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Abstract. In [18], Sighesada, Kawasaki and Teramoto presented a system
of partial differential equations for modeling spatial segregation of interact-
ing species. Apart from competitive Lotka-Volterra (reaction) and population

pressure (cross-diffusion) terms, a convective term modeling the populations at-
traction to more favorable environmental regions was included. In this article,
we study numerically a modification of their convective term to take account for
the notion of spatial adaptation of populations. After describing the model,

in which a time non-local drift term is considered, we propose a numerical
discretization in terms of a mass-preserving time semi-implicit finite element
method. Finally, we provied the results of some biologically inspired numerical

experiments showing qualitative differences between the original model of [18]
and the model proposed in this article.

1. Introduction. In [18], Shigesada, Kawasaki and Teramoto introduced a model
for analyzing the spatial segregation patterns arising in the evolution of populations
of two species which are ruled by

• competition for similar resources,
• population pressure, and
• environmental quality.

These biological interactions are realized mathematically in the form of a time
evolution drift-cross diffusion system of partial differential equations,

∂tui − ∂xJi = fi(u1, u2), Ji = (ciui + ai1uiu1 + ai2uiu2)x − diuiUx, (1)

for i = 1, 2, where ui denotes population density, U is the environmental potential,
modeling areas where the environmental conditions are more or less favorable [18,
17], the non-negative diffusion coefficients ci and aij model the random diffusion of
individuals and the inter- and intra-specific population pressure, respectively, and
di are usually assumed to be real constants determining the attraction strength of
the potential maxima. Function fi is a competition Lotka-Volterra type function,

fi(u1, u2) = (αi − βi1u1 − βi2u2)ui, i, j = 1, 2,

where αi ≥ 0 is the intrinsic growth rate of the i−species, and βij ≥ 0 are the
coefficients of inter- and intra-specific competition.

In this article, for simplicity, we assume Equations (1) to be satisfied in the
bounded domain Ω× (0, T ), with Ω ⊂ R an open interval, and T > 0, although the
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multi-dimensional case Ω ⊂ RN with N ≤ 3 could be also treated. The problem
is completed by prescribing non-flux boundary conditions and non-negative initial
data:

Ji · ν = 0 on ∂Ω× (0, T ), (2)

u(·, 0) = ui0 on Ω, (3)

for i = 1, 2, where ν denotes the exterior unit normal to ∂Ω.
Problem (1)-(3) has received much attention since its introduction due to the

interesting spatial pattern formation of solutions, referred to as segregation. These
patterns do not arise in the linear diffusion model, i.e. for aij = 0, i, j = 1, 2, where,
if in addition di = 0, then the steady state solutions are constants determined by the
zeros of the Lotka-Volterra terms. These constant solutions correspond, in general
terms, to two kind of competitions: weak, which implies coexistence, and strong
which implies extinction of at least one population. Lou and Ni [15, 16] analyzed the
steady state problem corresponding to (1) (with di = 0) and proved the existence of
non-constant solutions for some parameter combinations including weak and strong
competition. Their results seem to indicate that while the intensity of diffusion (ci)
and self-diffusion (aii) tend to suppress pattern formation, those of cross-diffusion
(a12, a21) seems to help create segregation patterns.

The first results on the existence of solutions of problem (1)-(3) were proven
under certain restrictions on the self- and cross-diffusion coefficients. For instance,
for sufficiently small cross-diffusion terms (or small initial data) and vanishing self-
diffusion coefficients a11 = a22 = 0, Deuring proved the global existence of solutions
in [4]. For the case c1 = c2 a global existence result in one space dimension was
obtained by Kim [14]. Furthermore, under the condition

8a11 > a12, 8a22 > a21, (4)

Yagi [19] showed the global existence of solutions in two space dimensions assuming
a12 = a21. A global existence result for weak solutions in any space dimension
under assumption (4) can be found in [8]. Condition (4) can be easily understood by
observing that in this case, the diffusion matrix is positive definite, hence yielding an
elliptic operator. If the condition (4) does not hold, there are choices of ci, aij , ui ≥
0 for which the diffusion matrix is not positive definite. In [9] (see also [10] for some
extensions of the result) the existence of global weak solutions for any aij > 0
was proven by using a suitable entropy functional. However, the proof uses the
embedding H1(Ω) ⊂ L∞(Ω) in a crucial way, restricting the result to one space
dimension. The one-dimensional result was later generalized by Chen and Jüngel
[2] to up to three space dimensions without any additional restrictions than those
given in [9]. We refer to [15, 16] for the corresponding stationary problem and notice
that related models appear, among other fields, in ecology, chemotaxis, granular
material and semiconductor theories [5, 12, 7, 11, 3].

On the numerical side, a first approach based on a time Euler semi-discrete
scheme was proven to be convergent in [9], in the one dimensional spatial case.
More recently, other numerical approaches have been introduced in the context of
Euler-Galerkin approximations (N ≤ 3) by Chen and Jüngel [2], of finite element
methods (N ≤ 3) by Barret and Blowey [1] and of particle methods (N = 1) by
Gambino et al. [13]. However, for the 1D case, the results of all these methods
seems to be similar.
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In all these works the focus is set either on finding conditions on the diffusion co-
efficients ci and aij , and the Lotka-Volterra coefficients αi and βij which ensure the
existence of solutions of problem (1)-(3), allowing to define a convergent numerical
method to approximate them, either on finding conditions which imply qualitative
properties such as the co-existence or the extinction of populations in the steady
state problem. However, the drift term responsible of directing the populations
towards the maxima of the environmental potential has been always assumed to
be linear and depending on constant coefficients (di) which express the strength of
attraction of the different populations to these maxima. In [6] we introduced a new
drift coefficient dependence which allow us to modelize spatial adaptation by means
of a memory mechanism which strengthen the attraction of population to a point
if the population density in such point has been high in the past. More explicitly,
we assume di to have the form

di(x, t) =
1

t

∫ t

0

ui(x, s)ds. (5)

In addition, another modification of the original problem was introduced in [6],
assuming the intrinsic growth rate coefficients αi to be non-constant. Indeed, once
that we consider an heterogeneous space domain in which populations are driven to
the environmental potential maxima, it seems reasonable to assume a dependence of
αi on U such that larger growth of populations takes place in better environmental
regions. We set

αi ≡ αi(U) (6)

with α′
i ≥ 0. From the analytical point of view, both modifications may be treated

introducing minor changes in the proof of Theorem 1 of [9] (see also [2, 1], for
N ≤ 3) allowing to prove the existence of weak solutions of problem (1)-(3), with
αi defined by (6) and di by (5), see [6] for details.

The main contribution in this paper relates to the numerical method employed
to simulate particular solutions of Problem (1)-(3) under assumptions (5) and (6).
In [6], a finite differences scheme for the spatial discretization was considered. Al-
though, as mentioned, in the one-dimensional case we did not find any decisive
practical advantage on using any particular method of approximation, the finite dif-
ferences discretization introduces some complications involving the boundary data,
specially for variable coefficients αi, implying that a discrete version of (4) must be
assumed to hold on the boundary to ensure the uniquenes of the discrete solution.
However, as it is well known, non-flow boundary conditions are implemented in a
simple way in the finite element method, not requiring any additional assumption
on the coefficients of the problem. Moreover, the advantages of the finite element
method against the finite differences method are well known in the space multi-
dimensional case.

2. Numerical discretization and examples. In this section we present numer-
ical simulations illustrating differences between the behaviors of solutions corre-
sponding to constant or variable convective coefficients di. In the first example, of
qualitative nature, we simulate the situation in which a catastrophic natural event
changes abruptly the spatial location of the maxima of the environmental poten-
tial, i.e., the more favored environmental region. We see that in the case of spatial
adaptation, represented by di given by (5), the extinction of the population more
intensely adapted to the initial potential maximum is possible as a result of the
very low population density left in areas far from this maximum, which implies a
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bad competitive positioning near the new potential maximum after the catastrophic
event. However, for constant di the population is able to recover and dominate again
in the new favored region.

The second example, in which the potential maximum is kept time independent,
shows two interesting biological properties. First, that the segregation of popula-
tions is more intense in the case of spatial adaptation than in the case of constant
convective coefficients. Second, that intense spatial adaptation may lead to coexis-
tence in cases where the constant convection coefficients lead to extinction.

2.1. Finite element approximation. As mentioned in the Introduction, we take
the spatial dimension to be n = 1, e.g. Ω ⊂ R is chosen to be an open interval. For
a more detailed description of the following finite element approximation, including
the case of higher spatial dimensions, see [1]. On the interval Ω, we consider a family
of quasi-uniform partitionings T h, h > 0, consisting of disjoint and open subintervals
I with hI = |I| and h = maxI∈T h hI , so that Ω̄D = ∪I∈T h Ī. Associated with T h is
the finite element space

Sh =
{
ϕ ∈ C(Ω̄) : ϕ|I is linear for all I ∈ T h

}
⊂ H1(Ω).

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let

{ϕj}j∈J be the standard basis functions for Sh, that is ϕj ∈ Sh, ϕ ≥ 0 in Ω, and

ϕj(pi) = δij for all i, j ∈ J . The following functions were considered in [1] to obtain
a discrete analogue of the entropy inequality which allows to control the possible
non-positivity of discrete approximate solutions. We define Λε : S

h → L∞(Ω) as

Λε(z
h)|κ =

{
zh(pk)−zh(pj)

F ′
ε(z

h(pk))−F ′
ε(z

h(pj))
zh(pk) 6= zh(pj),

λε(z
h(pk)) zh(pk) = zh(pj),

with Fε : R → [0,∞) given by

Fε(s) =


s2−ε2

2ε + (ln ε− 1)s+ 1 s ≤ ε,
(ln s− 1)s+ 1 ε ≤ s ≤ ε−1,
ε(s2−ε−2)

2 + (ln ε−1 − 1)s+ 1 ε−1 ≤ s,

and λε : R → R as λε(s) = (F ′′
ε (s))

−1, for some ε > 0. Observe that we always
have Λε(z

h)|κ = λε(z
h(ξ)) for some ξ ∈ κ and that λε(s) → s1[0,∞)(s) as ε → 0.

For the time discretization, we consider a partitioning 0 = t0 < t1 < . . . < tN−1 <
TN = T of [0, T ] into possibly variable time steps τn = tn − tn−1, n = 1, . . . , N .
We set τ = maxn τn. For any given ε ∈ (0, 1), we then consider the following finite
element approximation of problem (1)-(3): For n ≥ 1 find (un

ε,1, u
n
ε,2) ∈ (Sh)2 such

that for i, j = 1, 2, with j 6= i, and for all ϕ ∈ Sh

1

τn

〈
un
ε,i − un−1

ε,i , ϕ
〉
+

〈[
ci + 2aiiΛε(u

n
ε,i) + aijΛε(u

n
ε,j)

]
∇un

ε,i,∇ϕ
〉

+
〈
Λε(u

n
ε,i)

[
aij∇un

ε,j + dni ∇(πhUn)
]
,∇ϕ

〉
=

〈
un
ε,i

[
αi(U

n)− βi1λε(u
n−1
ε,1 )− βi2λε(u

n−1
ε,2 ))

]
, ϕ

〉
, (7)

where πh : C(Ω̄D) → Sh is the usual interpolation operator, with (πhη)(pj) = η(pj)
for all j ∈ J , Un stands for U(·, tn), and u0

ε,i ∈ Sh is an approximation of u0
i , for

instance its L2 projection on Sh. Trivial modifications of the proof of Theorem 2.1
of [1], allows to ensure the existence of solutions of problem (7). More concretely,
if (un−1

ε,1 , un−1
ε,2 ) ∈ (Sh)2, ε ∈ (0, e−2) and τn is small enough, then there exists a
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Table 1. Parameter values common for all the experiments

Parameter Symbol Value

Spatial domain Ω (0, 1)
Nodes number N 101
Time step τ 0.001
Diffusion coefficients c1, c2 0
Cross diffusion coefficients aij 0.25
Initial densities u10, u20 0.5

Environmental potential U exp(− (x−x0)
2

0.001 )

solution (un
ε,1, u

n
ε,2) ∈ (Sh)2 to the n-th step of problem (7). In addition, if τ → 0

with either τ1 ≤ Ch2 or u0
i ∈ H1(Ω), and if εh−1/2 → 0 then a subsequence (not

relabeled) of

uε,i(t) =
t− tn−1

τn
un
ε,i +

tn − t

τn
un−1
ε,i t ∈ [tn−1, tn], n ≥ 1,

may be extracted such that (uε,1, uε,2) → (u1, u2) in a suitable sense, being (u1, u2)
a weak solution of problem (1)-(3).

2.2. Experiments. As in [1], we use the following fixed point algorithm for solving
the system of nonlinear algebraic equations for (un

ε,1, u
n
ε,2) arising at each time level

from the approximations (7). For t = t0 = 0, set u0
i = u0

ε,i. For t = tn, let u
n−1
ε,i be

given and set un,0
ε,i = un−1

ε,i . Then, for k ≥ 1 find un,k
ε,i such that for i, j = 1, 2, with

j 6= i, and for all ϕ ∈ Sh

1

τn

〈
un,k
ε,i − un−1

ε,i , ϕ
〉
+
〈[

ci + 2aiiΛε(u
n,k−1
ε,i ) + aijΛε(u

n,k−1
ε,j )

]
∇un,k

ε,i ,∇ϕ
〉

+
〈
Λε(u

n,k−1
ε,i )

[
aij∇un,k

ε,j + dni ∇(πhUn)
]
,∇ϕ

〉
=

〈
αi(U

n)un,k
ε,i −

[
λε(βi1u

n−1
ε,1 )− βi2λε(u

n−1
ε,2 ))

]
λε(u

n,k−1
ε,i ), ϕ

〉
.

We adopted the stopping criteria

max
i=1,2

‖un,k
ε,i − un,k−1

ε,i ‖∞ < tol,

with tol = 10−7 in the experiments, and set un
i = un,k

i . In all experiments we
integrated in time until a numerical stationary solution, uS

i , was achieved. This
was determined by

max
i=1,2

‖un,1
ε,i − un,0

ε,i ‖∞ < 5× 10−12. (8)

Unless otherwise stated, in all the experiments we use the data given in Table 1.

Experiment 1. Intensive adaptation may lead to extinction after a catastrophic envi-
ronmental event. In this example we explore the effects that sudden environmental
changes may have on the extinction of populations which have adapted intensively
to some region. For this experiment we use the following Lotka-Volterra functions

fi(u1, u2) = (αi(U)− βi1u1 − βi2u2)ui, (9)
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with α1(U) = 320U , α2(U) = 300(0.99U + 0.01), and βij = 150 for i, j = 1, 2. For
the case of variable di, we define them by (5). When running for constant di, we
take

di = lim
t→0

1

t

∫ t

0

u(x, t)dt = ui0,

which is constant due to the election of the initial datum, see Table 1. The environ-
mental potential, given also in Table 1, is first set with the maximum at x0 = 0.2.
We run the simulation until t = 0.3 is reached and a sudden change of the poten-
tial maximum, to x0 = 0.8, is produced. Then we continue till the steady state is
nearly reached, which we assume to be when ‖u(·, tk) − u(·, tk−1)‖L∞ < 5 × 10−6.
For the case of constant di this happens at t = 4.29 while for di variable it takes
till t = 12.86. Notice that the only difference between equations and data for
populations 1 and 2 is the definition of the growth rate coefficients αi.

In Fig. 1 we show time slices of the evolution (left to right and up to down) of
both populations (u1 continuous line, u2 dotted line) for the case of variable di (first
row) and constant di (second row). In the first column, we plotted the population
distribution just before the sudden change of maximum of the potential that takes
place in t = 0.3. A notorious concentration and growing of population 1 in the
neighborhood of x0 = 0.2 is accompanied by an almost extinction of population 2,
due to α1 > α2, for both choices of di. However, although hardly visible from the
plots, we checked that u2 > u1 in regions far from the potential maximum. After the
catastrophic event, at t = 0.3, the behavior of populations differs absolutely, leading
to steady states in which the dominance is switched (di variable) or mantained (di
constant).

In Fig. 2 we plot the spatial adaptation terms produced in the case of variable di,
which rule the strength of the convection term. It also interesting to note that the
biological notion of spatial adaptation represented by these terms is time varying
and that intense adaptation to some region, x0 = 0.2 in this example, may be
weakened and practically disappear if the region is left uninhabitated for a long
time.

In Figs. 1-2, the approximation to the steady state solution satisfying (8) is
reached around time t = 3.

Experiment 2. Adaptation in a stable environment may enhance segregation and
promote coexistence. In this example we compare the segregation magnitudes for
the cases of variable and constant di. We run two experiments, one with zero
Lotka-Volterra functions, implying mass conservation for the continuous model,
and another with similar Lotka-Volterra functions than those of Experiment 1. The
environmental potential, given in Table 1, is time independent and with the maxi-
mum at x0 = 0.5, to check the symmetry preserving property of the discretization
scheme. In order to have some distinction between populations, we set, for the case
of variable di,

di(x, t) =
εi
t

∫ t

0

ui(x, τ)dτ,

with ε1 = 2 and ε2 = 1. The convection coefficients for the corresponding problem
with constant di are given by di = εiui0. We run the simulation until the steady
state is nearly established, using the same criterium than in Experiment 1. Notice
that the only difference between equations and data for populations 1 and 2 is in
the parameters εi.
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In Fig. 3 we show the steady state for constant di (left) and variable di (right),
which is reached for t∗ ≈ 0.714 and t∗ ≈ 8.186, respectively. Continuous line
corresponds to population 1 and dotted line to population 2. The mass conservation
property is well captured by the discrete model, being the relative difference

max
i=1,2

∫
Ω

|ui(x, t∗)− u0i|dx
(∫

Ω

|u0i|dx
)−1

lower than 8 × 10−4 for di constant and an order greater for di variable. The
symmetry of the solution is also conserved, being the relative difference

max
i=1,2

‖ui(·, t∗)− ũi(·, t∗)‖‖ui(·, t∗)‖−1

of the order of 10−15, for both di cases, where ũi(x, t) = ui(1 − x, t). The con-
centration of mass in the neighborhood (0.45, 0.55) of x0 = 0.5 is, for the variable
case ∫ 0.55

0.45

u1(x, t∗)dx = 0.216 ≈ 40%,

∫ 0.55

0.45

u2(x, t∗)dx = 0.055 ≈ 10%

where the percentage points are in terms of the total mass, while, for the constant
case is∫ 0.55

0.45

u1(x, t∗)dx = 0.122 ≈ 25%,

∫ 0.55

0.45

u2(x, t∗)dx = 0.060 ≈ 12.5%.

The qualitative differences between the solutions of constant or variable di are
clearly seen in Fig. 3. In the case of variable di, the population with more intensive
adaptation capacity (population 1 due to ε1 > ε2) concentrates in the surroundings
of the potential maximum x0 while population 2 reaches, in fact, its minimum
density at this point. However, in the case of constant di, both populations reach
their maximum value at the potential maximum x0 = 0.5.

For the second example of this experiment we use the Lotka-Volterra functions
given in (9) with αi(U) = 30U , for i = 1, 2 and βij = 15 for i, j = 1, 2. In Fig. 4 we
show the steady state for constant di (left) and variable di (right). Continuous line
corresponds to population 1 and dotted line to population 2. Notably, the effect of
rapid concentration of population 1 around the maximum, for the case of variable
di, leads the system to a coexistence steady state, although with a high degree
of segregation in the surroundings of x0, where population 2 attains a minimum.
However, for the case of constant di, population 2 is extincted.

Experiment 3. Preservation of segregation. In this example we consider a envi-
ronmental potential Ũ with two maxima located at x0 = 0.2 and x1 = 0.8, given
by

Ũ(x) = 0.3U(x− x0) + 0.7U(x− x1) for x ∈ (0, 1),

with U given in Table 1. We use the Lotka-Volterra functions given in (9) with
αi(U) = 2U , for i = 1, 2 and βij = 1.5 for i, j = 1, 2. In addition, the initial
distributions of populations is assumed to be segregated one from each other and
occupying a region containing one of the maxima. More explicitly, we take

u10(x) =

{
1 if x ∈ (0, 0.45),
0 if x ∈ (0.45, 1),

u20(x) =

{
0 if x ∈ (0, 0.55),
1 if x ∈ (0.55, 1).

Observe that the differential equations satisfied by u1 and u2 are formally the same,
so that the only difference among them must be due to the asymetrical initial data.
In Figure 5 we see the results of considering variable di (left) and constant di = 0.5
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(right) defined as in the previous experiments. In both cases, the formal steady
state takes longer than in the previous examples to be achieved The most interesting
phenomenum arising in this example is the preservation of segregation in the case of
variable di, i.e., in the case in which spatial adaptation takes place. This is explained
by the fact that nonlinear non-local transport effects drive intensely each population
to the local maximum they initially occupy, weakening in this way the transport to
the other maximum. However, in the case of linear transport the final distributions
are almost identical due to the constant attractive strength populations feel towards
both maxima.

3. Conclusions. The mathematical model (1)-(3) introduced by Shigesada,
Kawasaki and Teramoto (1979) [18] to reproduce the behaviour of interacting species
which are affected not only by competition or random displacement but by popula-
tion pressure and attraction to favorable environmental regions has been a source
of interesting mathematical and biological discussion. One of the more remarkable
properties of the model is the formation of segregation patterns, which are observed
in the field, and which lead to non-trivial steady state configurations. In this article
we proposed the consideration of a new term in the equations, the time non-local
term (5), which may be interpreted as a spatial adaptation intensity or capacity of
the populations. From the mathematical point of view, the introduction of this new
term do not pose additional difficulties for the achievement of results on existence
and regularity of solutions. Moreover, the numerical discretization seems to behave
well in a similar range of parameters and data than the original model since the
way in which the new term induces the concentration of one of the populations
in a narrow region is always bounded. However, the introduction of this new term
produces important quantitative and qualitative differences with respect to the orig-
inal model. We showed numerical experiments in which the behavior of solutions
is qualitatively different in terms of coexistence and extinction. We also showed
that the segregation-concentration effect already present in the original model is
enhanced quantitatively with the introduction of the spatial adaptation term.
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Figure 1. Experiment 1. Population evolution for variable di (above)

and constant di (below). Time slices just before the sudden change

of environmental potential maximum at t = 0.3, which relocates from

x = 0.2 to x = 0.8, and for the computed steady state. The horizontal

lines correspond to the initial populations densities.
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Figure 2. Experiment 1. Evolution of the adaptation intensity terms,

di. Above: time slices before the sudden change of environmental po-

tential maximum at t = 0.3, which relocates from x = 0.2 to x = 0.8.

Below: time slices after change of environmental potential.
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Figure 3. Experiment 2. Lotka-Volterra terms set to zero and envi-

ronmental potential maximum at x0 = 0.5. Case of variable di (left)

and constant di (right). The horizontal line corresponds to the initial

populations densities. Notice the change of scale between figures.
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Figure 4. Experiment 2. Competitive Lotka-Volterra terms and en-

vironmental potential maximum at x0 = 0.5. Case of variable di (left)

and constant di (right). The horizontal line corresponds to the initial

populations densities. Notice the change of scale between figures.
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Figure 5. Experiment 3. Competitive Lotka-Volterra terms and two

environmental potential maxima located at x0 = 0.2 and x1 = 0.8. Case

of variable di (left) and constant di (right). Notice the change of scale

between figures.


