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Abstract

We deduce a particular case of the population cross-diffusion model introduced
by Shigesada et al [31] by using the ideas of mutation and splitting from a single
species, as described by Sánchez-Palencia for ODE’s systems [30]. The result-
ing equations of the PDE system only differ in the cross-diffusion terms,
being the corresponding diffusion matrix self-diffusion dominated, which
implies that the well known population segregation patterns of the Shige-
sada et al model do not appear in this case. We prove existence and
uniqueness of solutions of the PDE system and use a finite element ap-
proximation to discuss, numerically, stability properties of solutions with
respect to the parameters in comparison with related models.
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1 Introduction

In [31], Shigesada et al introduced the following time evolution drift-cross dif-
fusion system of partial differential equations to model the interaction between
two competitive species:

∂tui − div Ji = fi(u1, u2) in QT = Ω× (0, T ), (1)
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for i = 1, 2, in QT =, where Ω ⊂ RN is an open and bounded set with Lipschitz
boundary, ∂Ω, T > 0 is arbitrarily fixed, the unknowns ui represent population
densities, the flow is given by

Ji = ∇(ciui + ai1uiu1 + ai2uiu2) + diuiq, (2)

fi are competition Lotka-Volterra type functions,

fi(u1, u2) = (αi − βi1u1 − βi2u2)ui, αi, βij ≥ 0 i, j = 1, 2, (3)

and the field q is usually given as q = ∇Φ, with Φ an environmental potential,
modeling areas where the environmental conditions are more or less favorable
[31,27]. The above system of equations is completed with non-flux boundary
conditions and non-negative initial data:

Ji · ν = 0 on ∂Ω× (0, T ), (4)

u(·, 0) = u0
i ≥ 0 on Ω, (5)

for i = 1, 2, where ν denotes the exterior unit normal to Ω.

This model has received much attention since its introduction due to the
interesting spatial pattern formation of its solutions, referred to as segrega-
tion, and in fact an intense effort has been devoted to the under-
standing of its mathematical properties, specially to the existence
of solutions, see [34,22,11,14] for first results under restrictions on
the coefficients, mainly condition (6) below, [15,7] for general exis-
tence results, [25,26] for the study of the stationary problem, and
[33,3] for extensions to several populations and non-homogeneous
Lotka-Volterra terms. The numerical approach to the problem has
been treated in [2,18,28], and the search for exact solutions in [8].
Related models have been studied in [16,21,17,12] and others. How-
ever, it seems that the modeling itself has not been object of further
study, and little more than the somehow ad hoc formulation given
by Shigesada et al in their key work [31] is available. In this arti-
cle, we propose a derivation of the model in terms of a well known
mechanism of population differentiation, see Sánchez-Palencia [30].
Starting with a single species with density u, solution of certain
evolution drift-diffusion PDE, we assume that mutation differenti-
ates this single species into two sub-species with densities u1 and u2,
which split in their behaviors such that we still have that u1+u2 = u
satisfies the original problem, but u1 and u2 solve slightly different
PDE’s conforming a system which is a special case of the Shigesada
et al model.

As showed by Sánchez-Palencia [30], the strategy of differentiation
and splitting in the ODE’s model leads to a situation in which there
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exists a full segment of steady state solutions which includes the
cases of coexistence and extinction of one population. The interest-
ing biological feature of the model is that, in general, small pertur-
bations of the Lotka-Volterra terms involving advantages and dis-
advantages for both populations tend to induce coexistence. There-
fore, differentiation-splitting strategies may be understood as mech-
anisms which promote diversity, rather than optimization of species.
However, in general, this not seem to be the case when cross-
diffusion spatial effects of the Shigesada et al type enter in the mod-
eling, as we numerically demonstrate in Section 4. On the contrary,
the effects of population pressure in the context of differentiation-
splitting strategies seem to promote only the survival of the best
fitted.

With respect to the segregation pattern formation of the Shigesada
et al model, let us mention that they are not expected to arise in
our differentiation-splitting model since this mechanism leads to a
self-diffusion dominated diffusion matrix. As pointed out by Lou and
Ni [25,26] in the context of the stationary problem corresponding
to problem (1)-(5), while cross-diffusion helps to create segregation
patterns, these patterns do not appear if the intensity of diffusion or
self-diffusion is relatively large. Heuristically, we may have an idea
of the relative size of diffusion parameters not leading to segregation
patterns when considering the diffusion matrix of the system,

A(u1, u2) =

 c1 + 2a11u1 + a12u2 a12u1

a21u2 c2 + 2a22u2 + a21u1

 ,

and observing that under the condition

8a11 ≥ a12, 8a22 ≥ a21, (6)

the diffusion matrix is positive definite

ξTA(u1, u2)ξ ≥ min {c1, c2} |ξ|2 for allξ ∈ RN ,

hence yielding a uniform elliptic operator. Therefore, no segrega-
tion patterns are expected if condition (6) holds, as is the case for
the differentiation-segregation model we shall deduce in the next
section.

The article is organized as follows. In Section 2 we introduce our model and
comment on other related models. In Section 3, we state and prove the main
analytical results of this article. Finally, in Section 4, we use a finite element
approximation to compute several model examples and discuss on the stability
of solutions with respect to the parameters of the model.
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2 Mathematical model

We start considering the dynamics of one single species population satisfying
∂tu− div J(u) = F (u) in Ω× (0, T ),

J(u) · ν = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 ≥ 0 on Ω,

(7)

where the flow J is given by

J(u) = ∇(cu+ au2) + duq,

with a, c ≥ 0 and d ∈ R, and where the Lotka-Volterra function is of compet-
itive type

F (u) = u(α− βu).

Here, α ≥ 0 is the intrinsic growth parameter and β ≥ 0 is related to the
carrying capacity of the ecosystem. In the homogeneous space case, i.e., when
the PDE of problem (7) reduces to an ODE, the nonlinear term of the Lotka-
Volterra function prevents the solution from unbounded increase. From the
modeling point of view, observe that the flow J includes terms analogous
to those of Ji given in (1). From the analytic point of view, the existence
and uniqueness of solutions of problem (7) is a classical result under suitable
assumptions on the regularity of functions q and u0 see, for instance, [23]. For
biological background and origins of the problem see, for instance, [29].

To deduce our final model, following Sánchez-Palencia [30] we suppose that, at
some time, t∗ < T , mutation differentiates population u (solution of problem
(7)) into two populations, u1 and u2, with u(·, t∗) = u1(·, t∗) + u2(·, t∗) and
that these new populations split in their behavior, satisfying

∂tui − div Ji(u1, u2) = Fi(u1, u2) in Ω× (t∗, T ),

Ji(u1, u2) · ν = 0 on ∂Ω× (t∗, T ),

ui(·, t∗) = u0
i on Ω,

(8)

for i = 1, 2, with u0
i such that u0

1 + u0
2 = u(·, t∗), and with

Ji(u1, u2) = ∇
(
cui + au2

i + biu1u2

)
+ duiq, Fi(u1, u2) = ui(α− βu1 − βu2),

with b1 = a(1 − ρ), b2 = a(1 + ρ), for −1 ≤ ρ ≤ 1. Observe that if (u1, u2)
is a solution of problem (8) then we still have that u1 + u2 is a solution
of problem (7) in Ω × (t∗, T ) since J1(u1, u2) + J2(u1, u2) = J(u1 + u2) and
F1(u1, u2) + F2(u1, u2) = F (u1 + u2). Observe also that the only difference
between the equations satisfied by u1 and u2 lies in the cross-diffusion terms.
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In this way we obtained, from the well known model in population dynamics
(7), a particular case of the Shigesada et al problem given by the system (1)-
(5). As mentioned in the previous section, of special interest are the situations
in which the balance between the self-diffusion, ∆u2

i , and the cross-diffusion,
∆(u1u2), is such that spatial segregation patterns arise. However, in the case
of problem (8) segregation patterns are not expected to appear due to the
small relative size of self and cross-diffusion coefficients. In particular, we have
that condition (6) is always satisfied and therefore, if c > 0, the problem is
uniformly parabolic.

Before stating our results, let us remark that there are other ways to perform
the splitting of equations which leads to problem (8). In [18], Gambino
et al studied numerically a particle approximation or lagrangian
version of the model generalizing the ideas of Degond et al [9], see
also [10,24]. Simplifying their notation for clarity, and taking Fi = 0
and q = ∇Φ for simplicity, the ODE system for the particle positions
xi
n (position of particle n of population i) is given by, for i, j = 1, 2,

i 6= j, n = 1, . . . , N ,

d

dt
xi
n(t)=−

(
ci

ui
n(x

i
n, t)

∇ui
N(x

i
n, t) + aij∇uj

N(x
i
n, t) + di∇Φ(xi

n, t)

+
(
2aii +

aiju
j
N(x

i
n, t)

ui
N(x

i
n, t)

)
∇ui

N(x
i
n, t)

)
, (9)

where ui
N(x, t) =

∑N
n=1 w

i
nζε(x − xi

n(t)) is a particle approximation of
ui, with wi

n the mass of particle n of population i and ζε a regular-
izing kernel for approximating the Dirac δ distribution. The right
hand side of equation (9) prescribes the particle velocity, which is
modified by several factors which we describe in the same order as
appearing in the equation:

• random motion. This is a deterministic version of Fick’s law,
which takes the simpler form

√
cidW

i
n(t) when written as a stochas-

tic component of the equation, with W i
n, n = 1, . . . , N a family of

independent standard Wiener processes,
• inter-population pressure, with repulsive effects,
• environmental force, attracting towards the minima of Φ, and
• intra-population pressure, again with repulsive effects.

As it can be seen, the intra-population pressure force has a formula-
tion much more complicated than that of the inter-population pres-
sure, due to the particular structure assumed for the cross-diffusion
terms. In fact, in opposition to Fick’s law, its interpretation is also
unclear when considered as a part of a stochastic process [13].
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To obtain an alternative model from the differentation-splitting strategy let
us observe that the nonlinear diffusive term, a∆u2, of problem (7) is better
understood when written as 2a div(u∇u) since it emphasizes the original role
of this term as a repelling term (population pressure). The mutation into two

populations then takes the form 2a div
(
(u1 + u2)∇(u1 + u2)

)
, and a possible

and natural splitting strategy is to consider new terms which are a sum of
repelling forces

2a div
(
u1∇(u1 + u2)

)
and 2a div

(
u2∇(u1 + u2)

)
,

for the u1 and u2 equations, respectively. In this way, the nonlinear diffusion
terms of equations of problem (8) change and a new model problem may be
considered:

∂tui − div J̃i(u1, u2) = Fi(u1, u2) in Ω× (T,∞),

J̃i(u1, u2) · ν = 0 on ∂Ω× (T,∞),

ui(·, t∗) = u0
i on Ω,

(10)

for i = 1, 2, with the initial data, u0
i , and Lotka-Volterra functions, Fi, defined

as those of problem (8), and with the new flow functions defined by

J̃i(u1, u2) = (c+ 2aui)∇ui + 2aui∇uj + duiq,

for i, j = 1, 2, i 6= j. Observe that J̃i is written as the addition of a conservative
flow plus a term yielding linear diffusion. From the particle approximation
point of view J̃i leads to the formulation

d

dt
xi
n(t)=−

(
c

ui
n(x

i
n, t)

∇ui
N(x

i
n, t) + 2a∇ui

N(x
i
n, t) + 2a∇uj

N(x
i
n, t) (11)

+d∇Φ(xi
n, t)

)
,

which is a much simpler expression than that obtained for the Shigesada et al
model (8), see (9) with the substitution aii = a and aij = bi. In fact, expression
(12) resembles that obtained for the single species problem

d

dt
xn(t) = −

(
c

un(xn, t)
∇uN(xn, t) + d∇Φ(xn, t) + 2a∇uN(xn, t)

)
, (12)

with a similar definition of uN than that of ui
N given in (9). Problem (10) is

an alternative approach to cross-diffusion problems in Biology which
was introduced by Gurtin et al [20], see also Busenber et al [6] in
the context of epidemic models. Mathematical analysis of simplified
versions of problem (10) have been carried out in [4,5].
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3 Main results

By using the translation t̃ = t− t∗ we may consider problem (8) holding in the
time domain (0, T̃ ) = (0, T − t∗), with q̃(·, t̃) = q(·, t∗ + t̃). In the following,
we omit the tildes for clarity. The first result is on the existence of solutions
of problem (8), which is a particular case of the problem studied in [14,7].

Theorem 1 Let T > 0 and assume that:

(1) the parameters satisfy c+ a > 0,
(2) q ∈ L2(QT ),
(3) the initial data (of problem (7)) satisfy u0 ∈ L2(Ω), u0 ≥ 0.

Then there exists a weak solution (u1, u2) of problem (8) satisfying, for i = 1, 2,
ui ≥ 0 in QT ,

ui ∈ L2(0, T ;H1(Ω)) ∩W 1,r(0, T ; (W 1,r′(Ω))′), (13)

with r = (2N + 2)/(2N + 1) if c = 0 and r = 2 if c > 0, and, for all
ϕ ∈ Lr′(0, T ;W 1,r′(Ω)), and∫ T

0
〈∂tui, ϕ〉+

∫
QT

Ji(u1, u2) · ∇ϕ =
∫
QT

Fi(u1, u2)ϕ, (14)

with < ·, · > denoting the duality product between W 1,r′(Ω) and (W 1,r′(Ω))′.

The second result is on the additional regularity and the uniqueness of solu-
tions of problem (8), for which we are not aware of any previous results.

Theorem 2 Let the assumptions of Theorem 1 hold. If, for i = 1, 2,

u0
i ∈ L∞(Ω) and div q ∈ L1(0, T ;L∞(Ω)) (15)

then any weak solution of problem (8) is such that ui ∈ L∞(QT ) and r may be
taken as r = 2 in (13). In addition, if

(i) a = 0 (and c > 0), or
(ii) div q ∈ L∞(QT ) and either β = 0 or ∇ui ∈ L∞(QT ),

then problem (8) admits a unique weak solution.

Remark 1 Another interesting result for solutions of problem (8) is obtained
when the problem is of degenerate type. If c = 0 and (u0

1, u
0
2) is an initial data

for problem (8) with compact support in Ω then the support of u0 = u0
1 + u0

2

is also compact in Ω and therefore, using well known results of the theory of
degenerate parabolic equations, see for instance Antontsev et al [1], the support
of u(·, t) remains compact for some time interval (0, t∗), with t∗ > 0. Therefore,
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since ui ≥ 0, then the supports of ui(·, t) remain also compact for, at least, the
same time interval.

Proof of Theorem 1. Let us start recalling that the parameters aij of problem
(1) corresponding to the particular case of problem (8) always satisfy condition
(6). Therefore, if c > 0 then we may apply the results of Theorem 1 of [14]
to deduce the existence of a weak solution of problem (8). If c = 0, and by
condition (1) of Theorem 1, a > 0, then we may use Theorem 1.1 of [7] (see also
its Remark 3.6 and [2] for a proof based on a finite element approximation)
to obtain a weak solution of problem (8).

Proof of Theorem 2. If a = 0 and therefore bi = 0 and c > 0, the diffusion
matrix is constant and positive definite and the results of the theorem are
classical. We start proving the additional regularity of weak solutions under
assumptions (15) and a > 0. Let (u1, u2) be a weak solution of problem (8).
By construction, u = u1 + u2 satisfies problem (7) with u0 = u0

1 + u0
2 ≥ 0.

Under assumption (15), problem (7) admits a unique non-negative solution
such that

u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′) ∩ L∞(QT ),

see for instance [32]. Therefore, since ui ≥ 0, we deduce that also ui ∈ L∞(QT ).
With this regularity of solutions, it is straightforward to show that Ji(u1, u2) ∈
L2(QT ). A standard approximation argument allows us to obtain from (14)
the estimate∫ T

0
〈∂tui, ϕ〉 ≤ ‖Ji(u1, u2)‖L2(QT )‖∇ϕ‖L2(QT ) + ‖Fi(u1, u2)‖L2(QT )‖ϕ‖L2(QT ),

for all ϕ ∈ L2(0, T ;H1(Ω)), implying that ui is bounded in H1(0, T ; (H1(Ω))′),
and therefore allowing us to take r = 2 in (13).

To prove the uniqueness of solutions of problem (8) under assumptions (15)
and (ii), let us assume that there exist two solutions (u1, u2) and (û1, û2) and
let us define u = u1 + u2, û = û1 + û2, v = u1 − u2, v̂ = û1 − û2. On one hand,
since both u and û satisfy, by construction, problem (7), which only admits
one weak solution, we deduce that u = û. On the other, we have that v (resp.
v̂) satisfies, in a weak sense similar to that of (14), the problem

∂tv − div Jd(v) = Fd(v) in QT ,

Jd(v) · ν = 0 on ∂Ω× (0, T ),

v(·, 0) = u10 − u20 on Ω,

(16)

with Fd(v) = v(α− βu), and

Jd(v) = ∇
(
cv +

aρ

2
(v2 − u2) + auv

)
+ dqv,
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(resp. with v replaced by v̂). Our goal is to prove that v = v̂ since, together
with u = û, this implies u1 = û1 and u2 = û2. Let us consider the problem
satisfied by w = v − v̂:

∂tw − div Jdd(w) = Fd(w) in QT ,

Jdd(w) · ν = 0 on ∂Ω× (0, T ),

w(·, 0) = 0 on Ω,

(17)

with

Jdd(w) = ∇
(
cw +

aρ

2
(v + v̂)w + auw

)
+ dqw.

Let ϕ be a smooth function defined in QT with ∇ϕ · n = 0 on ∂Ω × (0, T )
and ϕ(·, T ) = 0 on Ω. Using ϕ as a test function in the weak formulation of
problem (17) and performing an additional integration by parts we obtain∫

QT

w
(
− ∂tϕ− A∆ϕ+ dq · ∇ϕ− (α− βu)ϕ

)
= 0, (18)

with A = c + a(ρ
2
(v + v̂) + u). Observe that, since ρ ∈ [−1, 1] and u = û, we

deduce

ρ

2
(v + v̂) + u =

1

2

(
(1 + ρ)(u1 + û1) + (1− ρ)(u2 + û2)

)
≥ 0,

and therefore A ≥ 0. We perform the change of variable τ = T − t and set the
following problem to choose function ϕ (writing again t ≡ τ for clarity):

∂tϕ− An∆ϕ+ dqn · ∇ϕ− (α− βun)ϕ = wn in QT ,

∇ϕ · ν = 0 on ∂Ω× (0, T ),

ϕ(·, 0) = 0 on Ω,

(19)

with An, qn, un, wn ∈ C∞(Q̄T ), regularizations of A, q, u and w, respectively,
such that

An ≥ 1/n a.e. in Q̄T , ‖An − A‖L2(QT ) ≤ 1/n, (20)

and 
qn → q strongly in L2(QT ), with ‖ div qn‖L∞(QT ) ≤ k,

un → u strongly in L2(0, T ;H1(Ω)), with ‖un‖L∞(QT ) ≤ k,

wn → w strongly in L2(0, T ;H1(Ω)),

(21)

with k > 0 independent of n. With these coefficients and data, we have that
problem (19) has a solution ϕn ∈ C∞(Q̄T ), see [23]. Using this function we
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may rewrite (18) as∫
QT

wwn +
∫
QT

w
(
(An −A)∆ϕn + d(q− qn) · ∇ϕn + β(u− un)ϕn

)
= 0. (22)

We have the following estimates for ϕn. Multiplicating the equation of (19) by
−∆ϕn, integrating by parts and using (20) we obtain

∫
Ω
|∇ϕn(T )|2 +

1

n

∫
QT

|∆ϕn|2≤
(
d‖ div qn‖L∞ + ‖α− βun‖L∞ + 1

) ∫
QT

|∇ϕn|2

+β2‖∇un‖2L∞(QT )

∫
QT

|ϕn|2 +
∫
QT

|∇wn|2. (23)

Using ϕn as test function in (19) we obtain

1

2

∫
Ω
|ϕn(T )|2 ≤

(
‖d div qn‖L∞ + ‖α− βun‖L∞ + ‖wn‖2L2

) ∫
QT

|ϕn|2

+‖∇An‖L∞

∫
QT

|∇ϕn|2. (24)

We now distinguish the two cases in (ii) of Theorem 2 to pass to the limit
n → ∞ in identity (22). Let us start assuming β = 0. From (23), (20), (21),
and Gronwall’s lemma we deduce∫

QT

|∇ϕn|2 +
1

n

∫
QT

|∆ϕn|2 ≤ C(T ) (25)

with C independent of n. Observing that

∫
QT

w(An − A)∆ϕn ≤ ‖w‖L∞‖A− An‖L2‖∆ϕn‖L2 ≤ (
C(T )

n
)1/2‖w‖L∞(26)

we easily obtain, passing to the limit n → ∞ in (22) that w = 0 a.e. in QT .

If β > 0 then we need to use estimate (24) to control the L2 norm of ϕn

appearing in estimate (23). Therefore, we have to assume the additional regu-
larity ∇ui ∈ L∞(QT ) in order to be able to define approximations un and An

of u and A satisfying, in addition to (21),

‖∇un‖2L∞(QT ) ≤ k, and ‖∇An‖L∞ ≤ k, (27)

with k > 0 independent of n. In such a case, adding (23) and (24) and using
(20), (21), (27) and Gronwall’s lemma we obtain∫

QT

|ϕn|2 +
∫
QT

|∇ϕn|2 +
1

n

∫
QT

|∆ϕn|2 ≤ C(T ), (28)
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with C independent of n. Finally, we may pass to the limit n → ∞ in (22) in
a similar way than in the previous case to deduce w = 0 a.e. in QT .2

4 Numerical examples

In this section we present numerical simulations in one space dimension illus-
trating differences between the behaviors of solutions corresponding to differ-
ent mutation and splitting parameters in problem (8) and compare them to
the corresponding solutions of problem (10). The main issue of the mutation
and splitting procedure is, at least for the related ODE, the existence of a
whole segment of equilibria, determined by u1 + u2 = α/β. It is therefore in-
teresting to see in which situations perturbations of the original system leads
to stable equilibria. In the examples that follow and in others not shown, we
have checked that problem (10) and problem (8) with ρ = 0 behaves in a
similar way, but differently than problem (8) with ρ 6= 0. In our experiments,
problem (8) with ρ 6= 0 always led to extinction of one population while this
was not always the case for problem (10).

4.1 Finite element approximation

For simplicity, we take the spatial dimension to be n = 1, e.g. Ω ⊂ R is chosen
to be an open interval. For a more detailed description of the following finite
element approximation, including the case of higher spatial dimensions, see
[2]. On the interval Ω, we consider a family of quasi-uniform partitionings
T h, h > 0, consisting of disjoint and open subintervals I with hI = |I| and
h = maxI∈T h hI , so that Ω̄D = ∪I∈T h Ī. Associated with T h is the finite element
space

Sh =
{
ϕ ∈ C(Ω̄) : ϕ|I is linear for all I ∈ T h

}
⊂ H1(Ω).

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let

{ϕj}j∈J be the standard basis functions for Sh, that is ϕj ∈ Sh, ϕ ≥ 0 in Ω,
and ϕj(pi) = δij for all i, j ∈ J . The following functions were considered in [2],
see also [19,35], to obtain a discrete analogue of the entropy inequality which
allows to control the possible non-positivity of discrete approximate solutions.
We define Λε : S

h → L∞(Ω) as

Λε(z
h)|κ =


zh(pk)−zh(pj)

F ′
ε(z

h(pk))−F ′
ε(z

h(pj))
zh(pk) 6= zh(pj),

λε(z
h(pk)) zh(pk) = zh(pj),
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with Fε : R → [0,∞) given by

Fε(s) =


s2−ε2

2ε
+ (ln ε− 1)s+ 1 s ≤ ε,

(ln s− 1)s+ 1 ε ≤ s ≤ ε−1,

ε(s2−ε−2)
2

+ (ln ε−1 − 1)s+ 1 ε−1 ≤ s,

and λε : R → R as λε(s) = (F ′′
ε (s))

−1, for some ε > 0. Observe that we
always have Λε(z

h)|κ = λε(z
h(ξ)) for some ξ ∈ κ and that λε(s) → s1[0,∞)(s)

as ε → 0.

For the time discretization, we consider a partitioning 0 = t0 < t1 < . . . <
tN−1 < TN = T of [0, T ] into possibly variable time steps τn = tn − tn−1,
n = 1, . . . , N . We set τ = maxn τn. For any given ε ∈ (0, 1), we then consider
the following finite element approximation of problem (8): For n ≥ 1 find
(un

ε,1, u
n
ε,2) ∈ (Sh)2 such that for i, j = 1, 2, with j 6= i, and for all ϕ ∈ Sh

1

τn

〈
un
ε,i − un−1

ε,i , ϕ
〉
+

〈[
c+ 2aΛε(u

n
ε,i) + biΛε(u

n
ε,j)

]
∇un

ε,i,∇ϕ
〉

+
〈
Λε(u

n
ε,i)

[
bi∇un

ε,j + d∇(πhΦ)
]
,∇ϕ

〉
=

〈
un
ε,i

[
α− βλε(u

n−1
ε,1 )− βλε(u

n−1
ε,2 ))

]
, ϕ

〉
, (29)

where πh : C(Ω̄D) → Sh is the usual interpolation operator, with (πhη)(pj) =
η(pj) for all j ∈ J , and u0

ε,i ∈ Sh is an approximation of u0
i , for instance its

L2 projection on Sh. As shown in Theorem 2.1 of [2], problem (29) admits a
solution. More concretely, if (un−1

ε,1 , un−1
ε,2 ) ∈ (Sh)2, ε ∈ (0, e−2) and 2(α+β)τn <

1, then there exists a solution (un
ε,1, u

n
ε,2) ∈ (Sh)2 to the n-th step of problem

(29). In addition, they prove (Theorem 3.1 of [2]) that if τ → 0 with either
τ1 ≤ Ch2 or u0

i ∈ H1(Ω), and if εh−1/2 → 0 then a subsequence (not relabeled)
of

uε,i(t) =
t− tn−1

τn
un
ε,i +

tn − t

τn
un−1
ε,i t ∈ [tn−1, tn], n ≥ 1,

may be extracted such that (uε,1, uε,2) → (u1, u2) in a suitable sense, being
(u1, u2) a weak solution of problem (8).

4.2 Experiments

As in [2], we use the following fixed point algorithm for solving the system
of nonlinear algebraic equations for (un

ε,1, u
n
ε,2) arising at each time level from

the approximations (29). For t = t0 = 0, set u0
i = u0

ε,i. For t = tn, let u
n−1
ε,i be

given and set un,0
ε,i = un−1

ε,i . Then, for k ≥ 1 find un,k
ε,i such that for i, j = 1, 2,

with j 6= i, and for all ϕ ∈ Sh

12



1

τn

〈
un,k
ε,i − un−1

ε,i , ϕ
〉
+

〈[
c+ 2aΛε(u

n,k−1
ε,i ) + biΛε(u

n,k−1
ε,j )

]
∇un,k

ε,i ,∇ϕ
〉

+
〈
Λε(u

n,k−1
ε,i )

[
bi∇un,k

ε,j + d∇(πhΦ)
]
,∇ϕ

〉
=

〈
αun,k

ε,i − β
[
λε(u

n−1
ε,i )− λε(u

n−1
ε,j ))

]
λε(u

n,k−1
ε,i ), ϕ

〉
.

We adopted the stopping criteria

max
i=1,2

‖un,k
ε,i − un,k−1

ε,i ‖∞ < tol,

with tol = 10−7 in the experiments, and set un
i = un,k

i . Similar approaches are
followed to approximate solutions of problems (7) and (10). In all experiments
we integrated in time until a numerical stationary solution, uS

i , was achieved.
This was determined by

max
i=1,2

‖un,1
ε,i − un,0

ε,i ‖∞ < 5× 10−12.

4.3 Experiment 1

We take Ω = (0, 3) with a spatial and time step sizes h = 0.01 and τ = 0.001,
respectively. The environmental potential is Φ(x) = −1.5(x− 0.5)2. The flow
and Lotka-Volterra parameters are given by a = c = d = α = β = 1, and the
initial conditions are

u10 = 0.6uS, u20 = 0.4uS, (30)

with uS the numerical stationary solution of problem (7) for the same param-
eters than above, and with the initial data u0 = 1. In Fig. 1 we show the
steady state solutions of problem (8) corresponding to ρ = ±0.75, which lead
to extinction of the population with lower cross-diffusion parameter bi. Other
non-zero values of ρ produce the same results. For any initial data of the form
u10 = λuS, u20 = (1 − λ)uS, with λ ∈ [0, 1], the solution of problems (8)
with ρ = 0 and of problem (10) are just u1 = u10, u2 = u20, so both popu-
lations survive in this case. We observe that in all the cases solutions satisfy
uS
1 + uS

2 = uS.

4.4 Experiment 2

We take Ω = (−1, 1) with a spatial and time step sizes h = 0.01 and τ = 0.001,
respectively. The environmental potential is Φ(x) = exp(−10x4). The flow and
Lotka-Volterra parameters are given as in Experiment 1, except d = 5, and

13
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Fig. 1. Experiment 1. Steady state solutions of problem (8).

the initial conditions are

u10 = uS1(−0.25,0.25), u20 = uS − u10, (31)

with uS the numerical stationary solution of problem (7) for the same param-
eters than above, and with the initial data u0 = 1.

The solutions of problem (8) behaves, qualitatively, as in Example 2: one
population is extincted and the other coincides with uS when ρ 6= 0. The
solutions of problems (8) with ρ = 0 and of problem (10) are again different of
those with ρ 6= 0, since both populations survive in these cases, see Fig. 2 (a).
However, this seems to be an unstable situation as it is demonstrated when
perturbing parameter α. Fig. 2 (b) shows the steady state solution of problems
(8) (with ρ = ±0.75) and (10), all of them coinciding, for the same situation
as before but with α = α1 = 0.9 for the u1−equation and α = α2 = 1.1 for
the u2−equation. The result is that population 1 is extincted and population
2 satisfies uS

2 = ũS, with ũS the steady state solution of problem (7) with the
same data than above but α = α2 = 1.1.

4.5 Experiment 3

We take the data as in Experiment 1 but modifying the Lotka-Volterra term
corresponding to population 2 as Sánchez-Palencia in [30]: α2 = 0.95, β21 =
0.9. For the system of ODE’s, this perturbation results in the passing from the
existence of a segment of equilibria, u1 + u2 = α/β, to a unique equilibrium
(u1, u2) near (0.5, 0.5), see [30]. We study in this example whether something
similar happens to the PDE system or not. As in Experiment 2, we look for
steady state solutions of problem (8) with ρ = ±0.75 and ρ = 0, and of
problem (10). We take the following initial conditions:

u10 = uS1(0.25,0.50), u20 = uS − u10, (32)
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Fig. 2. Experiment 2. Steady state solutions; (a) problem (10), (b) problems (10)
and (8) for ρ = ±0.75.

with uS the numerical stationary solution of problem (7) for the same param-
eters than above, and with the initial data u0 = 1. In Fig. 3 (a) we plot the
steady state solutions corresponding to problem (10) and problem (8) with
ρ = 0. Solutions to both problems are similar and satisfy, in coincidence with
the solution of the ODE system,

‖u1/u2‖∞ ≈ 1.

However, solutions of problem (8) with ρ = ±0.75 again lead to extinction of
one species, as shown in Fig. 3 (b) and (c).
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Fig. 3. Experiment 3. Steady state solutions: (a) problems (10) and (8) for ρ = 0,
(b) problem (8) for ρ = ±0.75.
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