

We first rescale the problem by introducing new unknowns, u1 = a21n1 and
u2 = a12n2, for which we assume a12, a21 6= 0 in (1), i.e. the cross diffusion
terms do not vanish. On the contrary, the model is much simpler, see [15].
These biomass densities, ui(x, y, t), are defined for the horizontal space vari-
ables (x, y) ∈ ΓD, with ΓD ⊂ R2 open and bounded and for t ∈ (0, T ) the
time, for an arbitrarily fixed T > 0. The rescaled equations read [30]

∂tui − div Ji = F̃i(·, u1, u2), Ji = ∇(ciui + aiu
2
i + u1u2) + diui∇U, (6)

in ST = ΓD × (0, T ). Here, div = ∂
∂x

+ ∂
∂y

and ∇ = ( ∂
∂x

, ∂
∂y

).

The diffusion coefficients ci and ai are non-negative, and di ∈ R (i, j = 1, 2).
The source terms are of the competitive Lotka-Volterra type

F̃i(x, y, t, s1, s2) =
(
α̃i(x, y, t)− β̃i1(x, y, t)s1 − β̃i2(x, y, t)s2

)
si, i = 1, 2, (7)
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where α̃i ≥ 0 is the intrinsic growth rate of the i−specie, β̃ii ≥ 0 are the co-
efficients of intra-specific competition, β̃12, β̃21 ≥ 0 are those of inter-specific
competition, and si ∈ R. Function U = U(x, y, t) is the environmental poten-
tial.

The above system of equations is completed with non-flux boundary conditions
and initial data:

Ji · ν = 0 on ∂ΓD × (0, T ), (8)

u(·, 0) = u0
i on ΓD, (9)

for i = 1, 2, where ν denotes the exterior unit normal to ΓD.

We will refer to problem (6)-(9) for given U as to Problem PS. The first
results on the existence of solutions of Problem PS were proven under cer-
tain restrictions on the self and cross diffusion coefficients. For instance, for
sufficiently small cross-diffusion terms (or small initial data) and vanishing
self-diffusion coefficients a1 = a2 = 0, Deuring proved the global existence of
solutions in [10]. For the case c1 = c2 a global existence result in one space
dimension was obtained by Kim [21]. Furthermore, under the condition

2a1 > 1, 2a2 > 1, (10)

Yagi [34] showed the global existence of solutions in two space dimensions. A
global existence result for weak solutions in any space dimension under as-
sumption (10) can be found in [14]. Condition (10) can be easily understood
by observing that in this case, the diffusion matrix is positive definite, hence
yielding an elliptic operator. If the condition (10) does not hold, there are
choices of ci, ai, ui ≥ 0 for which the diffusion matrix is not positive def-
inite. In [15] the existence of global weak solutions for any a1, a2 > 0 was
proven by using a suitable entropy functional. However, the proof uses the
embedding H1(ΓD) ⊂ L∞(ΓD) in a crucial way such that the result is re-
stricted to one space dimension only. Finally, the one-dimensional result was
generalized by Chen and Jüngel [6] to three space dimensions without any
restriction on the diffusion coefficients, although with additional assumptions
on the Lotka-Volterra coefficients, see Hypothesys H4 in Section 3. This result
is fundamental for proving the existence of solutions of our model. We finally
refer to [24,25] for the stationary problem, to [23,22] for other possibilities
of Lotka-Volterra terms and notice that related models appear in chemotaxis
and granular material theory [13,26,16].
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2.2 Below the surface: salt and water relations in the porous medium

We assume the subsurface region, Ω ⊂ R3, to be an open and bounded set
that, after the introduction of dimensionless variables, see [12], takes the form
Ω = ΓD × (0, 1). We denote a point in Ω by x = (x, y, z), being z the depth.
The subsurface is decomposed into a roots region, Ωd = ΓD × (0, d), d ∈ (0, 1)
where a continuous extraction of fresh water takes place, and a region free of
roots, Ω/Ωd.

In [12] we deduced the following dimensionless model. Let c ∈ [0, 1] be the salt
concentration, q the water flow discharge and p the pressure, and consider the
domain QT = Ω × (0, T ), for T > 0. Find c, p : Q̄T → R and q : Q̄T → RN

such that

ct + divx(Rcq −∇xc) = 0, (11)

divx q + g̃(·, c) = 0, (12)

q + ∇xp + cez = 0, (13)

in QT . Here, divx = ∂
∂x

+ ∂
∂y

+ ∂
∂z

, ∇x = ( ∂
∂x

, ∂
∂y

, ∂
∂z

) and the vector ez is the
canonical vertical vector pointing upwards. Positive parameter R is a Rayleigh
number. The usual example considered in the literature [29,12] for the extrac-
tion function is of the form

g̃(z, c) = mk(z)(1 − c)r
+, (14)

for r > 0, with k(z) = d−11(0,d)(z) describing the localization of the roots, d ∈
(0, 1) and m, the extraction number, expressing the water uptaking strength,
which is related to the mangroves transpiration rate. However, only general
assumptions are needed to prove the existence of solutions, see [12], which
read

H̃2. The function g̃ : Q̄T × [0, 1] → R satisfies

g̃ ∈ L∞(QT ; C([0, 1])),

g̃(x, t, ·) is non-increasing in [0, 1] and g̃(x, t, 1) = 0 for a.e. (x, t) ∈ QT .

In order to prescribe boundary conditions, we decompose the spatial boundary
as ∂Ω = (ΓD × {0}) ∪ ΓN , with ΓN =

(
ΓD × {1}

)
∪

(
∂ΓD × (0, 1)

)
. Here and

it what follows, we make the identification ΓD ≡ ΓD × {0}. We prescribe

c = cD, p = 0 on ΓD × (0, T ), (15)

∇xc · n = q · n = 0 on ΓN × (0, T ). (16)
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Finally, a non-negative initial distribution, c0, is considered

c(·, 0) = c0 in Ω. (17)

We will refer to the subsurface problem (11)-(17) as to Problem PSS.

As mentioned in the introduction, the first one-dimensional stationary version
of this model was introduced by Passioura et al. [29]. It was later general-
ized in several ways but still keeping the one-dimensional space feature in van
Duijn et al. [11], where several qualitative properties of the model were proven.
Generalization to N space variables, tipically N = 2, 3, was introduced in van
Duijn et al. [12], where the existence of solutions and stability issues were
treated along with the numerical discretization of the problem. We shall use
this existence result in a fundamental way. Finally, let us mention other two
possibilities for extending the fluid model. One one hand, the extension of the
physical domain to a two-regions model, water and porous medium, makes
sense for the mangroves habitat, regularly inundated or actually waterlogged.
To this respect, the Stokes-Darcy model would fit well with the physical prob-
lem, see [2,8] and the references therein. On the other hand, the consideration
of a non-constant permeability tensor, embedded in our model as a constant
in the Rayleigh number, would be also interesting, especially in the simplest
case in which the tensor differs in the vertical and horizontal direction but is
spatially uniform [33].

2.3 Coupling the surface and subsurface dynamics

Since in the present model we want to distinguish the features of both types
of plant populations, we replace the extraction function of example (14), by

g = g1 + g2, with gi(z, c, u1, u2) = miki(z, u1, u2)(1 − c)ri
+, i = 1, 2 (18)

for the corresponding extraction numbers, mi, and profiles of water uptaking,
ri, for each specie i = 1, 2. In addition, the presence of roots of specie i is
represented by the function

ki(z, u1, u2) = k(z)
ui

u1 + u2

,

in coincidence with that considered in [31]. We will see in the next section that
the proof of existence of solutions of the general surface-subsurface problem
requires weaker assumptions on g.

On the other hand, although the environmental potential in equation (6), U ,
is usually assumed to be given, in this model we will consider the case in which
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it depends on the roots zone salt concentration in a way expressing that man-
groves populations prefer to stablish in regions with low salt concentration.
More concretely, we take

U(x, y, t) =
∫ d

0
c(x, y, z, t)dz, (19)

where d > 0 is the roots region (constant) depth below the surface ΓD, and c
is the salt concentration of the solute which saturates the subsurface (porous
medium). In addition, we will also assume that the Lotka-Volterra coefficients
depend on the amount of water that each specie is able to extract (which
depends on the salt concentration, c) and on other constant coefficients ex-
pressing that the species differ both in their ability to exclude salt and in other
biological capabilities such as light or nutrients absortion, see [31]. Hence, for

Gi(x, y, t; c, u) =
∫ 1

0
gi(z, c(x, t), u(x, y, t))dz i = 1, 2, (20)

where we used the notation u = (u1, u2), we define

Fi(x, y, t, u1, u2) = (αi − βi1u1 − βi2u2)ui, i = 1, 2, (21)

with,

αi = αi(Gi(x, y, t; c, u)), βij = βij(G1(x, y, t; c, u), G2(x, y, t; c, u)), (22)

for some functions αi : R+ → R+ and βij : R2
+ → R+.

The coupled surface-subsurface problem, which we will refer to as Problem P,
is formed by the surface Problem PS with the environmental potential given
by (19) and the Lotka-Volterra coefficients given by (22), together with the
subsurface Problem PSS for an extraction function depending on the biomass
u1 and u2, e.g. function g defined in (18).

3 Existence of solutions of the coupled problem

We assume the following hypothesis for proving the well-possednes of Prob-
lem P.

H1. The spatial domain Ω ⊂ RN , N ≤ 3 is bounded with a Lipschitz continuous
boundary, ∂Ω, which is decomposed as ∂Ω = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅
and with ΓD of positive N − 1 dimensional measure.

H2. Let x = (x, y, z), v = (v1, v2). The function g : Q̄T ×[0, 1]×R2 → R satisfies,
for i = 1, 2,
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g(·, ·, s, ·) ∈ L∞(QT × R2) for all s ∈ [0, 1],

g(x, t, ·, ·) ∈ C([0, 1] × R2) for a.e. (x, t) ∈ QT ,

g(x, t, ·, v) is non-increasing in [0, 1] and g(x, t, 1, v) = 0 for a.e. (x, t) ∈ QT

and for all v ∈ R2.

Note that, in particular, g ≥ 0 in Ω̄ × [0, 1] × R2.
H3. The initial and boundary data have the regularity

c0 ∈ L∞(Ω) and 0 ≤ c0 ≤ 1 a.e. in Ω,

cD ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) and 0 ≤ cD ≤ 1 a.e. in QT ,

u0
i ∈ LΨ(ΓD) and u0

i ≥ 0 a.e. in ΓD (i = 1, 2),

with LΨ(ΓD) the Orlicz space for Ψ(s) = (1 + s) ln(1 + s) − s, see [1].
H4. The constant parameters satisfy ci ≥ 0, ai > 0, R ≥ 0, and m ≥ 0.

The Lotka-Volterra coefficients satisfy αi ∈ C0(R), βij ∈ C0(R2), with
αi ≥ 0, βii > β > 0, and β12 = β21 ≥ 0, for i, j = 1, 2 and some constant β.

Remark 1 In [12], the time dependence of function g̃ we imposed in Hy-
pothesis H̃2 was not considered. Analogously, the case of time-space dependent
coefficients in the Lotka-Volterra function we assumed in (7) was not treated
in [6]. However, these are minor changes which do not affect even to the no-
tion of weak solution for Problems PS and PSS. A careful inspenction of the
proofs in both articles shows that the conclusions of Theorem 1 of [12] and
Theorem 1.1 of [6] remain valid under these more general assumptions.

We finally introduce the usual concentration and flow-pressure functional
spaces:

V =
{
η ∈ H1(Ω) : η = 0 on ΓD

}
,

H0,N(div, Ω) =
{
φ ∈ L2(Ω)N : divx φ ∈ L2(Ω), φ · n = 0 on ΓN

}
,

WT =
{
φ ∈ L2(QT )N : divx φ ∈ L∞(QT )

}
.

We have the following result.

Theorem 1 Let T > 0 and assume Hypothesis H1-H4. Then Problem P has
a weak solution (u1, u2, c,q, p) satisfying, for i = 1, 2, the regularity

ui ∈L2(0, T ; H1(ΓD)) ∩ L∞(0, T ; LΨ(ΓD)) ∩ W 1,r(0, T ; (W 1,r′(ΓD))′),(23)

c ∈ cD + L2(0, T ;V) ∩ H1(0, T ;V ′) ∩ L∞(QT ), (24)

q ∈ L2(0, T ; H0,N(div, Ω)) ∩WT , (25)

p ∈ L2(0, T ;V), (26)
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for r = (2N + 2)/(2N + 1) and r′ = r/(r − 1), and with

ui ≥ 0 in ST and min {c0, cD} ≤ c ≤ 1 in QT .

Equations (6), (11)-(13) are satisfied in the sense

∫ T

0
< ∂tui, ϕ >1 +

∫
ST

(ci∇ui + 2aiui∇ui + ∇(u1u2) + diui∇U) · ∇ϕ

=
∫

ST

Fi(·, u1, u2)ϕ, (27)

for all ϕ ∈ Lr′(0, T ; W 1,r′(ΓD)), and

< ct, η >2 −
∫
Ω
(Rcq −∇xc) · ∇xη = 0, (28)∫

Ω
q · φ −

∫
Ω

p divx φ −
∫
Ω

cez · φ = 0, (29)∫
Ω
(divx q + g(·, c, u1, u2))ξ = 0, (30)

for all η ∈ V, ξ ∈ L2(Ω), φ ∈ H0,N(div, Ω) and for a.e. t ∈ (0, T ). The
notation < ·, · >1 and < ·, · >2 stands for the dual products W 1,r′(ΓD) ×
(W 1,r′(ΓD))′ and V ′ × V, respectively. Finally, the initial data ui,0 and c0 are
satisfied in the LΨ and L2 senses, respectively.

Proof. Since the coupling between Problems PS and PSS is weakly nonlinear,
the proof of existence of solutions of Problem P is a direct application of the
techniques used in the proofs of those problems, see [6,12]. Therefore, we will
be schematic. The proof is based on the Schauder’s fixed point theorem.

Definition of the fixed point operator. Let ũ ∈ Lr(ST )2, with r = (N +2)/(N +
1), be given and consider the extraction function g̃(x, t, s) = g(x, t, s, ũ(x, y, t)),
with g a given function satisfying Hypothesis H2 implying that g̃ satisfies Hy-
pothesis H̃2. Then, Theorem 1 of [12] enssures the existence of a weak solution,
(c,q, p), of the subsurface Problem PSS corresponding to g̃. We then consider
the surface Problem PS for U given by (19) and F̃i of the form (7), with the
coefficients given by

α̃i(x, y, t) = αi(Gi(x, y, t; c, ũ)),

β̃ij(x, y, t) = βij(G1(x, y, t; c, ũ), G2(x, y, t; c, ũ)),

with αi, βij satisfying Hypothesis H4, and with Gi(x, y, t; c, ũ) defined in (20).
Since c ∈ L2(0, T ;V) and ũ ∈ Lr(ST )2, we obtain ∇U ∈ L2(ST ) and α̃i, β̃ij,
i, j = 1, 2, satisfy the hypothesis of Theorem 1.1 of [6], from where we deduce
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the existence of a weak solution u ∈ Lr(ST )2 of Problem PS. We consider the
operator G : Lr(ST )2 → Lr(ST )2 given by

G(ũ) = u, (31)

and emphasize that a fixed point of G is a weak solution of Problem P.

The hypothesis of the fixed point theorem we have to check are: (i) G is
continuous, (ii) G is compact, and (iii) the set

Λ = {(ũ1, ũ2) ∈ Lr(ST ) × Lr(ST ) : (ũ1, ũ2) = λG(ũ1, ũ2), for all λ ∈ [0, 1]}

is bounded.

(i) G is continuous. Let ũn ∈ Lr(ST )2 be a sequence such that ũn → ũ strongly
in Lr(ST )2 and set un = G(ũn) and u = G(ũ). We have to check that un → u
strongly in Lr(ST )2 as n → ∞. As above, since ũn ∈ Lr(ST )2 Theorem 1
of [12] implies the existence of a weak solution (cn,qn, pn) of the subsurface
Problem PSS corresponding to function g̃n(x, t, s) = g(x, t, s, ũn(x, t)) and sat-
isfying (24)-(26) and (28)-(30). Using the uniform estimates obtained in the
proof of Theorem 1 of [12] and taking into account that ũn → ũ strongly
in Lr(ST )2, it is easy to prove that, up to a subsequence (not relabeled), we
have (cn,qn, pn) → (c,q, p), a weak solution of Problem PSS corresponding to
f̃(x, t, s) = f(x, t, s, ũ(x, t)). We now solve Problem PS for data related to cn.
Let

Un(x, y, t) =
∫ d

0
cn(x, y, z, t)dz,

and F̃ n
i be given by (7) with the coefficients replaced by

α̃n
i (x, y, t) = αi(Gi(x, y, t, cn, ũn)),

β̃n
ij(x, y, t) = βij(G1(x, y, t, cn, ũn), G2(x, y, t, cn, ũn)).

The existence of a weak solution, un, of Problem PS corresponding to Un and
F̃ n

i and satisfying the regularity properties (23) and (27) is guaranteed by
Theorem 1.1 of [6]. Next, we perform the limit n → ∞ to this sequence of
solutions of Problem PS. The only limits which are not already justified in the
proof of Theorem 1.1 of [6] are∫

ST

un
i ∇Un · ∇ϕ, and

∫
ST

F̃ n
i (·, un)ϕ. (32)

The convergence of the first term is straightforward since, as shown in Lemma
3.4 of [6], un

i → ui strongly in L2(ST ) and as shown in the proof of Theorem
1 of [12] cn → c weakly in L2(QT ), implying ∇Un → ∇U weakly in L2(ST )2,
with

U(x, y, t) =
∫ d

0
c(x, y, z, t)dz.
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For the second term of (32), we again use that un → u strongly in L2(ST )2

and a.e. in ST . In addition, we use that cn → c strongly in L2(QT ) (see [12])
and ũn → ũ strongly in Lr(ST )2. Then, since gi is bounded and continuous
with respect to the second and third variables, we have

Gi(x, y, t, cn, ũn) → Gi(x, y, t, c, ũ)

strongly in Lγ(ST ) for all γ < ∞. Using now the continuity of the Lotka-
Volterra coefficients (Hypothesys H4) we get α̃n

i → α̃i and β̃n
ij → β̃ij strongly

in Lγ(ST ), with

α̃i(x, y, t) = αi(Gi(x, y, t, c, ũ)),

β̃ij(x, y, t) = βij(G1(x, y, t, c, ũ), G2(x, y, t, c, ũ)).

Finally, using the continuity of F̃i with respect to the last variable we obtain
F̃ n

i (x, y, t, un) → F̃i(x, y, t, u) strongly in Lr(ST ). Therefore, with the conver-
gence of both terms of (32) justified, we deduce un → u strongly in Lr(ST )2,
and thus the continuity of G.

(ii) G is compact. It is a consequence of the compact imbedding Lr(ST ) ⊂
L2(0, T ; H1(ΓD)) ∩ W 1,r(0, T ; (W 1,r′(ΓD))′).

(iii) Λ is bounded. For λ = 0 is trivial. For λ ∈ (0, 1] it is straightforward too.
Condition u = λG(u) is equivalent to (u1, u2, c,q, p) satisfying (27)-(29), and
(30) replaced by ∫

Ω
(divx q + g(·, c, u1/λ, u2/λ))ξ = 0, (33)

for all ξ ∈ L2(Ω) and for a.e. t ∈ (0, T ). Therefore, the only change estimating
the Lr(ST ) norm of ui is in the right hand side term. But, since ‖g‖L∞ is
uniformly bounded due to Hypothesis H2, we may obtain similar estimates
than those in the proof of Theorem 1.1 of [6], which imply the boundedness
of Λ. 2

4 Numerical experiments

In this section we present numerical simulations for the two dimensional prob-
lem which are based on a stabilized mixed finite element method for the sub-
surface problem and an explicit finite differences scheme for the surface prob-
lem. We start by introducing a time discretization of Problem P, i.e, we look
for time independent functions uk

1, uk
2, ck, qk and pk approximating the contin-

uous solution u1, u2, c, q and p, respectively, in the time interval (kτ, (k+1)τ ],
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for k = 0, ..., N , for some N ∈ N and τ = T/(N + 1). Naturally, for k = 0 we
set u0

1 = u10, u0
2 = u20, etc.

For tk = kτ , let uk−1
1 , uk−1

2 , ck−1, qk−1 and pk−1 be given. We first compute
ck, qk and pk as a solution of a time discretized version of an equivalent
formulation of Problem PSS, consisting on combining equations (11) and (12)
to replace (11) by

ct + Rq · ∇c − ∆c = Rcg(·, c, ·, ·). (34)

Time discretization. The time discrete problem corresponding to Problem
PSS is then formulated as

ck + τ(Rqk · ∇ck − ∆ck) = τRckg(·, ck, uk−1
1 , uk−1

2 ) + ck−1, (35)

div qk = −g(·, ck, uk−1
1 , uk−1

2 ), (36)

qk + ∇pk + ckez = 0, (37)

in Ω = [0, L] × [0, 1], with the boundary conditions

ck = cD, pk = 0 on ΓD, (38)

∇ck · n = qk · n = 0 on ΓN . (39)

Once problem (35)-(39) is solved, we compute uk
1, uk

2 as the solution of a time
discretized version of problem PS

uk
i = uk−1

i + τ
((

uk−1
i (ci + ai1u

k−1
1 + ai2u

k−1
2 )

)
xx

+
(
diu

k−1
i Uk

x

)
x

)
, (40)

in [0, L], for i = 1, 2, where

Uk(·) =
∫ d

0
ck(·, z)dz. (41)

Observe that, without loss of generality, we again write Eq. (40) in not rescaled
form, as Eq. (1). The non-flux boundary conditions are imposed by solving
the system of equations for uk

1x and uk
2x given by

(c1 + 2a11u
k−1
1 + a12u

k−1
2 )uk

1x + a12u
k−1
1 uk

2x = −d1u
k−1
1 Uk

x , (42)

a21u
k−1
2 uk

1x + (c2 + 2a21u
k−1
1 + a22u

k−1
2 )uk

2x = −d2u
k−1
2 Uk

x , (43)

on x = 0 and x = L.

Space discretization. The space discretization of problem (35)-(39) is similar to
that used in [12]. It is well known that classical mixed variational formulations
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need an adequate election of the discrete spaces for the flow and the pressure
in order to satisfy the Babuska-Brezzi stability condition, see for instance [5].
Following Masud and Huges [27], we consider a stabilized mixed finite element
method for Darcy flows which allows to use piecewise linear approximations
and the same mesh for both pressure and flow. For each discrete time tk, we
solve the nonlinear system of equations (35)-(39) by a fixed point method
based on the proof of Theorem 1 of [12]. We consider the map S : L2(Ω) →
L2(Ω) given by S(ĉ; ck−1) = c, where c is the solution of

c − τ∆c = −τRq · ∇ĉ + τRĉg(·, ĉ, uk−1
1 , uk−1

2 ) + ck−1, (44)

div q = −g(·, ĉ, uk−1
1 , uk−1

2 ), (45)

q + ∇p + ĉ ez = 0, (46)

with the corresponding boundary conditions (38)-(39). A fixed point of S(· ; ck−1)
is denoted by ck, and the corresponding velocity and pressure by qk and pk,
respectively. To solve problem (44)-(46) for a given ĉ, we first solve problem
(45)-(46), which has the following formulation in terms of the stabilized mixed
finite element method: Find q ∈ H0,N(div, Ω) and p ∈ V satisfying∫

Ω
(q + ∇p) · φ +

∫
Ω

ĉ ez · φ = 0 for all φ ∈ H0,N(div, Ω), (47)

∫
Ω
(∇p−q)·∇ϕ+

∫
Ω
(ĉ ez ·∇ϕ+2g(·, ĉ, uk−1

1 , uk−1
2 )ϕ) = 0 for all ϕ ∈ V . (48)

Once that q and p are determined, we set the following problem for equation
(44): Find c ∈ cD + V solution of∫

Ω
cϕ + τ

∫
Ω
∇c · ∇ϕ = τR

∫
Ω
(ĉg(·, ĉ, uk−1

1 , uk−1
2 ) − q · ∇ĉ)ϕ +

∫
Ω

ck−1ϕ, (49)

for all ϕ ∈ V . The spatial discretization for solving (47)-(48) is that given
in [27], which we also adapt to equation (49). It consists of finite triangular
elements, continuous piecewise linear basis functions with the same mesh for
all the unknowns. For the practical implementation of the fixed point method,
we construct a sequence ck

j = S(ck
j−1; c

k−1), with ck
0 = ck−1 and consider that

a discrete solution, ck
j , of (47)-(49) is a fixed point of S(· ; ck−1) if a suitable

norm of S(ck
j ; c

k−1)−ck
j , is smaller than a fixed tolerance, for some j = 0, 1, . . .

Finally, for the spatial discretization of the one dimensional problem (40)-(43)
we use a finite difference approximation whose nodes are the vertices of the tri-
angles of the 2D mesh lying on the top boundary. The numerical convergence
of this one-dimensional scheme was proven in [15]. Other numerical approaches
to the cross-diffusion population problem were introduced more recently in the
context of finite element methods (N ≤ 3) by Barret and Blowey [4] and by
a particle method (N = 1) by Gambino et al. [18]. However, for the 1D case,
the results of the three methods seem to be rather similar.
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Table 1
Parameter values common for all the experiments

Parameter Symbol Value

Diffusion coefficients c1, c2 0

Cross diffusion coefficients aij 0.1

Convection coefficients d1, d2 1, 40

Rayleigh number R 100

Extraction coefficients m1,m2 0.05, 0.1

Extraction powers r1, r2 0.5, 2

Roots depth d 0.25

4.1 Experiments

We consider the spatial domain Ω = (0, 4) × (0, 1), which is discretized by a
triangular finite elements mesh containing 900 nodes. The top spatial bound-
ary ΓD = (0, 4)×{0} contains 30 nodes. The time step is selected considering
the main time scales of the problem i.e., diffusion and convection. We take
dt = min {0.5 dx−2, (R dx)−1}, with dx = 1/30. In some situations, for in-
stance when large gradients of populations density arise, we interpolate the
data of Problem PS to a finer mesh on ΓD in order to get a smoother approxi-
mation. The data on Table 1 is common for all the experiments. Observe that
the linear diffusions are set to zero, and that the cross-diffusion coefficients
have the same value, indicating that population pressures affect in a simi-
lar way to both species. The differences between the biological characteristics
of the species (mangroves represented by u1 and a less salt tolerant specie
represented by u2) are captured by (i) the convection coefficients, d1 � d2,
indicating a bigger atraction of Specie 2 than mangroves towards the low salin-
ity areas, and (ii) the coefficients appearing in the extraction function, g, i.e.,
the extraction numbers, m1 < m2, indicating a more efficient behaviour of
Specie 2 for extracting water when no salt is present, and r1 < 1 < r2, imply-
ing a larger capacity of mangroves to uptake fresh water from saline waters.
Since we take a relatively low Rayleigh number we do not expect neither large
gradients of the salt concentration nor important variations of the flow in the
subsurface. However, the situation changes on the surface due to the powerfull
combination of the drift effects produced by the environmental potential and
the repulsive effects of the cross-diffusion. This combination results on large
gradients of the populations density in the “good” environmental regions.

Experiment 1. We test the model in a standard situation. We take the salt
concentration data as c0 = cD = 0.5, and initial population distributions which
contain areas where the species are isolated and areas where the species share
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the space with equal population density, see Fig. 1. We set the Lotka-Volterra
terms to zero, implying for the continuous model that the populations mass
have to be conserved. Indeeed, for the discrete model, recalling that the time
discretization scheme is explicit, the mass conservation property is quite well
captured, having a relative error of the order of 10−5. More precisely, for the
stopping time T = 80 years (dimensional model), we have

max
i=1,2

{( ∫ 4

0
ui0(x)dx −

∫ 4

0
ui(x, T )dx

)( ∫ 4

0
ui0(x, t)dx

)−1
}

= 1.3794 × 10−5.

In Fig. 1 we show the initial and final population density distributions for both
species. Since the initial salt concentration distribution is homogeneous, the
environmental potential is initially not attracting the populations to a definite
place. However, as time evolves, mangroves salinize the region they occupy,
creating a gradient on the environmental potential which drives the population
of Specie 2 energically (40 = d2 � d1 = 1) towards the potential minimum.
Fig. 2 shows the population distributions evolution by plotting ui(x, t) for
t = 0, 15, 30, 45, 60, 80 years. In Figs. 3 and 4 we show some aspects of
the concentration-flow problem in the porous medium: the evolution of the
environmental potential (same time slices than above), given by

U(x, t) =
∫ 0.25

0
c(x, z, t)dz,

the water flow, and two time slices of the salt concentration. Observe that the
absolute changes of the environmental potential are very small, but enough to
induce the populations segregation.

Experiment 2. We use the same initial population distributions than in
Experiment 1 but assume an initial and boundary salt concentration which
increases with x, simulating a usual situation in the mangroves habitats near
the shore, see Fig. 6, left. We again set the Lotka-Volterra terms to zero. We
run the program till T = 80 years and check that the relative error for the
populations mass conservation is of the order 10−16. In Fig. 5 we show the pop-
ulation distributions evolution by plotting ui(x, t) for t = 0, 15, 30, 45, 60, 80
years. The drift effect is notorious for Specie 2. In Fig. 6, right, we plot the
salt concentration distribution for T = 80 years and z = 0, 0.25, 1, i.e., on
the surface, at the lower limit of the roots region, and on the bottom. We
observe that, although increasing faster than in other regions, the boundary
x = 0 keeps being an attraction point region (lower salt concentration) where
population of Specie 2 tends to concentrate.

In the following two experiments we explore the effects of the competition
terms. We take initial population distributions constant and equal, u10 =
u20 = 0.5, and keep the initial salt concentration as in Experiment 2.

Experiment 3. We consider two sets of Lotka-Volterra terms in order to
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compare the evolution of population densities for fixed and varying growth
and competition coefficients. More explicitly, we take, for i = 1, 2,

F1(x, t) = G1(x, t)
(
300 − 100u1(x, t) − 50u2(x, t)

)
u1(x, t),

F2(x, t) = G2(x, t)
(
300 − 50u1(x, t) − 100u2(x, t)

)
u2(x, t),

with Gi given by

Gi(x, t) = mi
ui(x, t)

u1(x, t) + u2(x, t)

∫ d

0
(1 − c(x, z, t))ri

+dz,

and similar functions F̃i with Gi(x, t) replaced by the constant value

G̃i =
1

4

∫ 4

0
Gi(x, 0)dx.

We denote by ũi the solutions corresponding to F̃i (Problem P̃) . We observe
that, although the Lotka-Volterra coefficients would give a coexistence state
for the corresponding dynamical system, in both cases (Problems P and P̃)
the system seems to converge to the extinction of Specie2, u2 = ũ2 = 0, and
to the equilibrium value u1 = ũ1 = 3 for the mangroves population. However,
although qualitatively similar, the solutions of both problems have impor-
tant quantitative differences. In Fig. 7, left, we plot the relative differences
‖ui − ũi‖L2(ΓD)‖ũi‖−1

L2(ΓD). The magnitude of the difference is well explained
by the time evolution of the coefficients of Problem P, which are captured by
the extraction functions Gi, in comparison with the constant coefficients of
Problem P̃. We plot in Fig. 7, center, the space average of these functions, i.e.,

1

4

∫ 4

0
Gi(x, t)dx.

Another visualization of the quantitative differences between the tho sets of
solutions is given in Fig. 7, right, where we plot the space averaged mass
populations

Ui(t) =
1

4

∫ 4

0
ui(x, t)dx, Ũi(t) =

1

4

∫ 4

0
ũi(x, t)dx,

and the semi-total mass populations (U1 + U2)/2, and (Ũ1 + Ũ2)/2. We see
that after a transient state of about one hundred years, both systems enter
in a phase of slow increase (decrease) of the mass of mangroves (Specie2).
However, the quantitative differences between both problems are significant.
Mangrove (Specie 2) population is always larger (smaller) for Problem P than
for Problem P̃. We also observe that the mass of Specie 2 corresponding to the
constant coefficients, ũ2, is always above the initial mass, whereas the same
quantity for the variable coefficients problem drops below the initial state after
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some 150 years. It is also interesting to notice that the total mass is practically
constant for both problems, after the transient state.

Finally, in Fig. 8 we plot time slices showing the evolution of the populations
distributions for problems P and P̃. We see that after a fast initial growth of
Specie 2, its population declines and tends to disappear from the bad envi-
ronmental region. This effect is specially visible for solutions of Problem P. In
fact, the competition between both populations seems to be more extreme in
the case of variable coefficients, as may be seen in the good region boundary
x = 0. The evolution of the system seems to lead to the semi-trivial steady
state (u1, u2) = (3, 0), i.e. extinction of Specie 2.
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Fig. 1. Experiment 1. Continuous line: mangroves. Dotted line: Specie 2.
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Fig. 2. Experiment 1. Time slices of the evolution of Specie 2 (left) and mangroves
(right).
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(a) Time slices of the evolution of the en-
vironmental potential.
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Fig. 3. Experiment 1. In the subsurface.
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Fig. 4. Experiment 1. Salt concentration in the porous medium for T=10 years (left)
and T=80 years (right). z = 1 corresponds to the top boundary ΓD.
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Fig. 5. Experiment 2. Time slices of the evolution of Specie 2 (left) and mangroves
(right).
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Fig. 6. Experiment 2. Salt concentration in the soil. Left: for T = 0. Right: for
T = 80 years and at the bottom, z = 1, (continuous line), lower limit of the roots
region, z = 0.25, (crossed line) and surface z = 0 (dotted line).
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Fig. 7. Experiment 3. Several visualizations of the differences among solutions of
Problems P and P̃. Mangroves: dotted lines, Specie 2: continuous lines.
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Fig. 8. Experiment 3. Populations evolution. Mangroves: dotted lines, Specie 2:
continuous lines. Problem P: thick lines. Problem P̃: thin lines.
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