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Mangroves induced soil salinization 3

Abstract

We introduce a mathematical model expressed in terms of partial differential equa-
tions describing the dynamics induced by the mangroves fresh water uptaking mech-
anisms in a water-soil domain with salt concentration close to that of sea water. The
extraction of fresh water by mangrove roots implies the formation of a salt concentra-
tion gradient between the roots layer and the surroundings. In particular, an instable
density driven situation follows since water density is higher in the root zone than be-
low it, resulting in a net flow of water downward from the soil surface, which carries
salt with it. In the absence of lateral flow, the long term salinity profile in the root zone
must be such that the salinity around the roots is higher than that of sea water, and that
the concentration gradient is large enough so that the advective downward flow of salt
is balanced by the diffusive flow of salt back up to the surface.

Based on the above observations, we start the setting of our model by consid-
ering a spatial domain splitted in two subdomains: the water and the soil, assumed
to be a water saturated porous medium. This situation corresponds, for instance, to
the case in which mangrove grow in back waters, swamps or marshes. In each of
these subdomains we consider a suitable set of partial differential equations describing
the evolution of salt concentration, water discharge, and pressure, e.g., the Oberbeck-
Boussinesq Stokes-Darcy approximation for free fluid and porous medium. We study
the relationship among the physical parameters (hydraulic conductivity, mangrove
transpiration rate, salinity threshold for water uptake, etc.) in each subdomain to set
appropriate scales for the problem and then deduce several simpler mathematical mod-
els according to the size of the equations coefficients resulting from the rescaling and
to the boundary conditions corresponding to different situations of interest. We then
prove several mathematical properties of the models such as the existence and unique-
ness of solutions, the time convergence of solutions of evolution problems to the steady
states, conditions for the stability of the one-dimensional solution and conditions un-
der which solutions attain the threshold salinity level, among others. We also provide
numerical simulations of our models based on finite differences and finite elements
methods.

1 Introduction

Mangrove ecosystems are tropical or subtropical communities of mainly tree species which
can be found on low, muddy, usually intertidal coastal areas. They cover an area of approx-
imately twenty million hectares throughout the world, with the largest expanses occurring
in Malaysia, India, Brazil, Venezuela, Nigeria and Senegal [59]. Mangroves communities
are of great ecological importance due to the role they play as habitat builders and shore-
line stabilizers, among others. They typically grow in saline coastal soils, or muds, which
develop through a combination of two processes: mineral sediment deposition and organic
matter accumulation. This soil structure in conjunction to the usual flatness of the area and
the almost permanent sea water saturation of the soil due to the regular inundation by tides,
when not prolonged periods of waterlogging [35], causes a poor soil draining and flushing
of the interstitial water.

One of the decisive mangrove capabilities and perhaps the reason for its comparative
fitness to the coastal areas is their ability to exclude most of the salt from the water their
roots extract from the sea-water saturated soil, [7]. When they do that, the water must
flow downwards from the soil surface towards the roots zone, with salt being carried by
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4 G. Galiano

convection. Since mangroves roots excludes most of the salt, the salinity must rise in the
soil occupied by the roots, and must keep rising, until a sufficiently large concentration
gradient develops so that the advective downward flow of salt is balanced by the diffusive
flow of salt back to the surface.

In the article Mangroves may salinize the soil and in so doing limit their transpiration
rate, by Passioura, Ball and Knight [47], the authors provide an analytical approach to the
mechanisms of soil salinization produced by mangroves and investigate the consequences
of salt concentration increase on mangroves transpiration rate. In their work the authors
presented one-dimensional (depth) steady state equations governing the flow of salt and
uptake of water in the root zone, assuming that there is an upper limit C1 to the salt concen-
tration at which roots can take up water, and that the rate of uptake of water is proportional
to the difference between the local concentration C and the assumed upper limit C1. They
also assumed that the root zone is unbounded, and that the constant of proportionality for
root water uptake is independent of depth through the soil, resulting in the following model:

D
dC(z)

dz
= v(z)C(z) for z > 0, (1)

−θ
dv(z)

dz
= k0(C1−C(z)) for z > 0, (2)

C(0) = C0, (3)

where the salt concentration, C, and the vertical velocity of water, v, are the unknowns. The
variable z denotes depth, with z = 0 the soil surface, and D, the diffusion coefficient, θ,
the porosity, k0, the root density, C0, the salt concentration in sea-water, and C1, the upper
limit of salt concentration at which roots can take up water from the porous medium, are
parameters.

Although their model captures interesting features of the physical problem allowing
the authors to give some quantitative indications on the mechanism of soil salinization by
mangroves, its mathematical simplicity does not permit to treat other relevant aspects of the
problem, among them the following questions:

(A) How does evolve the salt concentration and water uptake from a given initial state
towards the steady state?

(B) Is it possible that the roots zone becomes fully salinized, i.e., C(z) = C1 for all z,
stopping in this way the extraction of water by mangroves’ roots?

(C) May gravity effects, such as fingering or convective cells, speed up the mixing of the
solute in such a way that the equilibrium state is reached before the one-dimensional
model prediction?

Trying to give answers to these questions, we extended the model of Passioura et al. in
several ways [22, 23, 30]:

1. The physical domain.

(a) In Passioura et al. [47], the interval {z ∈ R : z≥ 0}, with z denoting depth, was con-
sidered.
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Mangroves induced soil salinization 5

(b) In [22] the physical domain was limited to a bounded set, {z ∈ R : 0≤ z≤ H}, split-
ted in two subsets, one containing the mangrove roots and the other free of roots.

(c) In [23] we considered a three dimensional bounded domain, dropping the restriction
imposed by Passioura et al. on the absence of lateral flows and on the spatial homo-
geneity of the root distribution. The implications of considering more spatial dimen-
sions in the mathematical structure of the problem are important since the mass con-
servation equation (2) is then not sufficient to determine the field velocity, v, which
is now multi-dimensional. Therefore, an additional partial differential equation must
be considered to solve the problem, Darcy’s law, which also forces to consider a new
unknown, the pressure. However, the mathematical complications of this model have
its reward since question (C) gets an answer in terms of a quantitative relationship
among the parameters.

(d) In the present work, we go a step beyond by considering a three dimensional domain
which is composed by two subdomains: liquid water, such as a swamp, and soil
(saturated porous medium). Due to the physical differences between both media, the
equations relating velocity, pressure and concentration are of different nature and new
mathematical difficulties arise in their analysis.

2. The extraction function.

(a) In Passioura et al. [47], roots are supposed to fill the infinite one-dimensional domain
without any vertical variation in root distribution, i.e. k(z) = k0 for all z ∈ (0,∞).
However, according to Gill [33], root distribution for mangrove species is usually
shallow and extensive, often forming a dense mat of roots in the top 10 cm of the
soil. Lin and Sternberg [42] measured the root distribution of a particular specie
(Rhizophora Mangle L.) and found that the root density decreased with depth, with
more than half of the fine roots being contained in the top 50 cm of the soil. Since
the depth distribution of root water uptake is expected to be related to the distribu-
tion of fine roots in the soil it may be assumed that the water extraction follows the
mathematical rule:

S(z,C) =





k(z)
(
1− C

C1

)r if C ≤C1,

0 if C > C1,
(4)

where S[s−1] is the extraction function, and the root distribution, k, is non-negative,
and in accordance with [42], non-increasing with z. In addition, Passioura et al. [47]
used the value r = 1 in the extraction function (4), corresponding to a linear depen-
dence of uptake on concentration difference, which is consistent with the assumption
that uptake is governed by osmotic pressure difference. However, as the authors men-
tion, there is no experimental evidence for this choice.

(b) Therefore, in [22, 23, 30] and in this work, we considered a extraction function satis-
fying general functional properties, see Hypothesis H2 in page 14. Examples like (4)
for any r > 0 and any bounded root distribution function (e.g. non-negative and non-
increasing) are included in our formulation. In particular we show that the behavior
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6 G. Galiano

of the salinity profile differs in an essential manner between the cases r < 1 and r≥ 1
in the extraction function S, leading to an answer to question (B), again in terms of
quantitative relationships among the parameters.

3. The time.

(a) In Passioura et al. [47], only the steady state problem is considered.

(b) Time dependence of the problem was considered in [22,23,30] and also in this work,
giving an answer to (A). As shown in (16), the estimated values of the physical pa-
rameters imply a time scale which allows us to disregard daily variations in the salt
concentration at the boundary and which yields, well within the life span of the man-
groves, a steady configuration in which diffusion balances the tree-induced convec-
tion. However, the study of the time-dependent behavior of salt concentration and
flow is essential for understanding how full salinization may be reached (Question
(B)) and whether gravity effects shorten the time taken to salinize the soil or they do
not. Therefore, both the steady state and the evolution problems are considered in
this work. In particular, mathematical results on convergence of the time dependent
solution to the steady state solution when t → ∞ are also proven.

4. The boundary conditions.

(a) In addition to the partial differential equations, such as (1)-(2), a well-posed math-
ematical problem must be accomplished with boundary conditions. The situation
described till now is that in which a regular inundation by tidal waters takes place
giving, on average, a constant salt concentration on the surface (top boundary) of the
domain, see (3). This is the most relevant and usual situation for the physical problem
and it is the situation studied in [22, 23, 47].

(b) In [30], motivated by the occurrences observed at Ciénaga Grande de Santa Marta,
Colombia, we focused in the situation in which the inflow of fresh or sea water to the
mangroves domain is impeded. The continuous extraction of fresh water by the roots
of mangroves drives, then, the ecosystem to a complete salinization. As reported
by Botero [13] and Perdomo et al. [50], the construction of a highway along the
shore in the 1950s obstructed the natural circulation of water between both parts of
the road (Caribbean sea and the Ciénaga). In addition, in the 1970s, inflow of fresh
water from the river Magdalena was reduced due to the construction of smaller roads
and flooding control dikes. These changes caused a hypersalinization of water and
soil, which resulted in approximately 70% mangrove mortality (about 360 Km2 of
mangrove forests), see [13,32]. In [30], we proposed a one-dimensional model based
on laws for conservation of water and salt which lead to a system of partial differential
equations with a dynamic boundary condition in the interface water-soil. In this
chapter we continue the study of the model introducing numerical experimentation.

These extensions of the model of Passioura et al. have, as already mentioned, some
implications in the mathematical analysis of the corresponding problems. The main math-
ematical questions we tackle are:
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Mangroves induced soil salinization 7

(i) The existence and uniqueness of solutions of the steady state and the evolution prob-
lems. We present the proofs of existence of solutions for two models: the water-
soil model, see Section 2, and the stagnant water model, see Section 4. The water-
soil model is based in a combination of the Oberbeck-Boussinesq system, and the
Stokes-Darcy system, coupled with a convection-diffusion equation for the concen-
tration. We define global unknowns in the water-soil model and split the problem
into two decoupled problems: the flow problem and the concentration problem. Us-
ing well known results, see [1, 39, 40], we find solutions to these problems and, via
a fixed point argument, prove the well possedness of the coupled problem, see The-
orem 1 in Section 2.2. For the stagnant water problem, we use a technique based
in Roth’s method and consider a sequence of steady state problems satisfying a dis-
crete dynamic boundary condition. We show that the sequence of solutions actually
converges to a solution of the time-dependent problem, see Theorem 5 in Section 4.2

Regarding the uniqueness of solutions, the main difficulty is posed by the extraction
function, S(z,C), see (4). Whenever this function is Lipschitz continuous with re-
spect to C, uniqueness holds. However, on the contrary, for example for r < 1 in
(4), although we do not think that it should affect to the property of uniqueness, the
proof we produced only solves the question under certain conditions, see Theorem 3
in Section 3.3. The proof is based in a duality method in which we construct suit-
able test functions obtained as solutions to a certain time-dependent system of partial
differential equations from where the result follows. In addition to the uniqueness,
our proof also includes the comparison principle for solutions which, in particular, is
useful for proving the next result on asymptotic convergence.

(ii) The convergence of the time dependent solution to the steady state solution when
t → ∞. We state the results collected from previous works, see Theorems 4 and 6 in
Sections 3.3 and 4.2, respectively. The proofs may be found in [22, 30].

(iii) A stability issue related to the formation of Bénard type cells in the multi-dimensional
problem, implying a faster mixing than that predicted by the one-dimensional model.
Indeed, as we already mentioned, the fresh water uptake by mangrove’s roots implies
a local density increase around the roots, producing the instable scenario of heav-
ier over lighter water. Stability problems of this type have received much attention
and there is abundant literature on the subject, see for instance the monographes by
Straughan [56, 57] and their references. However, our stability problem is somehow
unusual since the instabilities we expect to appear will attenuate and disappear when
t → ∞, due to the stable character of the steady state solution, in which the lower
region of the domain has been filled by the heavier water.

We approach to this question from two viewpoints. First, we consider a related prob-
lem for which we may state analytical conditions under which solutions develop in-
stabilities. To confirm that the results on the related problem are not far from our orig-
inal problem, we perform several numerical experiments which demonstrate them. In
addition, our experiments show that the most relevant physical parameter for stability
is the permeability: low permeability soils are able to keep the instable situation of
heavier over lighter water since the process becomes diffusion dominated. However,
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8 G. Galiano

for higher permeabilities instabilities do arise and a faster mixing and approaching to
the steady state takes place.

(iv) The formation of a fully salinized region in finite time, or dead core, as it is known
in the field of free boundary problems. This property is common to all the models.
Since the mathematical analysis is somehow obscure and technical, we preferred
to present it for the most simple situation of one space variable, see Theorem 7 in
Section 5 and [22]. We use the so called energy method for free boundary problems,
introduced by Antontsev [2] and developed by Antontsev, Díaz and Shmarev [5]. The
method roughly works as follows: first, a local energy functional given in terms of the
norms of the natural energy spaces associated with the problem is introduced. Then,
using the partial differential equations satisfied by the solutions (and not the boundary
conditions or other non-local data) a differential inequality for such functional is
obtained. Finally, the formation of a dead core is deduced from the properties of the
solutions of this inequality. As we mentioned, although the method may be applied
to systems of equations formulated in a very general form, we preferred to present it
in the simpler one-dimensional setting of the problem, for clarity.

(v) The discretization and numerical simulation of solutions. The one-dimensional case
is rather simple but illustrative of the behavior of solutions. We performed numerical
experiments for the steady state and evolution one-dimensional models, showing the
effects on the solution of the choice of a variety of data values related to the salt
concentration on the top boundary (soil surface), to a dimensionless number capturing
the strength of the fresh water extraction and to the power, r, on a extraction function
of the type (4). The techniques employed for the discretization are based in semi-
implicit finite differences schemes and Newton’s method.

The discretization of the two-dimensional soil model is more subtle, see Section
3.4.1. We use a stabilized mixed finite element method in space and an implicit
finite differences scheme in time. The main advantage on using a mixed formulation
instead of a simpler formulation based only in concentration-pressure is that the water
flow is obtained directly from the discrete solution and there is no need of deducing
it by numerical differentiation of the pressure, with the loss of accuracy it implies.
Since our investigation in the two-dimensional problem is centered on stability, keep-
ing a good grade of accuracy in the flow approximation is important. Moreover, the
study of the existence of solutions indicates that the decoupling of the system inher-
ent to the mixed formulation is more natural than that of the concentration-pressure
formulation in the sense that it produces energy estimates which allow to obtain a
simpler proof of the existence of solutions. It is well known that classical mixed vari-
ational formulations need an adequate election of the discrete spaces for the flow and
the pressure in order to satisfy the Babuska-Brezzi stability condition, see [15]. Fol-
lowing Masud and Huges [45], we consider a stabilized mixed finite element method
for Darcy flows which allows to consider piecewise linear approximations and the
same mesh for both pressure and flow.

(vi) The investigation of a one-dimensional problem in which the boundary condition is
given in terms of a differential equation, i.e. a dynamic boundary condition. The
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Mangroves induced soil salinization 9

properties studied for this model are included in (i)-(v), above. See Section 4 and
[30].

2 The mathematical model: water and soil

Ω

Ω ΓΓ

Γ

ΓΓ

Γ

Γ
top

S

D

latlat

D

D

D

Figure 1. Water, ΩS, and soil, ΩD, connected through the interface Γ.

We consider the space-time domain QT , given as QT = Ω×(0,T ) for T > 0 an arbitrar-
ily given final time and with the space domain Ω ⊂ R3 which we assume, for the physical
derivation of the model, to be of the cylindrical form Ω = B× (−HD,HS), with HD and HS

positive constants, and B⊂ R2, the horizontal cross section, open and bounded.
We assume that Ω is formed by two subdomains, the water domain ΩS = B× (0,HS),

and, below it, the soil (water saturated porous medium) ΩD = B×(−HD,0), both connected
by the interface Γ = B×{0} , being therefore, Ω = ΩS∪Γ∪ΩD. We use the notation (x,z)
for points in Ω, with x ∈ B and z ∈ (−HD,HS). Subscripts S and D stand for Stokes and
Darcy, respectively, which are the names of the approximation equations we use in the
framework of the general Oberbeck-Boussineq approximation, which reads, in the water,
ΩS× (0,T ):

−2µdivD(vS)+∇pS +ρSgez = 0, (5)

divvS = 0, (6)
∂ρS

∂t
+vS ·∇ρS−Dm∆ρS = 0, (7)

for the unknowns vS [ms−1], the velocity field in the water, pS [kgm−1 s−2], the hydro-
dynamic pressure, and ρS [kgm−3], the density. In (5), µ ≈ 10−3 kgm−1 s−1 is the water
dynamic viscosity coefficient, g ≈ 10ms−2 is the modulus of the gravity acceleration and
ez is the vertical vector pointing upwards. Observe that, for constant viscosity, the deforma-
tion rate tensor

D(vS) =
1
2
(∇vS +(∇vS)T ),
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10 G. Galiano

Table 1. Some typical parameter values
Parameter Symbol S.I.
Water density ρ0 1000 kgm−3

Salt density ρsalt 2170 kgm−3

Threshold salt density for mangrove water uptake ρmax 1070 kgm−3

Dynamic viscosity µ 10−3 kgm−1 s−1

NaCl molecular diffusion in water Dm 10−9 m2 s−1

Porosity θ 0.5
Permeability κ 10−11−10−13 m2

Hydraulic conductivity K 7×105[κ]1 ms−1

Mangroves’ transpiration rate τ0 10−8−10−7 ms−1

is such that 2µdiv(D(vS)) = µ∆vS. The water and salt solution density is given as ρS =
ρ(cS), with

ρ(c) = (1− c)ρ0 + cρs, (8)

with cS the salt concentration in percentage points, ρ0 a reference density, e.g., water density
in standard conditions, ρ0 ≈ 1000kgm−3, and ρs ≈ 2170kgm−3, the salt density. We note
that salt concentration in sea water is csea ≈ 3%, well below than saturation concentration
csat ≈ 25%. Moreover, the maximum salt concentration that mangroves may tolerate is
cmax ≈ 6%, always far away from the saturation level. The positive constant Dm is the
molecular diffusion of NaCl in water. Different authors give different (but close) values for
it, ranging from Dm = 1.5× 10−9 m2 s−1, see [47] to Dm = 0.75× 10−9 m2 s−1, see [34].
In the simulations, we take the intermediate value Dm ≈ 10−9 m2 s−1. See Table 1 for
references on standard values of physical parameters.

Regarding the soil subdomain, we consider the case where the mangroves roots are
present within an homogeneous porous medium located below Γ. This porous medium is
characterized by a constant porosity θ≈ 0.5, indicating that we are assuming the mangroves
roots to be homogenized throughout the porous medium, without affecting its properties.
Assuming, as usual, that the fluid flow is governed by Darcy’s law and disregarding den-
sity variations in the mass balance equation of the fluid we find the following system of
equations in the porous medium, ΩD× (0,T ):

vD +
κ
µ
(∇pD +ρDgez) = 0, (9)

divvD +S(·,ρD) = 0, (10)

θ
∂ρD

∂t
+div((ρD−ρ0)vD−θD∇ρD) = 0, (11)

for the unknowns vD, the velocity field in the porous medium, pD, the pressure, and
ρD = ρ(cD), the density of the solute. Parameter κ is the permeability, a measure of the
ability of the porous medium to conduct the fluid, which plays a crucial role in the stability
of the system. The range of values of interest is from κ≈ 10−11 m2, corresponding to well

1 [ · ] denotes a dimensionless value.
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Mangroves induced soil salinization 11

sorted sand, sand and gravel or peat, to κ≈ 10−13 m2 corresponding to very fine sand, silt
or layered clay. The hydrodynamic dispersion tensor D [m2 s−1] is assumed to be constant
and isotropic, and of the form see [31], D = DI, with D = Dm +Dd , Dd the hydrodynamic
dispersion coefficient and I the identity matrix. For small Péclet numbers, as in our man-
groves problem, Dm and Dd are of similar order of magnitude [31], and so is D, implying
that diffusive processes in water and in the porous medium have a similar time scale .

The extraction function S [s−1] is a function satisfying general conditions which will be
described later, see page 14. A typical example we will keep on mind is given by

S(x,z,ρ) =





k(z)
(
1− ρ−ρ0

ρmax−ρ0

)r for ρ0 ≤ ρ≤ ρmax,

0 for ρ > ρmax,

(12)

with r > 0, ρmax = ρ(cmax) and cmax ≈ 6% the maximum salt concentration at which
mangroves may uptake fresh water. The root distribution function k [s−1] satisfies

Z

ΩD

k(z)dxdz = |B|
Z 0

−HD

k(z)dz = k0,

being k0 [m3 s−1] the total amount of root water uptake with no salt present, related to
the corresponding mangrove transpiration rate, τ0, by τ0 = k0/|B| [ms−1]. Observe that
k(z) represents a root distribution homogeneous in the horizontal plane, while the density
dependent term in (12) is a switch mechanism, which stops the roots water uptake when
the threshold salt concentration is attained in a particular zone. We often consider the
following example as root distribution function: let Hroot ∈ (0,HD) denote the depth of the
roots region. We set

k(z) =

{ τ0

Hroot
for z ∈ (−Hroot ,0),

0 for z ∈ (−HD,−Hroot).
(13)

Remark 1 System (9)-(11) has two equilibrium states for constant density. Indeed, assume
ρD is constant. Combining equations (10) and (11) we obtain

(ρD−ρ0)S(·,ρD) = 0,

which, according to definition (12), only has the solutions: (i) ρD = ρ0, and (ii) ρD = ρmax.
These states correspond to trivial situations in which no dynamic is generated due to: (i) no
salt present in the water, and (ii) the threshold level of salt concentration at which mangroves
may uptake water is reached.

2.1 Dimensionless formulation

The main clues for the rescaling are the characteristics scales of space and velocity in the
porous medium domain, where the dynamics of the problem has its origin. A characteristic
velocity in ΩD is given either by the hydraulic conductivity, K ≈ 10−6− 10−8 ms−1 or by
the slower mangroves transpiration rate, τ0 ≈ 10−8 ms−1. We choose the former,

ṽD =
1
K

vD, with K =
κ(ρmax−ρ0)g

µ
. (14)
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12 G. Galiano

The characteristic length in the porous medium may be chosen as that of the mangrove roots
maximum depth, or the depth of the phreatic layer, both in the oder of meters. We take

x̃ =
x
H

, z̃ =
z
H

, with H = HD ≈ 1m . (15)

The corresponding characteristic time is, therefore, given by H/K ≈ 107 s, which is very
short for our pourposes. Another natural characteristic time, more suitable than the previ-
ous, is that implied by the diffusion processes in which we are interested, which may be
taken as

t̃ =
D
H2 t, (16)

which is in the order of tenths of years. The rest of unknowns in ΩD are fixed as follows:

p̃D =
pD−ρ0gHz

(ρmax−ρ0)gH
, uD =

ρ(cD)−ρ0

ρmax−ρ0
, (17)

and f̃ (x̃, z̃,uD) = S(Hx̃,Hz̃,(ρmax − ρ0)uD + ρ0). Setting T̃ = T D/H2 and Ω̃D = 1
H ΩD

equations (9)-(11) transform to (omitting tildes)

vD +∇pD +uDez = 0, (18)

divvD +m f (·,uD) = 0, (19)
∂uD

∂t
+Rdiv(uDvD)−∆uD = 0, (20)

in ΩD× (0,T ), with

R =
KH
θD

, m =
k0

KH2 ≈
τ0

K
. (21)

R is a Rayleigh number while m is a dimensionless number expressing the strength of the
extraction process. Observe that the example for f given by (12) takes the dimensionless
form

f (x,z,uD) = k(z)(1−uD)r
+ (22)

with, for d = Hroot/H ∈ (0,1),

k(z) =
{

1/d if z ∈ [0,d],
0 if z ∈ (d,1].

(23)

The dimensionless analysis in the water domain is more subtle. If there is no extraction
and the water density, ρS, keeps constant then the solution is given by vS = const. and
∇pS =−ρSez. When the extraction starts and the flow of more saline water enters from the
porous medium to the water, the situation in the water is nearly stable since the more saline
water tends to stay at the bottom of ΩS. Therefore, the length scale in ΩS is shorter than in
ΩD, no matter the actual height of the water column. The possible (and weak) dynamical
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Mangroves induced soil salinization 13

effects on the water are mainly restricted to a thin layer over the interface. Taking ṽS = θ
K vS

and a similar rescaling for p̃S and uS than in (17), we obtain (omitting tildes)

−2νdivD(vS)+∇pS +uSez = 0, (24)

divvS = 0, (25)
∂uS

∂t
+RvS ·∇uS−∆uS = 0, (26)

in ΩS× (0,T ), with ν = θκ/H2. For typical physical values of the system parameters, see
Table 1, we have

R≈ 102−104, m≈ 10−3−1, ν≈ 10−12. (27)

It is clear that the order of magnitude of the coefficient ν of the viscous term is very small
when compared with the other terms. However, from the mathematical point of view, if
the water domain is to be taken into account, the viscous term is necessary for the well
possedness of the problem. In Section 3 we neglect the water domain and study the problem
only in the porous medium.

Auxiliary conditions: The boundary conditions depend on the particular physical situation
we want to model. For simplicity, we think in a spatial domain which is isolated from
horizontal and upward fluxes. This translates onto, for h = HS/HD,

vS = 0 and ∇uS ·nS = 0 on ∂B× (0,h)× (0,T ), (28)

vD ·nD = ∇uD ·nD = 0 on ∂B× (−1,0)× (0,T ). (29)

vD ·nD = ∇uD ·nD = 0 on B×{−1}× (0,T ), (30)

with nS and nD the outward unit normal vectors to ΩS and ΩD, respectively.
In the top boundary, Γtop = B×{h}, the situation is more complicated. Due to the

extraction term in (19), a continuous extraction of water takes place in the porous medium,
ΩD, which must be either compensated by a decrease of the water level in ΩS either by an
inflow of the same quantity of water through the top boundary. First alternative implies the
consideration of a variable water domain while second possibility translates to the following
compatibility condition

Z

Γtop

vS ·n =−m
Z

ΩD

f (·,uD) for a.e. t ∈ (0,T ). (31)

Since both alternatives add important mathematical difficulties to the problem, a first sim-
plifying step is to consider that the volume of water extracted by the mangroves roots from
ΩD is small when compared to the total volume of water in ΩS, allowing us to assume that
neither the boundary of this domain moves nor the water volume changes (significatively).
Then, ignoring the compatibility condition (31), we assume

vS = 0 and uS = utop on Γtop× (0,T ), (32)

with utop = (ρ(ctop)−ρ0)/(ρmax−ρ0) prescribing the salt concentration in the top bound-
ary, which normally results from a mixture of sea and fresh water.

The transmission conditions on the interface Γ is a very subtle question which has been
object of intense investigation, see Beavers and Joseph [9] and Saffman [52] for pioneering
works or Jäger and Mićelik [36], for a more recent discussion. Following the current trend,
we set them in the following way:
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14 G. Galiano

• Mass conservation:

vS ·nS +vD ·nD = 0. (33)

• Balance of normal forces:

pS−2νnS ·D(vS) ·nS = pD. (34)

• Beavers-Joseph-Saffman condition:

vS · τ j =−2
√

κ
α

nS ·D(vS) · τ j, (35)

with τ j, j = 1,2 an orthogonal system of tangent vectors on Γ, κ the porous medium
permeability and α > 0 an experimentally determined dimensionless parameter.

• Continuity for concentration and normal component of concentration flow:

uS = uD and ∇uS ·nS +∇uD ·nD = 0. (36)

We , finally, prescribe initial conditions:

vS(·,0) = v0 and uS(·,0) = uS,0 on ΩS, (37)

uD(·,0) = uD,0 on ΩD. (38)

with uS,0 = (ρ(cS,0)−ρ0)/(ρmax−ρ0) and uD,0 = (ρ(cD,0)−ρ0)/(ρmax−ρ0).

Although for the deduction of some properties such as stability, or for the numerical
simulations we will keep the present approach, we may generalize our assumptions on
the set Ω and the function f for the proof of existence of solutions and other qualitative
results. The main property function f should satisfy, apart from regularity requirements, is
to switch off the dynamics of the system (water extraction by mangroves roots) when the
solute concentration, uD, reaches the threshold value uD = 1.

Hypothesis and definitions

H1. The spatial domain Ω⊂ Rn is bounded and decomposed in two subdomains, ΩS and
ΩD, such that ΩS ∩ΩD = /0 and Ω̄S ∩ Ω̄D = Γ̄, for an open set Γ ⊂ Rn−1, implying
Ω = ΩS∪ΩD∪Γ. The boundary of Ω, ∂Ω, is Lipschitz continuous and decomposed
as ΓS = (∂Ω∩∂ΩS)/Γ and ΓD = (∂Ω∩∂ΩD)/Γ. We further assume that ΓS = Γtop∪
Γlat , with Γtop∩Γlat = /0 and with Γtop of positive n−1 dimensional measure.

H2. The function f : Ω̄D× [0,1]→ R satisfies

f (x, ·) ∈C([0,1]) for a.e. x ∈ΩD,

f (·,s) ∈ L∞(ΩD) for all s ∈ [0,1],
f (x, ·) is non-increasing in [0,1] and f (x,1) = 0 for a.e. x ∈ΩD.

Note that, in particular, f ≥ 0 in Ω̄D× [0,1].
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Mangroves induced soil salinization 15

H3. The initial and boundary data posses the regularity

u0 ∈ L∞(Ω) and 0≤ u0 ≤ 1 a.e. in Ω,

utop ∈ H1(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) and 0≤ utop ≤ 1 a.e. in QT .

H4. The numbers ν, R and m are positive.

The boundary conditions (28)-(32) are redefined as

vS = 0 on ΓS× (0,T ), (39)

uS = utop on Γtop× (0,T ), (40)

∇uS ·nS = 0 on Γlat × (0,T ), (41)

vD ·nD = ∇uD ·nD = 0 on ΓD× (0,T ). (42)

The problem under study is formed by the systems of equations in the water, (24)-(26),
and in the soil (18)-(20), together with the boundary conditions (39)-(42), the transmission
conditions (33)-(36) and the initial data (37) and (38). We shall refer to this problem as to
Problem P.

2.2 Existence of solutions

In this section we provied the usual functional setting for developing a suitable notion of
weak solution for Problem P. For constant concentration, the resulting mathematical model,
known as the Stokes-Darcy model, has been recently but widely treated in the literature.
See [9,36,48] for pioneering work on the subject and Layton, Schieweck and Yotov [40] as
a fundamental reference for the results in this section.

The treatment of variable concentration is more recent and different approaches and for-
mulations has been introduced to deal with it, normally motivated either by the mathemat-
ical difficulties inherent to the numerical discretization, either by the diversity of situations
the model apply to. Since our aim here is proving the well possedness of the problem, we
do not need to dive into the mathematical subtleties of the numerical analysis and therefore,
may give a rather simple proof. Observe that for our application, the water domain is not
specially significant since the dynamics of the problem is originated in the subsurface and
the consequences of such dynamics do not affect substantially to the water domain. Indeed,
the salinization of the soil is a stable situation in the water region since heavier water tends
to stay at the bottom and only moves at the low velocities induced by diffusion. The most
remarkable effect when considering the water above the soil is related to physical situations
in which the water is trapped in its domain (no water inflow into the water region) causing a
slow but progressive salinization of the full system water-soil, see Section 4. However, we
feel that showing the well possedness of the entire water-soil model for general conditions
is a good starting point for latter particularization.

We will prove the existence of solutions of Problem P as globally defined functions
in Ω. We start by considering two problems which result from uncoupling concentration
and flow equations and, once that we prove the well possedness of these problems and we
find suitable estimates on their solutions, we apply the Shauder’s fixed point theorem to an
operator which couples both problems and provides a solution of the original problem.
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16 G. Galiano

Let us introduce the flow space

H0(div,Ω) =
{

φ ∈ L2(Ω)n : divφ ∈ L2(Ω) and φ ·n = 0 on ∂Ω
}

,

with norm

‖φ‖H0(div,Ω) = (‖φ‖2
L2(Ω) +‖divφ‖2

L2(Ω))
1/2,

and consider the subspace WT ⊂ L2(0,T ;H0(div,Ω)) of divergence bounded vectors

WT =
{

φ ∈ L2(0,T ;L2(Ω)n) : divφ ∈ L∞(QT )
}

with norm

‖φ‖WT
= (‖φ‖2

L2(QT ) +‖divφ‖2
L∞(QT ))

1/2.

The concentration problem: Let ṽ ∈ L2(0,T ;H0(div,Ω))∩WT be given and set u =
(uS,uD). The problem is to find u : Q̄T → R such that

∂u
∂t

+Rdiv(uṽ)−∆u = 0 in QT , (43)

u = utop on Γtop× (0,T ), (44)

∇u ·n = 0 on ΓN × (0,T ), (45)

u(·,0) = u0 on Ω, (46)

with ΓN = ∂Ω/Γ̄top.

The flow problem: We follow the approach of [40]. We start with the formulation split-
ted in water and porous medium domains. Let ũ ∈ L2(QT ) be given and set ũS = ũ|S ∈
L2(0,T ;ΩS) and ũD = ũ|D ∈ L2(0,T ;ΩD). Find vS : Ω̄S× [0,T ]→Rn, pS : Ω̄S× [0,T ]→R,
vD : Ω̄D× [0,T ]→ Rd and pD : Ω̄D× [0,T ]→ R such that, for a.e. t ∈ (0,T ),

−2νdivD(vS)+∇pS =−ũSez in ΩS, (47)

divvS = 0 in ΩS, (48)

vS = 0 on ΓS, (49)

and

vD +∇pD =−ũDez in ΩD, (50)

divvD =−m f (·, ũD) in ΩD, (51)

vD ·nD = 0 on ΓD, (52)

together with the transmission conditions on the interface Γ given by (33)-(35).

Despite this two-domains formulation of the flow problem, a weak global formulation
may be defined and proved to be well-posed, see [40]. On the other hand, the existence
and uniqueness of weak solutions of the concentration problem is also a well known issue,
see [1, 39]. We may therefore define the operator

S : L2(QT )→ L2(QT ), S(ũ) = u, (53)
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Mangroves induced soil salinization 17

where u is the weak solution of the concentration problem, (43)-(46), corresponding to ṽ =
v, being v = (vS,vD) the global weak solution of the flow problem, (47)-(52), corresponding
to ũ. Clearly, a fixed point of S is a solution of the whole Problem P.

Before proving the existence of such fixed point we give suitable estimates of the solu-
tions of the uncoupled problems. For defining the flow problem (47)-(52) globally in Ω we
need to introduce some functional tools. We start by defining, for all s ∈ [0,1]

F(x,s) =
{

0 if x ∈ΩS,
m f (x,s) if x ∈ΩD.

(54)

Following [40], let

XS =
{

φS ∈ H1(ΩS)n : φS = 0 on ΓS
}

, (55)

equipped with the norm

‖φS‖XS = ‖∇φS‖L2(Ω)n ,

and MS = L2(ΩS), denote the usual velocity-pressure spaces on ΩS. The velocity space XD

on ΩD is the subspace of

H(div;ΩD) =
{

φD ∈ L2(Ω)n : divφS ∈ L2(Ω)
}

(56)

consisting on functions with zero normal trace on ΓD and equipped with the norm

‖φD‖H(div;ΩD) = (‖φD‖2
L2(ΩD)n +‖divφD‖2

L2(ΩD))
1/2.

Since the restriction of φD ·nD may not lie in H−1/2(ΓD), we define [58]

XD =
{

φD ∈ H(div;ΩD) : 〈φD ·nD,w〉ΓD = 0 for all w ∈ H1
0,Γ(ΩD)

}
,

where 〈·, ·〉B denotes scalar product in L2(B) and

H1
0,Γ(ΩD) =

{
w ∈ H1(ΩD) : w = 0 on Γ

}
.

The pressure space is, as usual, MD = L2(ΩD). Defining X = XS×XD, we represent φ ∈ X
as φ = (φS,φD), with φS ∈ XS and φD ∈ XD. The norm on X is, then

‖φ‖X = (‖φS‖2
XS

+‖φD‖2
XD

)1/2.

Similarly, we define M as

M = {q = (qS,qD) ∈MS×MD : 〈qS,1〉ΩS + 〈qD,1〉ΩD = 0} ,

with norm

‖q‖M = (‖qS‖2
L2(ΩS) +‖qD‖2

L2(ΩD))
1/2.

The procedure to deduce a weak formulation for the flow problem is as usual, multiplying
the equations of the strong formulation (47)-(52) by test functions, integrating by parts,
using the boundary and interface conditions and adding the resulting identities. In order to
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18 G. Galiano

write down these identities, we begin by defining the following bilinear forms for the global
functions v = (vS,vD), φ = (φS,φD), etc.,

a(v,φ) = ν〈∇vS,∇φS〉ΩS + 〈vD,φD〉ΩD +
να√

κ

n−1

∑
j=1
〈vS · τ j,φ · τ j〉Γ, (57)

b(φ,q) =−〈qS,divφS〉ΩS −〈qD,divφD〉ΩD . (58)

Observe that the third term at the right hand side of (57) captures the Beavers-Joseph-
Saffman condition. The other transmission conditions manifests through the flux continuity
condition (33) and the definition of the Lagrange multiplier, λ, given by

pS−2νnS ·D(vS) ·nS = λ = pD on Γ. (59)

Indeed, the following interface term appears after the integration by parts
Z

Γ
(pS−2νnS ·D(vS) ·nS)φS ·nS +

Z

Γ
pDφD ·nD. (60)

Using (59) in (60) we get
Z

Γ
λ(φS ·nS +φD ·nD), (61)

which we want to vanish for φ = v, due to the flux continuity condition (33). Instead of
adding this term into the set of equations to solve, we incorporate it to the space of admis-
sible functions for being solutions of our problem. The task here is to select an appropriate
space for the bilinear form (61), or written in another way,

bI(φ,µ) = 〈φS ·nS +φD ·nD,λ〉Γ, (62)

to be continuous in X ×Λ, for some functional space, Λ, of Langrange multipliers defined
on Γ. It is proved in [40] that a satisfactory choice is Λ = H1

00(Γ) (a subspace of L2(Γ), see
[44]). With this choice, the space of functions of X satisfying the flux continuity condition
(33) given by

V =
{

φ ∈ X : bI(φ,µ) = 0 for all µ ∈ H1
00(Γ)

}
, (63)

is a closed subspace of X , from whose inherits the norm. Other properties of this formula-
tion are proved in [40], leading to the following result.

Lemma 1 For any ũ ∈ L2(QT ) there exists a unique weak solution (v, p) ∈ L2(0,T ;V )×
L2(0,T ;M) of the flow problem, defined as

{
a(v,φ)+b(φ, p) =−〈ũez,φ〉Ω for all φ ∈V,
b(v,q) =−〈F(·, ũ),q〉Ω for all q ∈M,

(64)

for a.e. t ∈ (0,T ). In addition v ∈WT , ‖v‖WT
≤ c, and the norms

‖v‖L2(0,T ;X), ‖p‖L2(QT ) (65)

are bounded by c(‖ũ‖L2(QT ) +1), with c independent of ũ.
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Proof. The proof of existence and uniqueness of solutions is a direct consequence of Theo-
rem 3.1 of [40]. We now prove the uniform estimates. Let (v, p)∈ L2(0,T ;V )×L2(0,T ;M)
be the solution of problem (64) and let c denote a generic constant independent of ũ whose
value may change along the proof. As in Lemma 3.2 of [40], we may construct a test
function φ ∈V such that, for a.e. t ∈ (0,T )

divφ = p in Ω, φ = 0 on ∂Ω, and ‖φ‖X ≤ c‖p‖M. (66)

Using this test function in the second equation of (64) we get

‖p‖2
L2(Ω) = b(φ, p) =−a(v,φ)−〈ũez,φ〉Ω ≤ c1‖v‖X‖φ‖X +‖ũ‖L2(Ω)‖φ‖L2(Ω). (67)

Poincare’s inequality and the estimate in (66) give

‖p‖L2(Ω) ≤ c
(‖v‖X +‖ũ‖L2(Ω)

)
. (68)

Lemma 2.2 of [40] implies that divv ∈ L2(QT ) and the second equation of (64) implies that
divv = c+F(·, ũ) a.e. in QT . Therefore, due to Hypothesis H2 on the boundedness of f we
get

‖divv‖L∞(Ω) ≤ c, (69)

and hence ‖v‖WT
≤ c. On the other hand, using v as test function in the first equation of

(64), we obtain

a(v,v) =−〈ũez,v〉Ω + 〈F(·, ũ), p〉Ω ≤ ‖ũ‖L2(Ω)‖v‖L2(Ω) + c‖ũ‖L2(Ω)‖p‖L2(Ω), (70)

where we used Hypothesis H2. Poincare’s inequality and (68) imply

a(v,v)≤ c‖ũ‖L2(Ω)(‖v‖X +‖ũ‖L2(Ω)). (71)

Finally, since ‖v‖2
X ≤ (a(v,v)+‖divv‖2

L2)1/2, we deduce (65) from a combination of (68),
(69) and (71), Young’s inequality and integration in (0,T ). 2

For the concentration problem, we consider the closed subspace of H1(Ω) given by

V =
{

ϕ ∈ H1(Ω) : ϕ = 0 on Γtop
}

,

and equipped with the norm ‖v‖V = ‖∇v‖L2(Ω).

Lemma 2 For any ṽ ∈ L2(0,T ;H0(div,Ω))∩WT there exists a unique weak solution, u, of
the concentration problem (43)-(46), defined as

u ∈ utop +L2(0,T ;V )∩H1(0,T ;V ′)∩L∞(QT )

< ut ,ϕ > +R
Z

Ω
ϕṽ ·∇u+

Z

Ω
∇u ·∇ϕ =

Z

Ω
uF(·,u)ϕ, (72)

lim
t→0

‖u(·, t)−u0‖L2(Ω) = 0,

for all ϕ ∈ V ∩L∞(Ω) and for a.e. t ∈ (0,T ). In addition, the norms

‖u‖L∞(QT ), ‖u‖L2(0,T ;V ), ‖ut‖L2(0,T ;V ′),

are bounded in terms of the norms ‖u0‖L∞(Ω), ‖ṽ‖L2(0,T ;H0(div,Ω))∩WT
, and

‖utop‖H1(0,T ;L2(Ω))∩L2(0,T ;H1(Ω))∩L∞(QT ).

Finally, it holds
min{utop,u0} ≤ u≤ 1 a.e. in QT .
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Proof. We consider a sequence {ṽn} ⊂ L∞(0,T ;L∞(Ω)d)∩L2(0,T ;X)∩WT such that

ṽn → ṽ strongly in L2(0,T ;X),

and consider problem (72), with ṽ replaced by ṽn. Theorem 1.7 of [1] ensures the existence
of a unique weak solution, un to such problem. We now obtain some uniform estimates for
norms of un.
L∞(QT ) estimate. We prove that min{utop,u0} ≤ un ≤ 1 a.e. in QT . Using in (72) (with ṽ
replaced by ṽn) the admissible test function T (un), where T is the Stampaccia truncature
function T (s) = s−1 for s > 1 and T (s) = 0 for s≤ 1, we obtain, after integration by parts

d
dt

Z

Ω
T (un)≤ ‖div(ṽn)‖L∞(QT )

Z

Ω
T (un).

where T is the primitive of T with T (0) = 0. Gronwall’s Lemma implies T (un) = 0 in
QT , and then un ≤ 1 in QT . Since ṽn → ṽ strongly in L2(0,T ;X) and div ṽ ∈ L∞(QT ), the
estimate un ≤ 1 is valid for all n. To prove un ≥ min{utop,u0} one first prove that un ≥ 0
using a Stampaccia truncature function, as above. Then, once we know that unF(·,un)≥ 0,
we apply the maximum principle to conclude.
Energy estimate. We use ϕ = un−utop ∈ L2(0,T ;V )∩L∞(QT ) as test function. Standard
inequalities give us, after integration in (0,T ),

1
4

Z

Ω
un

2(T )+
1
2

Z

QT

|∇un|2 ≤ 1
2

Z

Ω
u2

0 +2
Z

QT

un
2 +4

Z

Ω
u2

top(T )

+4
Z

QT

|ṽn|2 +4
Z

QT

(|utop,t |2 + |∇utop|2 +u2
top), (73)

and Gronwall’s Lemma implies

‖un‖L∞(L2) +‖un‖L2(V ) ≤C,

with C depending only on norms of utop, u0 and on the L2(QT ) norm of ṽn. Observe that
since ṽn → ṽ strongly in L2(QT ), C may be taken independent of n.
Time derivative estimate. Integrating by parts in the convective term of (72) we obtain

< unt ,ϕ >=
Z

Ω
un div(ϕṽn)−

Z

Ω
∇un ·∇ϕ+

Z

Ω
un f (·,un)ϕ,

from where

< unt ,ϕ >≤ c1‖∇ϕ‖L2(Ω) + c2‖ϕ‖L2(Ω),

with c1 = (‖ṽn‖L2(Ω) + ‖∇un‖L2(Ω)) and c2 = (‖div ṽn‖L∞(Ω) + ‖un‖L2(Ω)). Therefore
‖unt‖V ′ ≤C, with C independent of n for similar reasons than above.

We deduced that the sequence un is uniformly bounded with respect to n in the space
L2(0,T ;V )∩H1(0,T ;V ′)∩L∞(QT ). Therefore, there exists a subsequence un and a func-
tion u ∈ L2(0,T ;V )∩H1(0,T ;V ′)∩ L∞(QT ) such that un → u weakly in L2(0,T ;V )∩
H1(0,T ;V ′) and weakly star in L∞(QT ). In addition, applying Aubin’s Lemma we deduce
that un → u strongly in L2(QT ) and that u ∈ C((0,T ],L2(QT )). Passing now to the limit
n→ ∞ in the formulation (72) is straightforward. 2
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Theorem 1 Assume H1-H3. Then there exists a weak solution v ∈ L2(0,T ;V )∩WT , p ∈
L2(0,T ;M) and u ∈ utop +L2(0,T ;V )∩H1(0,T ;V ′)∩L∞(QT ) of Problem P, defined as:

a(v,φ)+b(φ, p) =−〈uez,φ〉Ω for all φ ∈V, (74)

b(v,q) =−〈F(·,u),q〉Ω for all q ∈M, (75)

< ut ,ϕ > +R
Z

Ω
ϕv ·∇u+

Z

Ω
∇u ·∇ϕ =

Z

Ω
uF(·,u)ϕ, for all ϕ ∈ V ∩L∞(Ω)(76)

for a.e. t ∈ (0,T ), and with the initial datum satisfied in the sense

lim
t→0

‖u(·, t)−u0‖L2(Ω) = 0.

In addition,

min{utop,u0} ≤ u≤ 1 a.e. in QT . (77)

Proof. We check the hypothesis of the Schauder’s fixed point theorem, for the mapping S
defined in (53). These are: (i) S : L2(QT )→ L2(QT ) is continuous, (ii) S is compact, and
(iii) the set

Λ := {u ∈ L2(QT ) : u = λS(u), for all λ ∈ [0,1]} is bounded.

(i) S is continuous. Consider a sequence ũn such that ũn → ũ strongly in L2(QT ). We
have to prove that S(ũn) → S(ũ) strongly in L2(QT ). We have that S(ũn) = un with un

the solution of problem (72) corresponding to ṽn, where ṽn is the first component of the
solution of problem (64) corresponding to ũn. Lemma 1 implies ṽn ∈ L2(0,T ;V )∩WT and
p̃n ∈ L2(0,T ;M) with uniform bounds in the norms of these spaces. Therefore, Lemma 2
implies that the norms

‖un‖L∞(QT ), ‖un‖L2(0,T ;V ), ‖unt‖L2(0,T ;V ′),

are uniformly bounded with respect to n. Hence, there exist functions u ∈ utop +
L2(0,T ;V )∩H1(0,T ;V ′)∩L∞(QT ), ṽ ∈ L2(0,T ;V )∩WT and p̃ ∈ L2(0,T ;M), and sub-
sequences un, ṽn, p̃n in these spaces such that

ṽn → ṽ weakly in L2(0,T ;V ), (78)

div ṽn → div ṽ weakly star in L∞(QT ), (79)

p̃n → p̃ weakly in L2(0,T ;M), (80)

un → u weakly star in L∞(QT ), (81)

un → u weakly in L2(0,T ;V ), (82)

unt → ut weakly in L2(0,T ;V ′). (83)

From (82) and (83) and Aubin’s theorem we deduce that

un → u strongly in L2(QT ), u ∈C([0,T ];L2(Ω)).

From the formulations of problems (64) and (72) we have

a(ṽn,φ)+b(φ, p̃n) =−〈ũnez,φ〉Ω for all φ ∈V, (84)

b(ṽn,q) =−〈F(·, ũn),q〉Ω for all q ∈M, (85)
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for a.e. t ∈ (0,T ), and

< unt ,ϕ > +
Z

Ω
ϕṽn ·∇un−

Z

Ω
∇un ·∇ϕ =

Z

Ω
unF(·,un)ϕ, (86)

for all ϕ ∈ V ∩L∞(Ω) and for a.e. t ∈ (0,T ). Since, by assumption, ũn → ũ strongly in
L2(QT ) and f (x, ·) is continuous for a.e. x ∈ Ω, taking the limit n → ∞ in (84)-(85) and
using (78)-(80) we obtain

a(ṽ,φ)+b(φ, p̃) =−〈ũez,φ〉Ω for all φ ∈V, (87)

b(ṽ,q) =−〈F(·, ũ),q〉Ω for all q ∈M, (88)

for a.e. t ∈ (0,T ). Passing to the limit n→ ∞ in (86) is straightforward, with the exception
of the convective term, since both sequences are only weakly convergent. Integrating by
parts, we obtain

Z

Ω
ϕṽn ·∇un =−

Z

Ω
ϕun div ṽn−

Z

Ω
unṽn ·∇ϕ.

For the first term at the right hand side we use that un → u strongly in L2(QT ) and that
div ṽn → div ṽ weakly star in L∞(QT ). For the second, again that un → u strongly in L2(QT ),
that ‖un‖L∞(QT ) is uniformly bounded, and that ṽn → ṽ weakly in L2(QT ).

Finally, observe that the uniqueness of solutions of problems (84)-(85) and (86) implies
that not only a subsequence but the whole sequence converges.

(ii) S is compact. From the previous analysis, we know that for all û ∈ L2(QT ), u = S(û) ∈
L2(0,T ;V )∩H1(0,T ;V ′), which is compactly embedded in L2(QT ), and therefore S is
compact.

(iii) Λ is bounded. This property is straightforward to check.
Therefore, the hypothesis of the fixed point theorem are verified and the existence of

a weak solution of Problem P is proven. Finally, observe that property (77) is a straight-
forward consequence of the similar property proven for the sequence un of solutions of the
concentration problem. 2

3 The soil model

A first approximation to the problem is studying the behavior of the system only in the
porous medium, assuming that the influence of the water domain may be reduced to its
effect on the interface water-porous medium. In this situation, the interface conditions
become boundary conditions for the problem in ΩD. The formulation of the problem is
then: Find u, p : Q̄T → R and v : Q̄T → Rn such that

ut +div(Ruv−∇u) = 0, (89)

divv+m f (·,u) = 0, (90)

v+∇p+uez = 0, (91)

in QT = Ω×(0,T ), with R and m given by (21). We replace Hypothesis H1 on the properties
of the spatial domain ΩS∪ΩD for the following hypothesis for Ω = ΩD:
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H′
1. The spatial domain Ω⊂Rn is bounded and its boundary, ∂Ω, is Lipschitz continuous

and decomposed as ∂Ω = Γtop ∪ΓN , with Γtop ∩ΓN = /0 and with Γtop of positive
n−1 dimensional measure.

The rest of hypothesis (H2)-(H4) remain the same with some straightforward modifications.
The following boundary conditions are obtained from the transmission conditions of the
original problem:

u = utop, p = 0 on Γtop× (0,T ), (92)

∇u ·n = v ·n = 0 on ΓN × (0,T ). (93)

The condition on the pressure is deduced from the balance of normal forces in the water-soil
interface, Γ. Indeed, assuming that the velocity in the water is constant, we get from (34)
pD = pS. Moreover, if the concentration in the water, cS is assumed to be constant too, then
from (24) we deduce that pS does not depend on the horizontal variables and, therefore,
pD equals a constant, say ptop, on the interface Γ, which is now the top boundary, Γtop of
Ω. Therefore, changing the unknown p to p− ptop in (91) and in the boundary condition
renders the problem as stated in (89)-(93). Finally, a non-negative initial distribution, u0, is
considered to close the problem

u(·,0) = u0 in Ω. (94)

The proof of existence of solutions of (89)-(94) is a straightforward modification of Theo-
rem 1 for the water-soil problem, see [23] for details. We start the study of this model by
the simplest situation, that of a one-dimensional spatial domain.

3.1 The 1-D model

If the mangroves are uniformly distributed throughout the x,y-plane and there is no lateral
fluid flow, a first approach is studying the problem restricted to the one-dimensional z direc-
tion in the porous medium domain. By defining ṽ = Rv we see that in the one-dimensional
model parameters R and m actually operate as a single parameter

m1 := Rm =
τ0H
θD

≈ (20,200). (95)

The problem then reads as follows (omitting tildes). Let QT := Ω× (0,T ) with Ω := (0,1)
and T > 0 arbitrarily chosen. Find u,v : Q̄T → R such that

ut +(uv−uz)z = 0, (96)

vz +m1 f (·,u) = 0, (97)

in QT , with the auxiliary data

u(0, t) = utop(t), uz(1, t) = v(1, t) = 0, for 0 < t < T, (98)

u(z,0) = u0(z) for z ∈Ω. (99)
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3.2 The 1-D stationary problem

The equilibrium state to which solutions of problem (96)-(99) evolve when t →∞ is simple
enough to give us some quantitative insight in the properties of the model. The problem
reads

(uv−u′)′ = 0 (100)

v′+m1 f (z,u) = 0, (101)

in Ω, with boundary conditions

u(0) = utop, u′(1) = v(1) = 0, (102)

where primes denote differentiation with respect to z. The existence of solutions of this
problem is obtained via a change of unknown together with well known results on the theory
of nonlinear equations, see (108) below for the details. For the moment, we concentrate in
an interesting qualitative property of the stationary problem which is common to all the
models appearing in this work: the existence (formation, for evolution problems) of a dead
core, i.e., of a non-trivial set in Ω where the salt concentration attains its threshold level
u = 1. Although we shall prove this property with a high degree of generality in Section 5,
we give here a simpler and more intuitive proof for the case of problem (100)-(102).

Integrating equations (100) and (101) in (z,1), using the boundary conditions and as-
suming that f has the form of example (22) we obtain

v(z) = m1

Z 1

z
f (s,u(s))ds ∈ (0,m1], and u′(z) = u(z)v(z)≥ 0 for z ∈Ω. (103)

In particular, u is an non-decreasing function and therefore, if u(z∗) = 1 for some z∗ ∈ (0,1)
then u(z) = 1 for all z ∈ (z∗,1). For convenience, we change the unknown u to ϕ = 1−u,
which satisfies L1(ϕ) = 0, ϕ(0) = 1−utop and ϕ′(1) = 0, with

L1(ϕ) =−ϕ′′+ vϕ′+m1k(z)(1−ϕ)ϕr.

To show conditions under which ϕ = 0 (i.e. u = 1) in some subset of Ω we use the compar-
ison principle which states that if ψ is a solution of

−L1(ψ)≥ 0, ψ(0) = 1−utop and ψ′(1) = 0, (104)

then ψ≥ϕ in Ω. Therefore, if we are able to construct a solution of (104) such that ψ(z) = 0
for z ∈ (z∗,1) then it necessarily holds ϕ(z) = 0 for z ∈ (z∗,1). In the following theorem we
give conditions under which a supersolution of (104) vanishing in Ω does exist.

Theorem 2 Let (u,v) be a solution of (100)-(102) corresponding to f given by (22) and
define

ξ(r) = 2
1+ r

(1− r)2 +
2m1

1− r
.

Assume that the data problem satisfy

(1−utop)1−r

utop
<

m1

ξ(r)
. (105)

Then there exists z∗ < 1 such that u(z) = 1 for z ∈ (z∗,1).
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Figure 2. In black, region of validity of inequality (105) for m1 = 100.

Proof. We have that (103) implies vψ′ ≥ m1ψ′ and therefore, if ψ satisfies L2(ψ) ≥ 0,
ψ(0) = 1−utop and ψ′(1) = 0, with

L2(ψ) =−ψ′′+m1ψ′+m1(1−ψ)k(z)ψr, (106)

then it also satisfies (104). Consider the function

ψ(z) :=

{
a(z∗− z)

2
1−r if z ∈ (0,z∗),

0 if z ∈ (z∗,1).
(107)

Then, the boundary conditions imply z∗ =
(1−utop

a )(1−r)/2, and a necessary condition for a
dead core of positive measure to exist is z∗ < 1, i.e., a > 1−utop. For z < z∗, we have

L2(ψ(z)) = (z∗− z)2r/(1−r)ar
(

m1−a1−r(2
1+ r

(1− r)2 +
2m1

1− r
(z∗− z)

)−m1a(z∗− z)2/(1−r)
)
.

Since r < 1 and z∗− z and a must be positive, we have that if

m1 ≥ a1−rξ(r)+m1a,

then L2(ψ(z))≥ 0. Therefore, we search for conditions for a satisfying

1−utop < a < 1 and
a1−r

1−a
≤ m1

ξ(r)
.

Since the function a1−r/(1−a) is increasing, it suffices to have (105) 2

Regarding the existence of solutions, observe that from (103) and the boundary data
u(0) = utop we obtain that u ≥ utop in Ω. As mentioned in Remark 1, the case utop = 0
leads to the trivial solution u = 0. Therefore, we assume utop > 0, which allow us to define

w(z) := logu(z) for z ∈ Ω̄, (108)

for which we find the boundary value problem

w′′+g(z,w) = 0 for z ∈Ω, w(0) = logutop, w′(1) = 0, (109)
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Table 2. Data for numerical experiments
Experiment 1 2 3 4 5 6 7 8

utop 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50
m1 20 20 200 200 20 20 200 200
r 1 0.5 1 0.5 1 0.5 1 0.5

with g(z,w) := m1 f (z,ew). As a consequence of Hypothesis H2, function g satisfies:




(a) g(z, ·) ∈C((−∞,0]) for a.e. z ∈Ω;

(b) g(·,s) ∈ L∞(Ω) for all s ∈ (−∞,0];

(c) g(z, ·) is non-increasing in (−∞,0] and g(z,0) = 0 for a.e. z ∈Ω.

We can apply well-known results (see, e.g., [18]) to prove the existence of solutions of
problem (109) in the class W 1,1(Ω). By the additional regularity in (b) it is straightforward
to show that solutions of (109) belong to W 2,∞(Ω) (note that W 1,1(Ω)⊂ L∞(Ω) in one space
dimension). Finally, due to (c), we observe that the solution of (109) depends monotonically
in utop. We also point out that the possible non-Lipschitz continuity of f (z, ·) carries over
to g(z, ·).

A numerical experiment. We used formulation (109) to construct a discrete scheme, based
on Newton’s method, for approximating solutions of the steady problem (96)-(99). Data
was fixed as follows. We used two extremal values for the extraction number m1 = τ0H/θD,
m1 = 20 and m1 = 200. Since we take the depth of the domain as H = 1m (roots occupy-
ing the first 25 cm, i.e. d = 0.25), the porosity θ = 0.5, and the diffusion coefficient as
D = 10−9 m2 s−1, the above values of m1 imply τ0 = 10−7 ms−1 and τ0 = 10−8 ms−1, re-
spectively, which is in good concordance with experimental data, see [46]. We also play
with the value of salt concentration at the top boundary: utop = 0.25, corresponding to a
50-50 mixture of fresh water and sea water, and utop = 0.5, corresponding to sea water salt
concentration. Finally, values r = 0.5 and r = 1 of the power in function f are explored.
More concretely, we test our model in eight experiments corresponding to data on Table
2 We show the results in Figure 3. We observe that the variation of parameters m1 and r
has qualitatively different results. While power r on function f determines the possibility
of concentration reaching the threshold value u = 1 according to values r ≥ 1 or r < 1, its
effect on the quantitative increment of salt concentration is not as large as the variation on
m1, the parameter expressing the strength of the fresh water uptaking.

3.3 The 1-D evolution problem

Existence of solutions of the one-dimensional evolution problem (96)-(99) is again a
straightformward consequence of Theorem 1. However, due to the great simplification
which involves considering the mass conservation equation divv = m f (·,u) in one space
dimension, which allows to eliminate the Darcy’s law from the problem, the solutions of
(96)-(99) may be shown to be strong solutions, i.e., functions (u,v) which satisfy (96)-(99)
in the sense of L2(QT ) and not just in a weak sense. In fact, if the boundary and initial data
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Figure 3. Salt concentration corresponding to Experiments 1-8. Curves are ordered increasingly
according to experiment number. Solid and dotted curves correspond to m1 = 200 and m1 = 20, re-
spectively. Among them, concentration corresponding to r = 0.5 is always above that corresponding
to r = 1. Vertical line is roots depth.

are smooth enough and satisfy certain compatibility condition and if we assume, as usual, a
functional form for f of the type (22) then we have, as a result of classical regularity theory,
see [39],

u ∈C2+r,1+ r
2 (Q̄T ),

v ∈C1+r,r(Q̄T ).

3.3.1 Qualitative properties of solutions

Theorem 3 1. Uniqueness of solutions. Let (u1,v1) and (u2,v2) be two strong solutions
of problem (96)-(99). If either

f (z, ·) is Lipschitz continuous in [0,1] for almost all z ∈Ω, (110)

or anyone of the solutions satisfies

u(z, t) >
Z z

0
|uz(y, t)|dy a.e. in QT , (111)

then (u1,v1) = (u2,v2) a.e. in QT .

2. Comparison of solutions. Assume now that (u1,v1) and (u2,v2) correspond to ordered
data, i.e. u1,top ≤ u2,top in (0,T ) and u10 ≤ u20. Then, if

uiz ≥ 0 in QT and ui,top > 0 in (0,T ], (112)

for either i = 1 or i = 2, then

u1 ≤ u2 and v1 ≥ v2 in QT .
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Remark 2 1. By (103) we have that the solution of the stationary problem is monotonic
in space. Theorem 3 implies then that if (u1,top,u10)≤ (Utop,U)≤ (u2,top,u20), where
(U,V ) is the stationary solution corresponding to the boundary data Utop, then

u1 ≤U ≤ u2 and v1 ≥V ≥ v2 in QT .

2. For both (110) and (111) it is unclear why they should influence the uniqueness of
solutions. We believe that both are in fact only technical restrictions, and that unique-
ness should hold under weaker assumptions on f and u.

Remark 3 Since inequality (111) is difficult to verify directly, the following observation is
useful, see [22] for the proof. Let f be given by (22) and assume u0 ≡ utop = ũ, with

ũ > max
{

2
2+ r

,1− (m1)−r
}

(113)

Then (111) holds.

The following theorem, proved in [22], answers the question of convergence of the time
dependent solution to the steady state solution. For simplicity we confined ourselves to the
case of constant boundary data, i.e.

utop ≡ ũ ∈ (0,1) (114)

and let (U,Q) be the stationary solution corresponding to this boundary condition. Since
U is increasing in z, it is admissible as a comparison function by, Theorem 3. Therefore, if
the initial data, u0, and U are ordered, e.g. u0 ≤U , then this ordering persists through time:
u(z, t)≤U(z) for all z ∈Ω and t > 0. This property allows us to prove the

Theorem 4 Let (u,v) be a solution of problem (96)-(99) and let (U,V ) be the correspond-
ing steady state solution of problem (100)-(102). Let u0 and U be ordered, i.e. either
u0(z)≤U(z) for all z ∈Ω, or u0(z)≥U(z) for all z ∈Ω. Then

u(·, t)→U
v(·, t)→V

as t → ∞,

uniformly in Ω.

Proof of Theorem 3. Since the constant m1 do not play any role in this proof we set m1 = 1,
for clarity. We first discuss the proof of part 1. Let (u1,v1) and (u2,v2) be solutions of
problem (96)-(99) and set (u,v) = (u1−u2,v1− v2). Then (u,v) satisfies





ut +(uv1 +u2v)z−uzz = 0
vz + f (z,u1)− f (z,u2) = 0

}
a.e. in QT ,

with
utop(0, ·) = 0
uz(1, ·) = v(1, ·) = 0

}
in (0,T ),

u0 = 0 in Ω.

(115)
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Multiplying the differential equations of (115) by smooth functions ϕ,ψ satisfying

ϕ(0, t) = ϕz(1, t) = ψ(0, t) = 0 for any t ∈ [0,T ], (116)

integrating in Qτ, with τ ∈ (0,T ), and adding the resulting integral identities we obtain
Z

Ω
u(τ)ϕ(τ) =

Z

Qτ

u(ϕt + v1ϕz +ϕzz)−
Z

Qτ

v(ψz +u2zϕ)

+
Z

Qτ

( f (z,u1)− f (z,u2))(u2ϕ+ψ) .
(117)

We consider the function

h(z, t) :=





f (z,u1(z, t))− f (z,u2(z, t))
u(z, t)

if u(z, t) 6= 0,

0 if u(z, t) = 0,
(118)

which is non-positive because f (z, ·) is non-increasing. For m ∈ N, m≥ 1, we consider the
functions hH(h+m), where H denotes the Heaviside function: H(s) = 1 for s≥ 0, H(s) = 0
for s ≤ 0. We regularize these functions in such a way that we obtain a smooth sequence
{hm} ⊂C2(Qτ) satisfying

(i) hm+1 ≤ hm in Qτ,

(ii) 0≥ hm ≥max{−m,h},

(iii) hm → h a.e. in Qτ.

The regularity of solutions of problem (96)-(99) allows us to introduce sequences {vn
1}n≥1,

{un
2}n≥1 ⊂C2(QT ) such that

vn
1 → v1 and un

2 → u2 strongly in L2(0,T ;H1(Ω)) (119)

as n→ ∞ with

lim‖vn
1‖L∞(QT ) ≤ ‖v1‖L∞(QT ) , lim

∥∥vn
1z

∥∥
L2(QT ) ≤ ‖v1z‖L2(QT ) ,

lim‖un
2‖L∞(QT ) ≤ ‖u2‖L∞(QT ) , lim

∥∥un
2z

∥∥
L2(QT ) ≤ ‖u2z‖L2(QT ) ,

(120)

and un
2 satisfying (111). Using these approximations we rewrite (117) as
Z

Ω
u(τ)ϕ(τ) =

Z

Qτ

u(ϕt + vn
1ϕz +ϕzz +hm (un

2ϕ+ψ))−
Z

Qτ

v
(
ψz +un

2zϕ
)

+
Z

Qτ

u(h−hm)(u2ϕ+ψ)−
Z

Qτ

uz (v1− vn
1)ϕ

−
Z

Qτ

u(v1z− vn
1z)ϕ+

Z

Qτ

uhm (u2−un
2)ϕ−

Z

Qτ

v
(
u2z−un

2z
)

ϕ. (121)

Next we select the functions ϕ and ψ, being solutions of




ϕt + vn
1ϕz +ϕzz +hm (un

2ϕ+ψ) = 0
ψz +un

2zϕ = 0

}
in Qτ,

ϕ(τ) = ξ in Ω,
(122)

with ϕ,ψ satisfying (116) and with ξ ∈C∞
0 (Ω), ξ≥ 0.
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Lemma 3 (i) Assume either (110) or (111). Then, for each n and m there exists a unique
solution ϕ,ψ ∈ C2,1(Q̄τ) of (122) such that ‖ϕ‖L∞(Qτ) and ‖ψ‖L∞(Qτ) are uniformly
bounded with respect to n and m.

(ii) Assume (112). Then, in addition to the uniform bounds we have

ϕ≥ 0 in QT and ϕz(0, t)≥ 0 in (0,T ). (123)

End of proof of Theorem 3. Using the functions provided by Lemma 3 we obtain from (121)

Z

Ω
u(τ)ξ =

Z

Qτ

u(h−hm)(u2ϕ+ψ)−
Z

Qτ

uz (v1− vn
1)ϕ

−
Z

Qτ

u(v1z− vn
1z)ϕ+

Z

Qτ

uhm (u2−un
2)ϕ−

Z

Qτ

v
(
u2z−un

2z
)

ϕ. (124)

By the uniform estimates from Lemma 3 and (120), we can pass to the limit in (124) and
obtain for n→ ∞

Z

Ω
u(τ)ξ =

Z

Qτ

u(h−hm)(u2ϕ+ψ) . (125)

Using Lemma 3 again and the convergence properties of the sequence {hm} we find
Z

Qτ

u(h−hm)(u2ϕ+ψ)→ 0 as m→ ∞, (126)

and hence we obtain from (125)
Z

Ω
u(τ)ξ = 0, (127)

for any test function ξ≥ 0. We therefore deduce that u1 = u2 a.e. in Qτ for any τ ∈ (0,T ).
Checking that this implies v1 = v2 is straightforward.

To prove part 2 we define again (u,v) := (u1−u2,v1−v2) and consider the problem for
(u,v) given by (115) but with utop := u1,top−u2,top ≤ 0 and u0 := u10−u20 ≤ 0. Following
the proof of part 1 we get

Z

Ω
u(τ)ϕ(τ) =

Z

Ω
u0ϕ(0)+

Z T

0
utop(t)ϕz(0, t)dt + I1, (128)

with I1 given by the right hand side of (121). By Lemma 3 the solution (ϕ,ψ) of (122)
satisfies ϕ(0, t)≥ 0 and ϕz(0, t)≥ 0. Hence, we obtain from (128) and (122)

Z

Ω
u(τ)ξ≤ 0,

for all ξ≥ 0, from where the assertion follows. 2

Proof of Lemma 3. Because (122) is linear with smooth coefficients and data, existence,
uniqueness and regularity of solutions is well known [39]. To show the uniform L∞ bounds
we consider separately the cases (110) and (111). If (110) holds, then h defined by (118)
is bounded, and consequently, {hm} is uniformly bounded in L∞(Qτ) with respect to m.
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Further, (120) ensures that vn
1, un

2 and un
2z are uniformly bounded in L∞(Qτ) with respect to

n.
Next assume (111). We assert that the global maximum of |ϕ| is attained either at the

boundary z = 0 or initially at t = τ implying ‖ϕ‖L∞(Qτ) uniformly bounded with respect to
m and n. Suppose this is not true. Let (z0,τ0) ∈Qτ be the point where the global maximum
of |ϕ| is attained. Then (z0,τ0) is either a point of global maximum or a point of global
minimum for ϕ. Let us consider first the case in which (z0,τ0) is a point of global maximum.
The boundary data for ϕ implies ϕ(z0,τ0) > 0 and the ϕ–equation in (122) yields, using
hm ≤ 0,

un
2(z0,τ0)ϕ(z0,τ0)+ψ(z0,τ0)≤ 0. (129)

Integrating the ψ–equation of (122) in (0,z) gives

ψ(z, t) =
Z z

0

(−un
2z(y, t)

)
ϕ(y, t)dy. (130)

Therefore, from (129), (130) and assumption (111) we obtain

un
2(z0,τ0)ϕ(z0,τ0)≤

Z z0

0
un

2z(y,τ0)ϕ(y,τ0)dy

≤
Z z0

0

∣∣un
2z(y,τ0)

∣∣dy sup
y∈(0,z0)

|ϕ(y,τ0)|

=
Z z0

0

∣∣un
2z(y,τ0)

∣∣dyϕ(z0,τ0) < un
2(z0,τ0)ϕ(z0,τ0), (131)

a contradiction. If the global maximum is attained at a point (1,τ0), then by the strong
maximum principle ϕz(1,τ0) > 0. This gives again a contradiction. Finally, if (z0,τ0) is
a point of global minimum for ϕ, we may repeat the argument above obtaining a similar
contradiction. To finish the proof of (i) we use (130) and (120) to find

‖ψ‖L∞(Qτ) ≤ ‖ϕ‖L∞(Qτ) ‖u2‖L∞(0,τ;W 1,1(Ω)) ,

which is also independent of m and n.
The proof of (ii) follows the same ideas as that of (i). We assume (112) and assert

that the global minimum of ϕ is attained either at the boundary z = 0 or initially at t = τ
implying (123), see (116) and (122). Suppose this is not true. Then, using the arguments of
part (i) for the function ϕ instead of |ϕ|, we are led to an expression similar to (131):

un
2(z0,τ0)ϕ(z0,τ0) ≥

Z z0

0
un

2z(y,τ0)ϕ(y,τ0)dy

≥
Z z0

0
un

2z(y,τ0)dy inf
y∈(0,z0)

ϕ(y,τ0)) > un
2(z0,τ0)ϕ(z0,τ0),

a contradition. 2
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3.3.2 Numerical simulations

For the numerical solution of problem (96)-(99) we considered the equivalent non-local
formulation





ut +m1

(
u
Z 1

z
f (·,u)

)

z
−uzz = 0 in QT ,

u(0, t) = utop(t), uz(1, t) = 0 for 0 < t < T,

u(z,0) = u0(z) for 0 < z < 1,

(132)

which is obtained after the integration in (z,1) of equation (97). To compute approximate
solutions we employed the following semi-implicit finite difference scheme

uτ+1− τuτ+1
zz = uτ + τm1

(
uτ f (·,uτ)−uτ

z

Z 1

z
f (·,uτ)

)
,

with τ = 0,1, · · · and u0 = u0. Parameters were fixed as in the simulations of the solutions
of the steady state problem, see page 26. We run six numerical experiments corresponding
to the data shown in Table 3.

Table 3. Data for numerical experiments
Experiment 1 2 3 4 5 6
u0 = utop 0.25 0.25 0.5 0.5 0.50 0.25

m1 20 20 200 200 20 200
r 1 0.5 1 0.5 0.5 1

In Figure 4 we show the results of Experiments 1-6 for salt concentration at times t ≈
0, 5, 10, 20, 40 years. In Plot (b) of that figure, we see that condition r < 1 for the
formation of a dead core is not sufficient and that, in fact, it seems to be more relevant for
the rapid increase of the salt concentration a high combination of Rayleigh and extraction
numbers (the number m1) than the power value. Physically, this corresponds to the situation
in which the porous medium is relatively highly permeable and the mangroves’ transpiration
rate is high enough.

In particular, in Experiment 5, we take high initial data u0 = 0.5, very low Rayleigh-
extraction number m1 = 20 and r = 0.5, which could give rise to a dead core. Experiment 6
runs with a smaller initial data, u0 = 0.25, a linear exponent in the extraction function but a
large m1 (= 200). We observe that in both cases the behavior of the concentration after ten
years is very similar, with a profile of high salinization.

In Plots (a)-(b) and (c)-(d), which share the same value of m1 and initial data, solutions
corresponding to lower r are greater, i.e, salt concentration depends in a decreasing way on
the power of the extraction function. This is specially noticeable in Plots (a)-(b), where the
steady state is below the salt concentration threshold.

In Figure 5 we plot the water discharges corresponding to Experiments 5 and 6 for t = 5
years (dotted line) and t = 40 year (continuous line). We check that the water inflow in the
porous medium is much higher in the case of small boundary salt concentration data due to
the greater ability of mangroves’ roots to uptake fresh water.
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(a) Experiment 1. u0 = 0.25, m1 = 20 and r = 1.
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(b) Experiment 2. u0 = 0.25, m1 = 20 and r = 0.5.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Evolution Problem

Depth

C
on

ce
nt

ra
tio

n

(c) Experiment 3. u0 = 0.5, m1 = 200 and r = 1.
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(d) Experiment 4. u0 = 0.5, m1 = 200 and r = 0.5.
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(e) Experiment 5. u0 = 0.5, m1 = 20 and r = 0.5.
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(f) Experiment 6. u0 = 0.25, m1 = 200 and r = 1.

Figure 4. Evolution of salt concentration corresponding to Experiments 1-6. Curves correspond to
increasingly ordered salt concentration at times, t ≈ 0, 5, 10, 20, 40 years. Vertical line is the roots
depth.
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(a) Experiment 5. u0 = 0.5, m1 = 20 and r = 0.5.
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(b) Experiment 6. u0 = 0.25, m1 = 200 and r = 1.

Figure 5. Water discharge in the root zone. Continues line corresponds to t = 5 years and dotted
line to t = 40 years.

3.4 Stability analysis

A similar result than Theorem 2, on the formation of a fully salinized region for the steady
state solution, will be proven in Section 5, see Theorem 7, for the evolution problem: if the
exponent r in function f , see (22), is smaller than one then the solute concentration may
reach the threshold value u = 1 in some subset of (0,1) in finite time, while u < 1 below
that layer. In fact, this has already been numerically demonstrated in Section 3.3.2. This is
clearly an instable situation and it is therefore expectable to observe gravitational instabili-
ties when perturbations of the one-dimensional profile are considered in the n-dimensional
setting. Our aim is to provide a range of values for the bifurcation parameter, R, for which
these instabilities appear.

The stability properties of equations (89)-(91) has received attention for a variety of
data, and phenomena like cellular convection or fingering have been proven to arise when
the bifurcation parameter, R, is large enough. For instance, the steady state one-dimensional
solution of the model problem with L = ∞, f = 0, v ·n = 0 on ∂Ω× (0,T ) and u = 1 on
Γtop× (0,T ) is known to be instable for values R > 4π2, see for instance [56]. Other in-
teresting models related to ours which also lead to gravitational instabilities are the salt
lake formation by evaporation (v ·n =−const. on Γtop× (0,T )), see [24], or the peat moss
formation ( f = 0 and the temperature u = utop(t) on Γtop), see [60]. The common feature
of these models is the existence of an instable ground state, i.e., a steady one-dimensional
solution which may be gravitationally instable. Analysis of the perturbation equations (lin-
earized or not) and the study of a maximization problem for the bifurcation parameter is the
usual approach for finding the threshold value of R above which instabilities occur.

For problem (89)-(94), due to the non-zero extraction term f and to the non-flow bound-
ary condition v ·n = 0 on ΓN × (0,T ), the one-dimensional steady state solution is stable,
see Section 3.2. The mathematical explanation for such a stable solution after a possibly
instable transient state is given by the non-flow boundary condition at the bottom of the
domain, condition which allows the salt produced in the extraction zone to fill up the region
below this zone till the bottom boundary in infinite time.
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A rigorous mathematical analysis of the existence of transient instabilities is out of our
scope but its physical interest, which resides in the shortening of the time rate at which
solutions to the evolution problem approach to the steady state, motivate us to study certain
approximations which may be treated rigorously, and to demonstrate by means of numeric
simulations that the behavior of solutions to the approximated problems and to the original
problem are similar, at least in the selected parameters range.

Therefore, to give some clues to this question, we shall consider a related problem
which is simpler to deal with but which keeps relevant information about solutions of prob-
lem (89)-(94). In this section and for the numerics, we fix n = 2, although it is not an
essential assumption for the analysis that follows.

We consider the situation in which, after some time T ∗ < T , the solution to the one-
dimensional problem has developed a dead core, i.e., an interval (a,b) ⊂ (0,1) in which
u = 1 for all t > T ∗. For simplicity, we assume b = d, being (0,d) the root zone, which
is a reasonable assumption, see Figure 4. Following, we investigate the stability of this
one-dimensional configuration in the two-dimensional setting, with a modified boundary
condition on the bottom, z = 1. Consider the domain free of roots Ωd = (0,L)× (d,1),
where f ≡ 0. The top boundary, z = d, corresponds to the boundary between the dead
core and the no-extraction region so we prescribe u = 1 on this boundary. On the bottom
boundary, z = 1, we take constant Dirichlet data u∗ < 1 instead of the non-flow boundary
data, assuming that the value of u in z = 1 for the one-dimensional problem does not vary
too fast for the time scale of the transient instabilities we are studying. Therefore, we set
the following boundary conditions

u(x,d, t) = 1, u(x,1, t) = u∗ for x ∈ (0,L) (133)

p(x,d, t) = p0, v2(x,1, t) = 0 for x ∈ (0,L), (134)
∂u
∂x

(0,z, t) =
∂u
∂x

(L,z, t) = 0 for z ∈ (d,1), (135)

v1(0,z, t) = v1(L,z, t) = 0 for z ∈ (d,1), (136)

for t > T ∗, v = (v1,v2) and a constant p0. Since T ∗ will not play any important role in the
analysis, we set T ∗ = 0. In the domain Ωd × (0,T ), functions (u,v, p) satisfy

ut +Rv ·∇u−∆u = 0, (137)

divv = 0, (138)

v+∇p+uez = 0. (139)

Stability conditions for equations (137)-(139) is a well known issue and has been estab-
lished for different types of boundary conditions, see the monographes of Straughan [56,57]
and the references therein . In fact, problem (133)-(139) only differs from the one treated
in [56] in two points: the domain is bounded in the horizontal direction (L < ∞) and the
non-flow boundary condition on the top domain, v2(x,d, t) = 0 of [56] is replaced by our
condition on the pressure p(x,d, t) = p0. The stability analysis is based on the expansion

ũ = U0 +u, ṽ = V0 +v and p̃ = P0 + p, (140)

with ũ, ṽ and p̃ satisfying problem (133)-(139) and with U0, V0 and P0 the solution to the
corresponding one dimensional steady state problem, given by

U0(z) = 1− γ(z−d), V0(z) = 0, P0(z) = p0 +
Z z

d
U0(s)ds,
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for z ∈ (d,1) and γ = (1− u∗)/(1− d). Substituting (140) into equations (137)-(139) and
omitting tildes, yields the following system for the perturbations

ut +Rv ·∇u−∆u = γRv2, (141)

divv = 0, (142)

v+∇p+uez = 0, (143)

in Ωd × (0,T ), satisfying the homogeneous boundary conditions corresponding to (133)-
(136). Conditions for nonlinear stability are deduced in the usual way. Multiplying (141)
by u, integrating by parts and using (142) and the boundary conditions we obtain

1
2

d
dt

Z

Ωd

u2 +
Z

Ωd

∇u2 = γR
Z

Ωd

v2u. (144)

Multiplying (143) by αv, α > 0 and adding the result to (144) we obtain
1
2

d
dt

Z

Ωd

u2 +
Z

Ωd

∇u2 +α
Z

Ωd

|v|2 = (γR+α)
Z

Ωd

v2u. (145)

Then, we have
1
2

d
dt

Z

Ωd

u2 ≤ 0. (146)

whenever
1

γR+α
≥ 1

γR∗(α)+α
= sup

R
Ωd

v2uR
Ωd

∇u2 +α
R

Ωd
|v|2 , (147)

where the supremo is taken among the admissible functions, i.e., satisfying (i) the regular-
ity requirements of a weak solution of problem (89)-(94), (ii) the homogeneous boundary
conditions corresponding to (133)-(136), and (iii) divv = 0.

Therefore, the stability criterium for solutions of problem (133)-(139) is reduced to
solving the maximization problem of the right hand side of (147). We observe that, as
in [56], the Euler-Lagrange equations associated to the maximization problem are just the
time independent linearized version of (141)-(143), implying that the linear and nonlin-
ear estimates for the bifurcation parameter coincide. We note that the above mentioned
differences between the problem treated in [56] and problem (133)-(139) affect to the max-
imization problem via the set of admissible functions. Indeed, our condition p = 0 on
Γtop× (0,T ) implies that the linear problem to be solved is coupled for the three unknowns
and not only for u and v, as in [56].

Assuming periodic behavior in the horizontal variable for the steady state solution of
the perturbation problem (141)-(143), namely u(x,z) = eiaxU(z), p(x,z) = eiaxP(z) and
v2(x,z) = eiaxQ(z), we are led to solve the following problem: Find the minimum R∗ such
that there exist a non-trivial solution U,P,Q : (d,1)→ R of

−U ′′+a2U = γR∗Q, U(d) = 0, U(1) = 0, (148)

−P′′+a2P =−U ′, P(d) = 0, P′(1) = 0, (149)

−Q′′+a2Q = a2U, Q(d)+P′(d) = 0, P′(1) = 0. (150)

Eigenvalue problem (148)-(150) was solved numerically using a standard routine of Math-
ematica [61]. In Figure 6 we summarize the results concerning to the size of the bifurcation
parameter, R∗:
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Figure 6. Bifurcation parameter, R∗, as a function of wave number, a. Circles line, for boundary
condition v2 = 0 on z = d, as in [56]. Continuous line, for p = 0 on z = d (Problem (133)-(139)).
Asterisks: some values of R∗ for which instabilities arise in the problem with extraction.

• We considered problem (89)-(94) with the bottom non-flow boundary condition
∇u ·n = 0 replaced by the Dirichlet boundary condition u = u∗, as in (133). In other
words, we investigate the importance of the extraction region and the dead core for-
mation for the development of transient instabilities. We computed numerical solu-
tions for parameters values which imply no dead core formation (u < 1 on z = d), and
even in this case we checked the formation of instabilities for values of R which are
very close to those of problem (133)-(139). Therefore, the actual formation of a dead
core in the extraction region seems not to be relevant for instabilities occurrence as
long as the concentration on the bottom boundary keeps lower enough than that on
the extraction region.

• We compared the bifurcation curves corresponding to our problem (133)-(139) and
to the problem studied in [56], i.e., with our condition p = 0 on z = d replaced by
v2 = 0 on z = d. The non-flow boundary condition seems to give more stability to the
system, possibly as a consequence of the shortening of the region in which they may
develop.

3.4.1 Numerical simulations

We used a stabilized mixed finite element method in space and implicit finite differences
scheme in time to approximate solutions of an equivalent formulation of problem (89)-(94),
consisting on combining equations (89) and (90) to replace (89) by

ut +Rv ·∇u−∆u = Rmu f (·,u). (151)

It is well known that classical mixed variational formulations need an adequate election
of the discrete spaces for the flow and the pressure in order to satisfy the Babuska-Brezzi
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stability condition, see for instance [15]. Following Masud and Huges [45], we consider
a stabilized mixed finite element method for Darcy flows which allows to consider piece-
wise linear approximations and the same mesh for both pressure and flow. The differences
between our problem and the problem treated in [45] are the boundary condition for the
pressure and the existence of a source term in (158).

Let tn = nδt, for δt = T/N, and n = 0, ...N, and consider the discrete time approximation
given by

un +δt(Rvn ·∇un−∆un) = δtRmun f (·,un)+un−1, (152)

divvn =−m f (·,un), (153)

vn =−∇pn−unez, (154)

in Ω, where the super-index n stands for the approximations in time tn. The boundary
conditions are

un = utop, pn = 0 on Γtop, (155)

∇un ·n = vn ·n = 0 on ΓN . (156)

We solved this nonlinear system of equations by a fixed point method based on the proof
of existence of solutions, see Theorem 1. Consider the map S : L2(Ω)→ L2(Ω) given by
S(û;un−1) = u, where u is the solution of

u−δt∆u =−δtRv ·∇û+δtRmû f (·, û)+un−1, (157)

divv =−m f (·, û), (158)

v =−∇p− ûez, (159)

with the mentioned boundary conditions (155)-(156). A fixed point of S(· ;un−1) is denoted
by un. The formulation of the stabilized mixed finite element method for problem (158)-
(159) is: Find v ∈ H0(div,Ω) and p ∈ V solutions of

Z

Ω
(v+∇p) ·φ =−

Z

Ω
ûez ·φ for all φ ∈ H0(div,Ω), (160)

Z

Ω
(∇p−v) ·∇ϕ =−

Z

Ω
(ûez ·∇ϕ+2m f ϕ) for all ϕ ∈ V . (161)

Once that v and p are determined, we set the following problem for equation (157): Find
u ∈ utop +V solution of

Z

Ω
uϕ+δt

Z

Ω
∇u ·∇ϕ = δtR

Z

Ω
(mû f (·, û)−v ·∇û)ϕ+

Z

Ω
un−1ϕ for all ϕ∈V .(162)

We use the spatial discretization of (160)-(161) given in [45], and adapt it also for equation
(162). It consists of finite triangular elements, continuous piecewise linear base functions
and the same mesh for all the unknowns. For the practical implementation of the fixed point
method, we consider that a discrete solution of (160)-(162) is a fixed point of S(· ;un−1) if a
norm of S(un

k ;un−1)−un
k , for k = 0,1, . . ., with un

0 = un−1, is smaller than a fixed tolerance.
For the numerical simulations, we considered the spatial domains Ω = (0,1)× (0,1)

and Ωd = (0,1)× (0.25,1), i.e., the extraction zone is above z = 0.25, and the initial and
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Figure 7. Flow and contour lines of the salt concentration for the solution of problem (89)-(93)
with parameters u0 = uD = 0.5, R = 1400, m = 0.07, r = 1, d = 0.25.
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Figure 8. Time evolution of salt concentration at the bottom boundary, z = 1. Continuous line:
solution of the 1-D model for m1 = Rm = 98. Dotted lines: x-averaged solutions of the 2-D model,
see (163), for R = 140, 200, 500, 1400 and corresponding m’s such that Rm = 98. Concentrations
are ordered increasingly according to the value of R. Transient instabilities are reflected in the steep
increase of the concentration of the 2-D model for high R. u0 = uD = 0.5, r = 1.
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Figure 9. Flow and contour lines of salt concentration for the solution of problem (89)-(93) with
parameters u0 = uD = 0.5, R = 140, m = 0.7, r = 1, d = 0.25.
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Figure 10. Time evolution of the concentration ratio (see (164)) at the bottom boundary, z = 1,
for R = 500 and m = 0.196 (m1 = Rm = 98). Transient instabilities speeds up the salt mixing and
increase the salt concentration. However, the long time behavior is the same for solutions of the 1-D
and 2-D models. u0 = uD = 0.5, r = 1.
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top boundary data to be constant, utop = u0 = 0.5. We used an uniform triangular mesh with
900 triangles and an initial time step of δt = 1/20R. The time step is adapted according to
the size of ‖un − un−1‖. We tested several values for the power, r, lower and equal to
one, in particular, values for which a dead core arises. However, the occurrence of transient
instabilities seems to be independent of this choice so we only plot the results corresponding
to r = 1. In order to compare with the 1-D solution, we chose several sets of values for R
and m such that the product m1 = Rm keeps constant and equal to 98, a relatively mild
physical situation.

In Figures 7 and 9, flow and concentration contour lines are plotted.

(a) Figure 7. Flow and concentration contour lines for a high Rayleigh number, R =
1400, and a small extraction number, m = 0.07. Large and strong Bérnard type in-
stability cells arises in an early transient estate (one year) producing a rapid mix of
the salt content. Instabilities decrease with time and after a computed time of seven
years, the system is practically stable.

(b) Figure 9. Flow and concentration contour lines for a small Rayleigh number, R = 140,
and extraction number, m = 0.7. It takes longer for the formation of instabilities,
which are also weaker.

(c) Figure 8. We plot the salt concentration of the 1-D solution at z = 1, i.e, u1(1, t), and
the mean salt concentration at z = 1 of the 2-D solution, i.e.

1
L

Z L

0
u2(x, t,1)dx, (163)

where u1 and u2 are the one and two-dimensional solutions, respectively, of problem
(89)-(94), for several values of R and m such that m1 = Rm, where m1 is the only
parameter appearing in the 1-D model, see (95). These values are

(R,m) = {(140, 0.7),(200, 0.49),(500, 0.196),(1400, 0.07)} .

We check that instabilities accelerates the mixing and the approach to the steady state.
For R = 200 instabilities takes time to appear (about three years) and when it occurs,
they are persistent on time (till year six) but not very strong, as may be observed
in the concentration slope. For R = 500 instabilities appear sooner (year one), with
much strength (large slope) but decay rapidly. The plot for the solution corresponding
to a high Rayleigh number, R = 1400 is more complex. Instabilities appear almost
immediately and with great strength. Afterwords, the mixing seems to moderate for a
short period, after which a new rapid increase of the salt concentration takes place. At
year two, a new period of moderate increase starts, but is again broken at about year
four, when a new rapid increase happens. After that, the system seems to stabilize.
Finally, for smaller values of R, the behavior of the 2-D solution is similar to the 1-D
case. However, the mean value of u2 on z = 1 is smaller than u1(1, ·) for all plotted
times, probably as a result of the energy consumption in weak instabilities and the
difficulties for flow circulation at the corners.
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(d) Figure 10. We compare the speed of approach to the steady state between the one and
the two-dimensional solutions of problem (89)-(94) when instabilities in the transient
state are present (R = 500). We plot, against time, the ratio

1
Lu1(1, t)

Z L

0
u2(x,1, t)dx, (164)

where u1 and u2 are the one and two-dimensional solutions, respectively, of prob-
lem (89)-(94). We observe three time intervals with different behaviors of this ratio.
Initially, when instabilities did not develop yet, both solutions are practically equal.
Afterwards, when instabilities appear, the mixing in the two-dimensional model is
accelerated and the increase of the solute concentration, u2, at the bottom boundary
is up to the fifty per cent greater than the corresponding one-dimensional solution, u1.
Finally, for later times, this ratio decreases and slowly approaches to one, indicating
that the stationary states are the same for both problems.

4 The water-soil one-dimensional model in stagnant water con-
ditions

In this section we present a simplified water-soil model which tries to capture the situation
in which water is stagnant and, therefore, mangroves, while extracting the available water
form the reservoir, also salinize it. The problem is formulated, as before, in terms of the
coupled system of partial differential equations for the salt concentration and the water flow
in the porous medium given in (96)-(97), but with a different boundary condition on the top
of the soil, i.e., on the interface connecting both subdomains.

The main mathematical difficulty of this model when compared with those studied in
Section 3 is that the closure of water income to the natural system and hence the balance
equations for salt and water content lead to a dynamical boundary condition at such in-
terface, i.e., a boundary condition involving the time derivative of the solution. Although
not too widely considered in the literature, dynamic boundary conditions date back at least
to 1901 in the context of heat transfer [49]. Since then, they have been studied in many
applied investigations in several disciplines like Stefan problems [51, 55], fluid dynam-
ics [28], diffusion in porous medium [27], mathematical biology [26] or semiconductor
devices [53]. From a more abstract point of view the reader is referenced to, among oth-
ers, [10, 17, 25, 37, 43].

Apart from the mathematical technical details, one of the main features of the dynamic
boundary condition when compared to the Dirichlet boundary condition is the elimination
of the boundary layer the latter creates in a neighborhood of the water-soil interface, layer
in which the salt concentration keeps well below the threshold salinity level. Thus, this
new model allows us to describe the situation in which a continuous increase of fresh water
uptake by the roots of mangroves drives the ecosystem to a complete salinization.

4.1 Derivation of the model

In the porous medium domain, we consider the same equations and lateral and bottom
boundary conditions than in problem (96)-(99) for the rescaled dimensionless unknowns
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uD and vD. The mathematical difference between both model arises in the interface con-
dition between soil and water. On this interface we prescribe a boundary condition which
is deduced from conservation laws for salt and water in the whole system water-soil. We
assume that salt concentration in the water domain, uS, remains uniformly distributed in
space. This approximation is justified when assuming a faster mixing of the salt in the
reservoir than in the porous medium. Then, the average height level of the water reservoir,
W , and the salt concentration in the water domain, uS, are functions that only depend on
time. We further consider, based on a continuity assumption,

uS(t) = uD(0, t) for t ∈ (0,T ). (165)

We have:

• The salt balance. Assuming that the total amount of salt in the system water-soil
remains constant, we have

d
dt

(
uSw+

Z 1

0
uD

)
= 0 in (0,T ),

with w = W/θH, the dimensionless reservoir height. Therefore, from equation (96)
(with u replaced by uD) and the bottom boundary conditions in (98),

d(uSw)
dt

= uD(0, ·)vD(0, ·)−uD,z(0, ·) in (0,T ). (166)

• The fluid balance, which asserts that the amount of water taken up from the soil by
the roots of mangroves is replaced by water from the reservoir:

dw
dt

=−vD(0, ·) in (0,T ). (167)

Combining (165)-(167) we deduce

w(t)uD,t(0, t) = uD,z(0, t) for t ∈ (0,T ), (168)

which is the dynamic boundary condition for the soil-water interface.
We are led then to the following problem for u = uD, v = vD and w in QT = (0,1)×

(0,T ): Find u : Q̄T → [0,1], v : Q̄T → R and w : [0,T ]→ R such that

ut +(uv−uz)z = 0, (169)

vz +m1 f (·,u) = 0 in QT = Ω× (0,T ), with Ω = (0,1), (170)

w′(t)+ v(0, t) = 0 for t ∈ (0,T ), (171)

subject to the boundary and initial conditions

w(t)ut(0, t) = uz(0, t), (172)

uz(1, t) = v(1, t) = 0 for t ∈ (0,T ), (173)

u(·,0) = u0 in Ω, w(0) = w0. (174)

We assume Hypothesis H2 (see page 14) on function f while H3 and H4 are replaced by
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H′
3. The initial data posses the regularity

u0 ∈ H1(Ω) with 0≤ u0 ≤ 1 in Ω.

H′
4. The function w is a positive constant. The number m is positive.

Remark 4 The assumption w constant in H′
4 has a reasonable range of validity. Integrating

(171) in (0, t) and using (170) we obtain, for f of the usual type (22)

w(t) = w0− m1

d

Z t

0

Z d

0
(1−u(z,τ))rdzdτ.

Using property (175) below for an increasing sequence of initial data as u0 ∈
{0.5,0.75,0.9,0.99} and r = 1 we find for the dimensional variables

W (t)−W0 ≥−τ0t {0.5,0.25,0.1,0.01} .

Taking τ0 ≈ 10−8 ms−1 and t ≈ 1year, this means that the reservoir will decrease about,
respectively, {0.15,0.075,0.03,0.003} meters per year. Therefore, the assumption of small
variation in the reservoir height seems reasonable, specially once that the salt concentration
has raised sufficiently.

4.2 Existence of solutions and other qualitative results

We prove the following result on existence and regularity of solutions.

Theorem 5 Assume H2, H′
3 and H′

4. There exists a strong solution of problem (169)-(174),
defined as

1. For any α ∈ (0,∞),

u ∈W 1,α(0,T ;Lα(Ω))∩Lα(0,T ;W 2,α(Ω))∩C((0,T ];C(Ω̄)),
v ∈C((0,T ];W )

with W :=
{

ϕ ∈W 1,∞(Ω) : ϕ(1) = 0
}

.

2. The differential equations (169) and (170) and the boundary conditions (172) and
(173) are satisfied almost everywhere.

3. The initial distribution is satisfied in the sense

lim
t→0

‖u(·, t)−u0‖L2(Ω) = 0.

In addition, u satisfies

u≥ um := min
Ω̄

u0 a.e. in QT , (175)

and, if for some β > 0

f ∈Cβ(Ω̄× [0,1]) and u0 ∈C2+β(Ω̄), (176)
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and u0 satisfies the compatibility condition

u′0(0)+u′0(0)
Z 1

0
m1 f (x,u0(x))dx−u′′0(0) = m1 f (0,u0(0))u0(0), (177)

then u ∈C1+β,2+β(Q̄T ) and v ∈C1+β,1+β(Q̄T ).

Similar qualitative properties to those proven for problem (96)-(99), with Dirichlet bound-
ary conditions at the top boundary, may be proven for problem (169)-(174). In particular,
uniqueness of solutions holds under the same assumptions than in Theorem 3. However,
one important effect of the dynamic boundary condition when compared to the Dirich-
let boundary condition is the elimination of the boundary layer at the top boundary. As
a consequence, the unique solution of the steady state problem corresponding to problem
(169)-(174), i.e., functions U ∈ H1(Ω) and V ∈W satisfying

(VU−Uz)z = 0, Vz +m1 f (·,U) = 0 in Ω,

Uz(0) = Uz(1) = 0,

is the trivial solution (U,V ) = (1,0). Regarding the asymptotic convergence of solutions
of problem (169)-(174) to this trivial solution when t → ∞, we have the following result,
see [30] for the proof.

Theorem 6 Assume H1-H3 and min
Ω̄

u0 > 0, and let (u,v) be a strong solution of problem

(169)-(174). Then

(u,v)→ (1,0) in L2(Ω) and u(0, t)→ 1 pointwise as t → ∞.

Proof of Theorem 5. Without loss of generality, we set m1 = w = 1 for clarity. We first
prove the existence of weak solution of a time discretization of problem (169)-(174). Since,
a priori, the component u of solutions to approximated problems will not necessarily satisfy
0 ≤ u ≤ 1, we extend f by f̄ as f̄ (x,σ) = 0 if σ > 1, f̄ (x,σ) = f (x,σ) if 0 ≤ σ ≤ 1 and
f̄ (x,σ) = f (x,0) if σ < 0. We denote the corresponding problem by Problem P̄.

Lemma 4 For ũ ∈ H1(Ω), and τ > 0 small enough, there exists a solution (u,v) ∈
W 2,α(Ω)×W , with α < ∞, of

u+ τ(uv−uz)z = ũ a.e. in Ω, (178)

vz + f̄ (·,u) = 0 a.e. in Ω, (179)

u(0) = ũ(0)+ τuz(0), uz(1) = 0. (180)

Proof. We introduce the set K =
{

v ∈W ,‖v‖W 1,∞ ≤ ρ
}

, for some ρ > 0 to be fixed. It is
clear that K is convex and weakly compact in the star topology of W 1,∞(Ω). For v̂ ∈ K, we
define the map

S(v̂)(z) :=
Z 1

z
f̄ (s,u(s))ds,
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with u ∈ H1(Ω) solution of
Z

Ω
(u− ũ)ϕ+ τ

Z

Ω
uzϕz + τ

Z

Ω
(uv̂)zϕ+(u(0)− ũ(0))ϕ(0) = 0, (181)

for any ϕ ∈ H1(Ω). The existence of a unique solution of (181) is guaranteed by the Theo-
rem of Lax-Milgram (see, for instance, [14]). In addition, we have

‖uzz‖L2 ≤ 1
τ
‖u− ũ‖L2 +‖u‖L2‖ f̄‖L∞ +‖uz‖L2‖v‖L∞ , (182)

i.e., u ∈ H2(Ω). Since ũ ∈ H1(Ω) ⊂ C(Ω̄), a boot-strap argument allows us to deduce
u ∈W 2,α(Ω), for any α < ∞. A standard argument allows us to conclude that u satisfies
(178) and (180) (with v̂ replaced by v).

Observe that a fixed point of S is a solution of (178)-(180). We prove the existence of
such a fixed point using a theorem by [6], for which we need to show: (i) S(K) ⊂ K and
(ii) S is weakly-weakly continuous in the star topology of W 1,∞(Ω). Showing S(K)⊂ K is
straightforward since for any v̂ ∈ K, ‖S(v̂)‖W 1,∞ ≤ 2‖ f̄‖L∞ =: ρ.

To prove the weak continuity, (ii), we consider a sequence v̂ j and a function v̂ in K such
that v̂ j → v̂ weakly star in W 1,∞(Ω). Let u j and u be the corresponding solutions of problem
(181). Taking ϕ = u j in (181) we obtain, after using Schwarz’s inequality,

u j(0)2 +(1− τ‖v̂ j‖2
L∞ −2τ‖v̂ jz‖L∞)‖u j‖2

L2 + τ‖u jz‖2
L2 ≤ ‖ũ‖2

L2 + ũ(0)2.

For τ small enough and independent of j we get E j + τ‖u jz‖2
L2 ≤ c, with c independent of τ

and j, and with

E j = u j(0)2 +‖u j‖2
L2 . (183)

Therefore, we obtained a uniform bound which allows us to extract a subsequence of u j

(not relabelled) such that u j → u∗ weakly in H1(Ω), for some u∗ ∈ H1(Ω). Since the
embedding H1(Ω)⊂C(Ω̄) is compact, extracting a new subsequence if necessary we have
u j → u∗ uniformly in C(Ω̄). Next we show that, actually, u∗ = u. All the terms in (181)
corresponding to (u j, v̂ j) are well defined in the limit j → ∞. For instance,

Z

Ω
(u jv̂ j)zϕ =

Z

Ω
u jzv̂ jϕ+

Z

Ω
u jv̂ jzϕ→

Z

Ω
(u∗v̂)zϕ,

due to the convergences u j → u weakly in H1(Ω) and uniformly in C(Ω̄), and v̂ j → v̂
weakly star in W 1,∞(Ω) and uniformly in C(Ω̄) (by compact embedding, again). Then, by
the uniqueness of solution of problem (181) we deduce u∗ = u. Hence,

S(v̂ j)(z) =
Z 1

z
f̄ (s,u j(s))ds→

Z 1

z
f̄ (s,u(s))ds = S(v̂)(z),

uniformly in C1(Ω̄) and, in particular, weakly star in W 1,∞(Ω). Therefore, (ii) is proven and
the existence of a fixed point deduced. 2

We now construct piecewise constant in time approximations of solutions of Problem
P̄. Let (0,T ] =

SK
k=1((k− 1)τ,kτ], with τ = T/K and K ∈ N. For k = 1, . . . ,K, define

recursively (uk,vk) as the solution of problem (178)-(180) with ũ = uk−1, u = uk and v = vk.
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Let the initialization of this recursion be the initial data of Problem P̄, u0. We define the
following piecewise constant in time functions: u(τ)(z, t) = uk(z), v(τ)(z, t) = vk(z),

∂(τ)
t u(τ)(z, t) =

uk(z)−uk−1(z)
τ

, E(τ)(t) =
1
2
(|u(τ)(0, t)|2 +

Z

Ω
|u(τ)|2),

if z ∈Ω, t ∈ ((k−1)τ,kτ], for k = 1, . . . ,K.

Lemma 5 As τ→ 0 there exist a subsequence of (u(τ),v(τ)) (not relabelled) such that

u(τ) → u weakly star-weakly in L∞(0,T ;H1(Ω)), (184)

∂(τ)
t u(τ) → ∂tu weakly in L2(QT ), (185)

∂(τ)
t u(τ)(0, ·)→ ∂tu(0, ·) weakly in L2(0,T ), (186)

u(τ) → u weakly in L2(0,T ;H2(Ω)), (187)

u(τ) → u uniformly in C((0,T ];C(Ω̄)), (188)

v(τ) → v uniformly-strongly in C((0,T ];W ). (189)

Proof. Replacing in (178) functions u,v and ũ by uk,vk and uk−1, respectively, and using
ϕ = uk in the weak formulation (181) (with v̂ = v) , we obtain, after using the inequalities
of Schwarz and x(x− y)≥ (x2− y2)/2,

Ek + τ‖ukz‖2
L2 ≤ Ek−1 + τc f Ek,

for

Ek =
1
2
(
uk(0)2 +

Z

Ω
u2

k
)
,

and with c f := ‖ f̄‖2
L∞ +‖ f̄‖L∞ . Then, from the Gronwall’s discrete inequality and kτ ≤ K,

we deduce Ek ≤ cE0, for k = 1, . . . ,K, and for some constant, c, independent of τ. Therefore,

Ek−Ek−1

τ
+‖ukz‖2

L2 ≤ cc f E0.

Integrating in (0, t), for any t ∈ (0,T ), we obtain

E(τ)(t)+
Z

Qt

|u(τ)
z |2 ≤ cc f E0,

which gives a uniform estimate for u(τ) in the norm of L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)).
On the other hand, from (179) we obtain ‖vk‖W 1,∞ ≤ ‖ f̄‖L∞ , which implies the uniform
bound

‖v(τ)‖L∞(W 1,∞) ≤ ‖ f̄‖L∞ .

We now choose ϕ = (uk−uk−1)/τ in (181) (with v̂ = v). We get
Z

Ω
|uk−uk−1

τ
|2 +

Z

Ω
ukz(

uk−uk−1

τ
)z +

Z

Ω
(ukvk)z

uk−uk−1

τ
+

∣∣uk(0)−uk−1(0)
τ

∣∣2 = 0.

Using again the inequality x(x− y)≥ (x2− y2)/2, we obtain
Z

Ω
ukz(

uk−uk−1

τ
)z ≥ 1

2τ

Z

Ω
(|ukz|2−|u(k−1)z|2),
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and therefore
Z

Ω
|uk−uk−1

τ
|2 +

1
2τ

Z

Ω
(|ukz|2−|u(k−1)z|2)+

Z

Ω
(ukvk)z

uk−uk−1

τ

+|uk(0)−uk−1(0)
τ

|2 ≤ 0.

Integrating in ((k−1)τ,kτ) and adding from k = 1 to K leads to

1
2

Z

Ω
|u(τ)

z |2(T, ·)+
Z

QT

|∂(τ)
t u(τ)|2 +

Z T

0
|∂(τ)

t u(τ)(0, ·)|2 ≤ 1
2

Z

Ω
|u0z|2

−
Z

QT

(u(τ)v(τ))z∂
(τ)
t u(τ).

Using Hölder’s inequality we deduce

‖u(τ)
z ‖2

L∞(L2) +‖∂(τ)
t u(τ)‖2

L2(L2) +‖∂(τ)
t u(τ)(0, ·)‖2

L2(0,T ) ≤ c
(‖u0‖2

H1

+‖v(τ)‖2
W 1,∞‖u(τ)‖2

L2(H1)

)
,

i.e., additional uniform bounds for

u(τ) in L∞(0,T ;H1(Ω)),

∂(τ)
t u(τ) in L2(QT ), (190)

∂(τ)
t u(τ)(0, ·) in L2(0,T ). (191)

Once we have the uniform bound on the time derivative, (190), we deduce from (182)
a uniform bound for u(τ) in L2(0,T ;H2(Ω)), i.e. (187). Therefore, there exist u ∈
L∞(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) and v ∈ L∞(0,T ;W ) such that (184) and (185) hold.
I addition, the compactness result of [54] implies (188). Therefore, since f̄ ∈ L∞(Ω;C(R))
we have v(τ)

z = f̄ (·,u(τ)) → f̄ (·,u) = vz uniformly-strongly in C((0,T ];L∞(Ω)), and then
(189). Finally, from (191) we deduce (186). 2

End of proof of Theorem 5
We are now ready to pass to the limit τ→ 0. The pair (u(τ),v(τ)) satisfies

Z

QT

∂(τ)
t u(τ)ξ+

Z

QT

u(τ)
z ξz +

Z

QT

(u(τ)v(τ))zξ+
Z T

0
∂(τ)

t u(τ)(0, ·)ξ(0, ·) = 0, (192)

for ξ ∈ L2(0,T ;H1(Ω)), and

v(τ)
z + f̄ (·,u(τ)) = 0 a.e. in QT , v(τ)(1, t) = 0 for all t ∈ (0,T ]. (193)

Taking the limit τ→ 0 in (192)-(193), and using (184)-(189) we obtain that (u,v) satisfies
Z

QT

utξ+
Z

QT

uzξz +
Z

QT

(uv)zξ+
Z T

0
ut(0, ·)ξ(0, ·) = 0, (194)

and

vz + f̄ (·,u) = 0 a.e. in QT , and v(1, t) = 0, for all t ∈ (0,T ].
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Due to (187) we deduce uzz ∈ L2(QT ). Integrating by parts in (194) and using f̄ ∈
L∞(Ω,C(R)), we deduce that (u,v) satisfies the strong formulation (169)-(174) and it is,
therefore, a strong solution of Problem P̄.

Finally, using ξ := min{0,u− γ}, with γ = minΩ̄ u0, and ξ := max{0,u−1} as test
functions in (194) one easily shows that γ ≤ u ≤ 1 in Q̄T . We note at this point that this
property implies f̄ (·,u) = f (·,u) in Q̄T and therefore the pair (u,v) is also a strong solution
of problem (169)-(174).

Finally, if function f and the initial condition satisfy the additional regularity and
compatibility conditions stated in Theorem 5 then u ∈ C(Q̄T ) which implies u f (·,u),vz ∈
Cβ(Q̄T ) and, therefore, ut −uzz ∈Cβ(Q̄T ), implying the additional regularity assertion. 2

4.3 Numerical examples

For the numerical solution of problem (169)-(174) we considered, as for the problem with
Dirichlet data, an equivalent non-local formulation. It reads

ut +m1

(
u
Z 1

z
f (·,u)

)

z
−uzz = 0 in QT , (195)

w′(t) =−m1

Z 1

0
f (z,u(z, t))dz for 0 < t < T, (196)

w(t)ut(0, t) = uz(0, t), uz(1, t) = 0 for 0 < t < T, (197)

u(·,0) = u0 in Ω. (198)

Although till now we have worked under Hypothesys H′
4, i.e., that the level height of the

reservoir changes relatively slow (w = const.), we perform the numerical experiments also
for the case in which w is variable, in order to compare the results with the constant case.

To compute approximate solutions we employed the following explicit finite difference
scheme

uτ+1 = uτ + τ
(
uτ

zz +m1uτ f (·,uτ)−m1uτ
z

Z 1

z
f (·,uτ)

)
, (199)

wτ+1 = wτ−m1

Z 1

0
f (z,uτ(z))dz, (200)

uτ+1(0) = uτ(0)+
τ

wτ uτ
z(0), uτ+1(1) = 0, (201)

u0 = u0. (202)

When we assume H′
4, we only solve equations (199), (201) and (202), with wτ = const.

Observe that for solving the whole system it is necessary to have wτ > 0, due to the dynamic
boundary condition in (200).

Parameters are fixed as in the steady state and evolution Dirichlet boundary condition
problems, see page 26. We run eight numerical experiments (for both w constant and vari-
able) corresponding to the data shown in Table 4, which coincides with those of Experi-
ments 1, 2, 5 and 6 for the Dirichlet boundary data problem, see page 26. Whenever w is
variable and unknown, we set its initial data as w(0) = 10, corresponding to a dimensional
height W (0) = θHw≈ 5 m. When w is constant we just take w = 10.
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Table 4. Data for numerical experiments
Experiment 1 2 3 4

u0 0.25 0.25 0.50 0.25
m1 20 20 20 200
r 1 0.5 1 1

In Figures 11 and 13 we show the results on salt concentration for Experiments 1-4, for
variable and fixed w, respectively. As a first observation, we note that the problem with fixed
height reservoir takes longer to reach the steady state than the problem with variable height
and also with those having prescribed Dirichlet boundary data at the top, see Figures 4 and
5. This is motivated by the slower increasing of the salt concentration on the top, u(0, t), as
may be seen in Figure 12, where we show the evolution in time of the salt concentration at
the top boundary for the eight experiments. The mathematical explanation is the following.
From equation (196) we get

w(t) = w(0)−m1

Z

Ω
f (z,u(z, t))dz < w(0) for all t > 0.

Then, from equation (197) and the observation of uz(0, t) > 0 , we obtain

ut(0, t) =
1

w(t)
uz(0, t) >

1
w(0)

uz(0, t),

which shows why the salt concentration on the top is alway greater for the variable height
problem.

In Figure 12, Plot (a), we also see that a large extraction number produces a faster
increase in salt concentration at the top boundary, almost reaching the threshold value in
15 years. It is also interesting the comparison between Experiments 2 and 3, for which we
observe that a smaller power r in the extraction function (Experiment 2) compensates the
lower initial data and overcomes the salt concentration on the top of Experiment 3 after 30
years. However, this is not the case for the fixed height problem, Plot (b) of the same figure,
probably due to the slower velocity of the whole process.

In Figure 14 (a) we show the evolution in time of the height reservoir for the experiments
with variable w. For Experiments 4 and 2, we see that a strong extraction due to either a high
extraction number or a low power r combined with a low initial salt concentration leads to a
fast and intense draining of the reservoir. Solution of the Experiment 1 takes longer for the
water extraction but seems to converge to a similar value. Only the solution of Experiment
3, with a higher initial salt concentration, keeps the water level above 50% after 40 years.
However the effect of the water level decrease on the salt concentration seems to be not
very drastic. Finally, in Figure 14 (b) we show the evolution in time of the relative error

‖u1(·, t)−u2(·, t)‖L2(Ω)

‖u1(·, t)‖L2(Ω)
, (203)

where u1 and u2 are the solutions corresponding to constant and variable w, respectively,
for the four sets of data. As we see, all the experiments have an error below 10% during
the first twenty years, and Experiments 2, 3 and 4 keep this bound during the forty years
analyzed. Remarkably, for Experiment 3 the error is always below 2.5%.
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(a) Experiment (1) u0 = 0.25, m1 = 20 and r = 1.
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(b) Experiment (2) u0 = 0.25, m1 = 20 and r = 0.5.
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(c) Experiment (3) u0 = 0.5, m1 = 20 and r = 1.
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(d) Experiment (4) u0 = 0.25, m1 = 200 and r = 1.

Figure 11. Evolution of salt concentration corresponding to Experiments 1-4, for the variable
reservoir height problem. Curves correspond to increasingly ordered salt concentration at times,
t ≈ 0, 5, 10, 20, 40 years. Vertical line is the roots depth.
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(a) Variable reservoir height problem.
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(b) Fixed reservoir height problem.

Figure 12. Evolution of salt concentration on the top boundary corresponding to Experiments 1-4.
Continuous line: Experiments 1 and 3. Dotted line: Experiment 2. Point-Dotted line: Experiment 4.
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(a) Experiment (1) u0 = 0.25, m1 = 20 and r = 1.
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(b) Experiment (2) u0 = 0.25, m1 = 20 and r = 0.5.
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(c) Experiment (3) u0 = 0.5, m1 = 20 and r = 1.
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(d) Experiment (4) u0 = 0.25, m1 = 200 and r = 1.

Figure 13. Evolution of salt concentration corresponding to Experiments 1-4, for the fixed
reservoir height problem. Curves correspond to increasingly ordered salt concentration at times,
t ≈ 0, 5, 10, 20, 40 years. Vertical line is the roots depth.
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(a) Evolution of the reservoir height.
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(b) Relative error (203).

Figure 14. (a) Evolution of the reservoir height, w, corresponding to Experiments 1-4. Continuous
thick line: Experiment 1. Dotted line: Experiment 2. Point-Dotted line: Experiment 3. Continuous
thin line: Experiment 4. (b) Relative error given by (203). Squares, circles, triangles and asterisks
correspond to Experiments 1-4, respectively.
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5 Full salinization of the root zone

In this section we present a result concerning to the formation of dead cores, i.e., regions in
which the threshold level of salt concentration u = 1 is attained in finite time, for the solu-
tions of the evolution problems we treated in Sections 2-4. The simplest tool for deducing
this type of properties is the comparison principle, which allows to compare solutions of
the original problem with solutions of related but simpler problems for which the result is
known. We already used this technique for the one-dimensional steady state problem, see
Theorem 2

However, since in general the comparison principle is not true for systems of equations,
we use an alternative method based on local energy estimates, see the monograph of An-
tontsev, Díaz and Shmarev [5] on local energy methods for free boundary problems. The
method roughly works as follows: first, an energy functional given in terms of norms of
the natural energy spaces associated with the problem and which are evaluated in a variable
space-time region is introduced. Then, using the partial differential equation satisfied by
the solution, a differential inequality for the local energy functional is obtained. Finally, the
formation of a dead core is deduced from the properties of solutions to this inequality.

The energy method that we use has two principal features. First, it is a local method, i.e.
it operates in subsets of the corresponding domain without need of global informations like
boundary conditions or boundedness of the domain. Secondly, it has a very general setting,
allowing to consider, for instance, problems in any space dimension or with coefficients
depending on the space or time variable. The energy method that we use does not need
any monotonicity assumption on the nonlinear functions and it requires no comparison
principle.

The method was introduced by Antontsev [2] and developed by J. I. Díaz and Véron in
[21] and by Antontsev, J. I. Díaz and Shmarev in [3,4] for parabolic equations of degenerate
type. The energy methods have been extended to equations of arbitrary order [11] and have
been applied to systems of equations [12, 19, 20, 29, 38]. We refer to [5] for an overview of
the existing literature.

Although the method may be applied to systems of equations formulated in a very
general form, we shall present it in the simpler one-dimensional formulation for clarity. We
first introduce some notation. Performing the change of unknown w = 1− u in Equations
(96) and (97) to remove the singularity from u = 1 to w = 0, we get

wt +(wv)z−wzz +m1 f (z,1−w) = 0, (204)

vz +m1 f (z,1−w) = 0, (205)

in QT . For any t ∈ (0,T ) we consider the set

P (t) := {(z,τ) : |z− z0|< R(τ; t), τ ∈ (t,T )} ,

with R(τ; t) := (τ− t)ν, 0 < ν < 1 to be fixed and z0 ∈ (0,1) such that

R(T ;0) < z0 < 1−R(T ;0),

implying P (t) ⊂ QT for all t ∈ (0,T ), see Figure 15. For brevity, we shall write P instead
of P (t). We decompose the boundary of P into final and lateral parts:

∂P (t) := ∂ f P (t)∪∂lP (t),
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T

t

z
0

Figure 15. The set P (t)

with ∂ f P (t) := {(z,T ) ∈ ∂P} and ∂lP (t) := {(z,τ) ∈ ∂P : t < τ < T} . Finally, we define
the local energy functions

E(t) :=
Z

P (t)
|wz|2 dzdτ and C(t) :=

Z

P (t)
wr+1 dzdτ. (206)

Concerning function f we assume, in addition to Hypothesis H2 in page 14, the existence
of constants k0 and k1 such that

0 < k0sr+1 ≤ m1s f (·,1− s)≤ k1sr+1 for s ∈ [0,1] (207)

in P (t) for a.e. t ∈ (0,T ), with r ∈ (0,1) and k0 > k1/2.

Theorem 7 Assume (207). Then there exists a positive constant M such that if E(0) +
C(0)≤M then w≡ 0 in P (t∗), for some t∗ ∈ (0,T ).

Remark 5 (i) If f (z,u) = k(z)(1−u)r, with k given by (23) then (207) is trivially satis-
fied in the region where k 6= 0.

(ii) Dirichlet data problem. Testing equation (204) with w and using (205) and the auxil-
iary conditions of problem (96)-(99) we obtain the following estimate

E(0)+C(0)≤
Z

Ω
(1−u0(z))2dz−

Z T

0
(1−utop(t))uz(0, t)dt.

In some situations, for instance when utop(t)≤ u0(z) for t ∈ (0,T ) and z ∈ (0,1), we
have uz(0, t)≥ 0 for t ∈ (0,T ), allowing us to obtain an estimate of E(0)+C(0) only
in terms of the initial datum. Notice that a typical data is utop = u0 = constant, for
which the above condition is satisfied.

(iii) Dynamic boundary condition problem. Proceeding as in (ii) but using the boundary
conditions of problem (169)-(174) we obtain the estimate

2E(0)+C(0)≤
Z

Ω
(1−u0)2 +(1−u0(0))2(1+m1

Z

QT

f (·,u)
)
. (208)
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Therefore, if the initial datum is close enough to one then the initial energy bound is
satisfied. Combining Theorems 6 and 7 we deduce the following corollary.

Corollary 1 Let (u,v) be a strong solution of problem (169)-(174) in QT , for T large
enough. Under the conditions of Theorems 6 and 7 there exist T0, t∗ > 0 such that
u≡ 1 in P (t∗), for some t∗ ∈ (T0,T ).

Or, in other words, the threshold value of salt concentration is attained in any com-
pact set contained in the root zone in finite time, independently of the initial condition.

Proof of Theorem 7. The proof consists of three steps.
Step 1. Multiplying equation (204) by w and integrating in P gives

Z

P

{
1
2(w2)t + 1

2

((
w2v

)
z +w2vz

)
+

(
|wz|2− (wwz)z

)
+m1w f (z,1−w)

}
dzdτ = 0.

Using the divergence theorem, equation (205) and assumption (207) we find
Z

P
|wz|2 dzdτ +k0

Z

P
wr+1 dzdτ≤

Z

∂lP
wwznz dzdτ−

− 1
2

Z

∂lP
w2 (nτ + vnz) dzdτ+

k1

2

Z

P
wr+2 ,

with (nz,nτ) the unitary outward normal vector to P , given by

(nz,nτ) :=





(0,1) in ∂ f P ,
((τ−t)1−ν,−ν)

(ν2+(τ−t)2(1−ν))1/2 in ∂lP .

Using w≤ 1, v≤ k1 in QT and (nz,nτ) unitary we obtain

E(t)+(k0− k1

2
)C(t)≤ 1+k1

2 I2(t)+
Z

∂lP
|w| |wz| dzdτ, (209)

where we introduced the notation [w] := |w(z0 +R(τ; t),τ)|+ |w(z0−R(τ; t),τ)| and

I2(t) :=
Z T

t

[
w2]dτ.

Step 2. Our aim is to estimate the right hand side of (209) by means of the functions at the
left hand side and their derivatives. First notice that

dE
dt

(t) =
Z T

t

[
|wz|2

] ∂R
∂t

(τ; t)dτ,

and therefore we can use Hölder’s inequality to get

Z

∂P
|w| |wz| dzdτ ≤

(Z T

t
−∂R

∂t

[
|wz|2

]
dτ

)1/2
(Z T

t

(
−∂R

∂t

)−1 [
w2] dτ

)1/2

=

= I1(t)
(
−dE

dt
(t)

)1/2

≤ I1(t)
(
−d (E +C)

dt
(t)

)1/2

, (210)
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with

I1(t) :=

(Z T

t

(
−∂R

∂t

)−1 [
w2] dτ

)1/2

.

To handle I1(t) and I2(t) of (209) we shall apply a simple version of an interpolation-trace
inequality. A proof of this particular result may be found in [22]. See [5] for a more general
version.

Lemma 6 Let ϕ ∈ H1(z0−ρ,z0 +ρ), for z0 ∈ R and a positive constant ρ. Then

|ϕ(z0−ρ)|+ |ϕ(z0 +ρ)| ≤ L0

(
‖ϕz‖2 +ρ−δ ‖ϕ‖r+1

)γ
‖ϕ‖1−γ

r , (211)

with L0 ≤ 16 , β ∈ [1,2], r ≥ 0,

γ =
2

2+β
and δ =

r +3
2(r +1)

. (212)

Here we used the notation ‖·‖s := ‖·‖Ls(z0−ρ,z0+ρ). We take β < 2 and find, by applying
Hölder’s inequality with exponent θ := 1−r

2−β

‖ϕ‖β ≤ ‖ϕ‖
2

βθ′
2 ‖ϕ‖

r+1
βθ

r+1 , (213)

where we have used the notation θ′ = θ/(θ−1). Combining (211) and (213) with ϕ(z) :=
w(z,τ) and using w≤ 1 we get

[
w2]≤ [w]2 ≤ L2

0m(R)
(
‖wz‖2

2 +‖w‖r+1
r+1

)γ
|QT |

2(1−γ)
rθ′ ‖w‖

2(1−γ)(r+1)
βθ

r+1 (214)

with m(R) := max
{

1,R−2δγ} . We then deduce from (214)

I1(t)≤ L0|QT |
1−γ
βθ′

(Z T

t
m(R)

(
−∂R

∂t

)−1 (
‖wz‖2

2 +‖w‖r+1
r+1

)γ+ 2(1−γ)
βθ

dτ

)1/2

. (215)

Due to the crucial assumption r < 1, it is compatible to choose β < 2 and β ≥ 4
3−r . Then

we obtain that µ given by

µ−1 := γ+
2(1− γ)

βθ
(216)

satisfies µ ≥ 1. Using Hölder’s inequality with exponent µ and substituting the explicit
expression of R we obtain from (215)

I1(t)≤ Λ(t)(E(t)+C(t))
γ
2 + 1−γ

βθ , (217)

with

Λ(t) := L0|QT |
1−γ
βθ′ ν−1/2

(Z T

t
(τ− t)µ′(1−ν−2δνγ)dτ

)1/2µ′

. (218)
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Function Λ is finite whenever we choose ν < µ+1
µ(1+2δ) which is always possible since the

only restriction assumed on ν is 0 < ν < 1. Gathering (210) and (217) we get

Z

∂P
|w| |wz| dzdτ≤ Λ(t)

(
−d (E +C)

dt
(t)

)1/2

(E(t)+C(t))
γ
2 + 1−γ

β . (219)

In a similar way, but choosing β = 2 in (211), we get the following estimate

I2(t)≤ L0Γ(t)(E(t)+C(t)) , (220)

with Γ2(t) :=
R T

t (τ− t)−δνdτ < ∞ if ν < 1/δ.
Step 3. From (209), (215) and (220) we deduce

c0(E(t)+C(t))≤ Λ(t)
(
−d (E +C)

dt
(t)

)1/2

(E(t)+C(t))
γ
2 + 1−γ

β ,

with c0 ≤ k0− k1
2 − 1+k1

2 L0Γ(t). Notice that making T − t small enough, say T − t ≤ ε, we
can ensure c0 > 0. Making the assumption, to force a contradiction, that E(t)+C(t) > 0
for all t ∈ [0,T ], we arrive at the inequality

c2
0 (E(t)+C(t))2

(
1− γ

2− 1−γ
β

)
≤−Λ(t)2 d (E +C)

dt
(t). (221)

Due again to r < 1 we find σ := 2
(

1− γ
2 − 1−γ

β

)
< 1. We assume T > ε and restrict t to

take values on (T − ε,T ) (so T − t ≤ ε is fulfilled). Integrating (221) in t ∈ (T − ε, t∗) with
t∗ ∈ (T − ε,T ) we obtain

(E +C)1−σ (t∗)≤ (E +C)1−σ (T − ε)− (1−σ)c2
0

Z t∗

T−ε
Λ(t)−2dt.

Therefore, since E +C is non-increasing we have that if the initial energy satisfies

(E +C)1−σ (0)≤ (1−σ)c2
0

Z t∗

T−ε
Λ(t)−2dt =: M1−σ

then E(t∗)+C(t∗) = 0, which is the announced contradiction. Therefore, there exists some
t∗ ∈ (0,T ) such that E(t)+C(t) > 0 for all t > t∗, implying w = 0 in P (t∗). 2

6 Conclusion

In this chapter we have introduced and analyzed a model for the description of the salt
concentration evolution and water motion induced by the salt exclusion mechanisms of
mangrove roots. This description was formulated in terms of a system of partial differential
equations inspired on that introduced by Passioura et al. [47]. However, we incorporated
major generalizations in several directions. First, we considered the global scenario of a
water-soil domain, in which a layer of saline water, such as in backwaters or marshes, lies
over a saturated porous medium where the mangroves grow. The appropriate mathemati-
cal model for this physical situation is the so called Stokes-Darcy model together with an
evolution convection-diffusion partial differential equation for the salt concentration.
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We deduced a dimensionless formulation in which there appeared three dimensionless
numbers capturing the relevant physical aspects of the problem: a Rayleigh number, mea-
suring the ratio hydraulic conductivity-molecular diffusion, a extraction number, measuring
the ratio mangroves transpiration rate-hydraulic conductivity, and a “viscosity” number,
proportional to permeability. We checked that, under usual conditions, the latter is very
small compared to the formers and may be neglected in a first approximation. The impli-
cation is that the water-soil model may be simplified in this usual situations, where only
the soil domain may be considered. Naturally, this soil model is also the adequate for other
typical situations in which mangroves grow on terrains which are only periodically inun-
dated. However, in unusual situations such as that discussed in Section 4, where the natural
water circulation in a marsh was impeded, the whole system should be taken into account.
Consequently, we started our discussion proving the well posedness of the mathematical
problem in the more general water-soil domain situation. As a matter of fact, this proof is
also valid for the soil model under minor modifications.

We dedicated Section 3 to the study of the soil model. Starting with the simplest sit-
uation in which only the vertical coordinate, the depth, is considered, we were able to
prove several quantitative and qualitative properties of the mathematical model such as the
uniqueness and comparison of solutions, which allowed us to establish the connection be-
tween the solutions of the time-dependent problem and the steady state problem, as well
as the property of formation of a dead core, or fully salinized region, and the stability of
the one-dimensional time-dependent solution. We also introduced numerical schemes to
approximate the solutions and tested them with typical values of the physical parameters.
In our numerical experiments we checked the importance of the functional form of the
extraction function for the formation of dead cores. However, although mathematically in-
teresting, we demonstrated that the product of the Rayleigh number times the extraction
number, which captures the ratio transpiration rate-molecular diffusion, is the most impor-
tant and physically understandable parameter of the model. We also checked that the actual
value of salt concentration at the surface is not significant for the resulting salt concentration
in the subsurface, except for the first few centimeters of the roots.

Our investigation on the stability of the solution of the one-dimensional problem was
motivated by the observation of a potential instable situation which arises in the first stages
of the evolution profile of the solution. Indeed, the salt exclusion mechanisms of mangroves
produce a layer of heavier water around the roots over a layer of lighter water below them.
We proved analytically (for a related problem) and demonstrated numerically that this con-
figuration is instable if the permeability of the porous medium and, therefore, its hydraulic
conductivity, is high enough. If such is the case, the formation of transient Bénard cells
speeds up the mixing of the salt in the porous medium, resulting in a faster convergence to
the steady state than that predicted by the one-dimensional model.

In Section 4 we deduced a water-soil model for stagnant water conditions. Although
related to the general model, we re-level the mathematical difficulties by allowing a moving
boundary (the top of the water domain) but under the assumption of a uniform salt concen-
tration in the water reservoir. After applying the water and salt mass conservation principles
we deduced a problem for the soil domain with a new kind of boundary condition: a dy-
namic boundary condition. We proved the mathematical well-posedness of the problem and
stated some of its properties. It is interesting to observe that the salt concentration tends to
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the threshold level in the whole domain, capturing the situation in which mangroves mech-
anisms of salt extrusion drive theirselves to death (in few years) when the natural water
circulation conditions are impeded.

Finally, in Section 5 we investigated the possibility that the salt exclusion mechanisms
may (locally) bring the water uptake to a complete standstill due to the increase of the salt
concentration until the threshold mangroves tolerance level is reached. This is a common
feature to all the models studied in this chapter and, in mathematical terms, depends on the
functional form of the extraction function. Since the mathematical proof is quite involved
and technical we presented the smoother version of the one-dimensional problem. The
results that we analytically proved in this section were numerically demonstrated along the
previous sections of the chapter.
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