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Abstract. We present an exact reformulation of a broad class of non-
local filters, among which the bilateral filters, in terms of two functional
rearrangements: the decreasing and the relative rearrangements.
Independently of the image spatial dimension, these filters are expressed
as integral operators defined in a one-dimensional space, corresponding
to the level sets measures.
We provide some insight into the properties of this new formulation and
show some numerical demonstrations to illustrate them.
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1 Introduction

Let Ω ⊂ R
d be an open and bounded set, u ∈ L∞(Ω) be an intensity image,

and consider the family of filters, for h and ρ positive constants,

Fu(x) =
1

C(x)

∫
Ω

Kh(u(x)− u(y))wρ(|x− y|)u(y)dy,

where C(x) =
∫
Ω
Kh(u(x) − u(y))wρ(|x− y|)dy is a normalization factor.

Functions Kh(ξ) = K(ξ/h) and wρ are the range kernel and the spatial kernel
of the filter, respectively, making reference to their type of interaction with the
image domain. A usual choice for K is the Gaussian K(ξ) = exp(−ξ2), while
different choices of wρ give rise to several well known nonlocal filters, e.g.,

– The Neighborhood filter, see [7], for wρ ≡ 1.
– The Yaroslavsky filter [40], for wρ(|x − y|) ≡ χBρ(x)(y), the characteristic

function of a ball centered at x of radios ρ.
– The SUSAN [34] or Bilateral filters [36], for wρ(s) = exp(−(s/ρ)2).

Other related filters which can be easily included in our discussion are the joint
or cross bilateral filters, see [27, 13].

Nonlocal filters have been introduced in the last decades as alternatives to
local methods such as those expressed in terms of nonlinear diffusion partial
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differential equations (PDE), among which the pioneering approaches of Perona
and Malik [26], Álvarez, Lions and Morel [2] and Rudin, Osher and Fatemi [32]
are fundamental. We refer the reader to [9] for a review of these methods.

Nonlocal filters have been mathematically analyzed from different points of
view. For instance, Barash [4], Elad [14], Barash et al. [5], and Buades et al.
[8] investigate the asymptotic relationship between the Yaroslavsky filter and
the Perona-Malik equation. Gilboa et al. [20] study certain applications of non-
local operators to image processing. In [28], Peyré establishes a relationship
between nonlocal filtering schemes and thresholding in adapted orthogonal ba-
sis. In a more recent paper, Singer et al. [33] interpret the Neighborhood filter
as a stochastic diffusion process, explaining in this way the attenuation of high
frequencies in the processed images.

From the computational point of view, until the reformulation given by
Porikli [29], their actual implementation was of limited use due to the high com-
putational demand of the direct space-range discretization. Only window-sliding
optimization, like that introduced by Weiss [37] to avoid redundant kernel cal-
culations, or filter approximations, like the one introduced by Paris and Durand
[25], were of computational use. In [25], the space and range domains are merged
into a single domain where the bilateral filter may be expressed as a linear convo-
lution, followed by two simple nonlinearities. This allowed the authors to derive
simple down-sampling criteria which were the key for filtering acceleration.

However, in [29], the author introduced a new exact discrete formulation
of the bilateral filter for spatial box kernel (Yarsolavsky filter) using the local
histograms of the image, hx = h|Bρ(x), where Bρ(x) is the box of radious ρ
centered at pixel x, arriving to the formula

Fu(x) =
1

C(x)

n∑
i=1

qihx(qi)Kh(u(x) − qi), (1)

where the range of summation is over the quantized values of the image, q1, . . . , qn,
instead of over the pixel spatial range. In addition, a zig-zag pixel scanning tech-
nique was used so that the local histogram is actualized only in the borders of
the spatial kernel box.

Formula (1) is an exact formulation of the box filter where all the terms
but the local histogram may be computed separately in constant time, and it is
therefore referred to as a constant time O(1) method.

Unfortunately, the use of local histograms is only valid for constant-wise
spatial kernels, and subsequent applications of the new formulation to general
spatial kernels is, with the exception of polynomial and trigonometric polynomial
kernels, only approximated. Thus, in [29] polynomial approximation was used to
deal with the usual spatial Gaussian kernel. This idea was improved in [11] by
using trigonometric expansions.

In [38], Yang et al. introduced a new O(1) method capable of handling arbi-
trary spatial and range kernels, as an extension of the ideas of Durand et al [12].
They use the so-called Principle Bilateral Filtered Image Component Jk, given
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by, for u(x) = qk, and for some neighborhood of x, N(x),

Jqk(x) =

∑
y∈N(x)K(qk − u(y))wρ(|x− y|)u(y)∑

y∈N(x)K(qk − u(y))wρ(|x − y|)
. (2)

Then, the bilateral filter may be expressed as Fu(x) = Ju(x)(x). In practice,
only a subset of the range values is considered, and the final filtered image is
produced by linear interpolation. In this situation this filter is an approximation
to the bilateral filter. The same authors have recently extended and optimized
[39] the method of Paris et al. [25] by solving cost volume aggregation problems.
Other approaches may be found in [1, 22, 31].

2 Nonlocal Filters in Terms of Functional Rearrangements

Apart from the pure mathematical interest, the reformulation of nonlocal filters
in terms of functional rearrangements is useful for computational purposes, spe-
cially when the spatial kernel, w, is homogeneous, that is wρ ≡ 1. In this case,
it may be proven [18] that the level sets of u are invariant through the filter, i.e.
u(x) = u(y) implies F (u)(x) = F (u)(y), and thus, it is sufficient to compute
the filter only for each (quantized) level set, instead of for each pixel, meaning
a huge gain of computational effort.

For non-homogeneous kernels the advantages of the filter rearranged version
are kernel-dependent, and in any case, the gain is never comparable to that
of homogeneous kernels. The main reason is that the non-homogeneity of the
spatial kernel breaks, in general, the invariance of level sets.

In the following lines, for a smoother introduction of the bilateral filter rear-
ranged version, we provide a formal derivation deduced from the coarea formula.
However, notice that the resulting formula is valid in a more general setting, see
[19, Theorem 1]. In particular, the condition ∇u(y) 6= 0 used below is seen to
be not necessary.

For this task, we recall the notion of decreasing rearrangement, u∗ : [0, |Ω|] →
R, of a function u : Ω ⊂ R

d → R, which is defined [21, 23] as the (generalized)
inverse of the distribution function of u, given by mu(q) = |{x ∈ Ω : u(x) > q}|,
for q ∈ R, where | · | denotes the Lebesgue measure.

Under suitable regularity assumptions, the coarea formula states∫
Ω

g(y)|∇u(y)|dy =

∫ ∞

−∞

∫
u=t

g(y)dΓ (y)dt,

where we used the notation u = t to denote the set {x ∈ Ω : u(x) = t}. Taking
g(y) = Kh(u(x)− u(y))wρ(|x− y|)u(y)/|∇u(y)|, and using u(x) ∈ [0, Q] for all
x ∈ Ω we get, for the numerator of the filter F,

I(x) :=

∫
Ω

Kh(u(x)− u(y))wρ(|x− y|)u(y)dy

=

∫ Q

0

Kh(u(x)− t)t

∫
u=t

wρ(|x− y|)

|∇u(y)|
dΓ (y)dt.
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Assuming that the decreasing rearrangement of u, u∗, is in fact strictly decreasing
and introducing the change of variable t = u∗(s) we find

I(x) = −

∫ |Ω|

0

Kh(u(x) − u∗(s))u∗(s)
du∗(s)

ds

∫
u=u∗(s)

wρ(|x− y|)

|∇u(y)|
dΓ (y)ds

=

∫ |Ω|

0

Kh(u(x)− u∗(s))u∗(s)wρ(|x− ·|)∗u(s)ds.

Here, the notation v∗u stands for the relative rearrangement of v with respect to

u [30] which, under regularity conditions, may be expressed as

v∗u(s) =

∫
u=u∗(s)

v(y)

|∇u(y)|
dΓ (y)

∫
u=u∗(s)

1

|∇u(y)|
dΓ (y)

. (3)

Transforming the denominator of the filter, C(x), in a similar way we get

Fu(x) =

∫ |Ω|

0
Kh(u(x)− u∗(s))wρ(|x− ·|)∗u(s)u∗(s)ds∫ |Ω|

0
Kh(u(x) − u∗(s))wρ(|x− ·|)∗u(s)ds

. (4)

Remark 1. The relative rearrangement is defined in its full generality as the
weak-Lp(Ω∗) directional derivative

v∗u = lim
t→0

(u+ tv)∗ − u∗

t
. (5)

Under the additional assumptions u ∈ W 1,1(Ω) (that is, u ∈ L1(Ω) and ∇u ∈
L1(Ω)d), and |{y ∈ Ω : ∇u(y) = 0}| = 0, i.e. the non-existence of flat regions
of u, the identity (3) is well defined and coincides with (5). In this case, the
relative rearrangement represents an averaging procedure of the values of v on
the level sets of u labeled by the superlevel sets measures, s. When formula (3)
does not apply (flat regions of u) we may resort to (5) to interpret the relative
rearrangement as the decreasing rearrangement of v restricted to flat regions.

Example: Rearrangement of constant-wise functions.Consider the constant-
wise functions u, v : [0, 13] → R given in Fig. 1 (a). Writing max(u) = 5 = q1 >

. . . > q6 = 0 = min(u), we may express u as u(x) =
∑6

i=1 qiχEi
(x), where Ei

are the level sets of u, E1 = (10, 11], E2 = (8, 10], etc. Then, the decreasing
rearrangement of u is constant-wise too, and given by

u∗(s) =

n∑
i=1

qiχIi(s),

with Ii = [ai−1, ai) for i = 1, . . . , 6, and with a0 = 0, a1 = |E1| = 1, a2 =

|E1|+ |E2| = 3,. . .,a6 =
∑6

i=1 |Ei| = |Ω| = 13. The corresponding plot is shown
in Fig. 1 (b).
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(b) u∗
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(d) v∗u

Fig. 1. Example of construction of the relative rearrangement. (c) shows u∗ (blue) and
v transported as by the displacement of u level sets (red). (d) shows the decreasing
rearrangement of v restricted to the level sets of u, that is v∗u.

In Fig. 1 (c) we show the graphs {Ei, v(Ei)}
6
i=1 transported as it was done

in the step before to construct u∗. For instance, the highest level set of u, E1 =
(10, 11], was transported to [0, 1]; E2 = (8, 10] to (1, 3], etc. Thus {E1, v(E1)} =
{(10, 11], {2}} is transported to {[0, 1], {2}}; {E2, v(E2)} = {(8, 10], {3}} is trans-
ported to {[1, 3], {3}}, etc.

Finally, to obtain the decreasing rearrangement of v with respect to u, v∗u,
we rearrange decreasingly the restriction of v to Ei, as shown in Fig. 1 (d).

2.1 Discrete Setting

To gain some insight into formula (4), let us consider a constant-wise interpola-
tion of a given image, u, quantized in n levels labeled by qi, with max(u) = q1 >
. . . > qn = 0. That is u(x) =

∑n

i=1 qiχEi
(x), where Ei are the level sets of u,

Ei = {x ∈ Ω : u(x) = qi}, i = 1, . . . , n.

Similarly, let wρ be a constant-wise interpolation of the spatial kernel quantized
in m levels, rj , with max(wρ) = r1 > . . . > rm = min(wρ) ≥ 0. For each x ∈ Ω,
consider the partition of Ei given by F i

j (x) = {y ∈ Ei : wρ(|x−y|) = rj}. Then,
it may be shown [19] that for each x ∈ Ek, k = 1, . . . , n,

Fu(x) ≡ F∗ u(x) =

∑n

i=1 Kh(qk − qi)Wim(x)qi∑n

i=1 Kh(qk − qi)Wim(x)
, (6)

where Wim(x) =
∑m

j=1 rj |F
i
j (x)|. Here, |F

i
j (x)| is the number of pixels in the

qi-level set of u that belongs to the rj-level set of wρ. We refer to F∗u(x) as to
the rearranged version of Fu(x).

2.2 Examples

The main difficulty for the computation of formula (6) is the determination of
the measures of F i

j (x) which, in general, must be computed for each x ∈ Ω.
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The Neighborhood filter. In this case, wρ ≡ 1, and therefore m = 1 and F i
1(x) =

Ei is independent of x for all i = 1, . . . , n. Thus, formula (6) is computed only
on the level sets of u, that is, for all x ∈ Ek

F∗u(x) =

∑n

i=1 Kh(qk − qi)|Ei|qi∑n

i=1 Kh(qk − qi)|Ei|
. (7)

The Yaroslavsky or box filter. In this case, wρ(|x−y|) = χBρ(x)(y), and therefore

there are only two levels r1 = 1, r2 = 0 of wρ corresponding to the sets F i
1(x) =

Ei ∩ Bρ(x) and F i
2(x) = Ei ∩ Bρ(x)

c. Thus, formula (6) reduces to: for each
x ∈ Ek, k = 1, . . . , n

F∗u(x) =

∑n
i=1 Kh(qk − qi)|F

i
1(x)|qi∑n

i=1 Kh(qk − qi)|F i
1(x)|

,

where |F i
1(x)| denotes the number of pixel of the i-level set of u which belong to

the box Bρ(x).

The general bilateral filter. In this case, the full formula (6) must be used. The
spatial kernel is a smooth varying function, e.g. a Gaussian, and therefore there
is a continuous range of levels of wρ. For computational purposes the range of
wρ is quantized to some finite number of levels, determined by the size of ρ and
the machine ǫ.

The bilateral filter may be accelerated by manipulating the quantization lev-
els of the image, and/or of the spatial range. As shown in [38] for the Yaroslavsky
filter, the reduction of the image quantization levels leads to poor denoising re-
sults. However, we checked that a similar restriction applied to the spatial kernel
reduces the execution time while conserving good denoising quality.

Finally, observe that in all these rearranged versions the range kernelKh(u(x)−
u(y)) is transformed into Kh(qk − q) which, for coding, may be computed and
stored outside the main loop running over all the pixels.

2.3 The Special Case of the Neighborhood Filter

The Neighborhood filter, that is the bilateral filter for a homogeneous spatial
kernel wρ ≡ 1, is a special case from the rearranged version point of view.
Formula (7) shows that in this case all the pixels of a given level set, Ei, are
jointly filtered to the same value, producing a huge gain in execution time.

Moreover, the usual iterative scheme under which this filter is employed

uj+1(x) =
1

Cj(x)

∫
Ω

Kh(uj(x)− uj(y))uj(y)dy,

with Cj(x) =
∫
Ω
Kh(uj(x)−uj(y))dy, also satisifes this level sets invariant struc-

ture property [17, 18], from where the following recurrent formula is deduced:
For u0 = u (initial image) and for all x ∈ Ej

k{x ∈ Ω : un(x) = qk}, j = 0, 1, . . .,

uj+1(x) =

∑n
i=1 Kh(qk − qi)|E

j
i |qi∑n

i=1 Kh(qk − qi)|E
j
i |

.
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As shown in [18], a notable property of this recurrent formula is the formation of
large gradients around inflexion points of u∗, like in some type of shock filters [3].
Using the connection between the image histogram, hu(q) and the distribution
function, mu(q), given by mu(q) =

∫maxu

q
h(s)ds, we see that critical points of

the histogram coincides with inflexion points of the distribution function and,
hence, of the decreasing rearrangement, u∗. Since histogram critical points de-
tection is the base for some intensity based segmentation algorithms [10, 24], the
iterated Neighborhood filter may be used as an automatic segmentation algo-
rithm, in which the only tunning parameter is the window size, h. We provide
some examples in the next section.

3 Experiments

3.1 Denoising

We conducted an experiment on standard natural images to check the perfor-
mance of the discrete formula (6) in comparison to the brute force pixel based
implementation of the bilateral filter, and to a well known state of the art de-
noising algorithm introduced by Yang et al. [38], see formula (2).

Both formula (6) and Yang’s et al. algorithm are exact representations of the
bilateral filter when the maximum number of spatial kernel quantization levels
or the whole image range, respectively, are considered. Therefore, in this case,
the only source of disagreement is caused by rounding error.

Thus, we experimented with smaller values of these parameters for the sake
of execution time saving. We chose twenty values for the discretization of the
bilateral spatial kernel (Gaussian) in the rearranged formula (6), and eight values
for Yang’s et al. algorithm, like in [38].

The first aim of our experiment was to investigate the quality of the algo-
ruthms approximation, in terms of the peak signal to noise ratio (PSNR), to the
ground truth, and to the exact pixel-based bilateral filter. The second, was the
comparison of execution times as delivered straightly from the available codes.
Notice that execution time depends on code optimization and therefore a rigor-
ous study of this aspect requires some kind of code normalization which was out
of the scope of our study.

We used three intensity images of different sizes corrupted with an additive
Gaussian white noise of SNR = 10, according to the noise measure SNR =
σ(u)/σ(ν), where σ is the empirical standard deviation, u is the original image,
and ν is the noise. The images, available at the data base of the Signal and Image
Processing Institute, University of Southern California, are Clock (256 × 256),
Boat (512× 512), and Airport (1024× 1024).

We considered different spatial window sizes determined by ρ, with ρ =
4 , 8, 16, 32. The range size of the filter was taken as h = ρ which, according to
[8], is the regime in which the corresponding iterative filter behaves asymptoti-
cally as a Perona-Malik type filter. The shape of the range filter is a Gaussian.

The discretization of the pixel-based and the rearranged version of both filters
was implemented in non-optimized C++ codes by the authors, while for Yang’s
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algorithm available code1 was employed. Time execution was measured by means
of function clock.

In Table 1 we show the measures resulting from our experiments. We see that
all the algorithms give similar results when compared to the ground truth. Thus,
if this were the choice criterium, the faster, that is Y 8, should be considered.

However, when compared to the exact bilateral filter (BPB), the PSNR’s are
quite different. The rearranged bilateral filter with twenty spatial kernel levels
(BRR20) has always values of PSNR around 40dB, which makes it indistin-
guishable from the exact filtered image. The Yaroslavsky filter (YRR) lowers
this figure to about 20dB. Yang’s et al. with eight range values (Y8) gives al-
ways poorer results. In fact, the use of Yang’s algorithm with the maximum
number of levels (not shown in the table), although should give exact results, it
does not, revealing other sources of error beyond rounding errors.

In Table 1 we also collect the execution times obtained in this experiment.
Only for the smaller image sizes and h−values Y8 has a competitor in YRR.
BRR20 gives execution times considerably higher than the other algorithms, for
our non-optimized codes.

3.2 Segmentation with the Neighborhood Filter

To demonstrate the capability of the Neighborhood filter as a segmentation
algorithm, we applied it to MRI brain segmentation. We used a phantom brain
from the Simulated Brain Database [6] with a 9% of additive Riccian noise and
compared the result to the grey-white matter segmentation performed with some
standard packages: Freesurfer [15], FSL [16] and SPM8 [35]..

In Fig. 2, rows 1 to 3, we show an axial slice of the volume (initial image) and
the corresponding segmentation in four, three and two regions reached by setting
h = 17, 20, 50, respectively. The contour lines and the decreasing rearrangement
of the original image, u, and the final filtered image are shown too. In rows 4 to
5, we show the masks of the segmented regions corresponding to h = 17, 20.

To check the Neighborhood filter segmentation performance, the Dice coinci-
dence coefficient is computed for all the algorithms, see Table 2, showing a good
performance of the Neighborhood filter in relation to the more sophisticated
algorithms implemented in the mentioned packages. Notice that the Dice coeffi-
cient is one for a perfect match to the ground truth, and zero on the contrary.

Although we have shown the results for one slice, the Neighborhood filter is
applied directly to the whole volume, meaning that the dimension reduction is
from a three dimensional space (the space of voxels) to a one dimensional space
(the space of level sets measures). Thus, the time execution of the NF is several
orders of magnitude lower than the others (a standard volume takes few seconds
in a standard laptop). However, this is no more than a toy example, from where
general conclusions can not be inferred.

1 C++ code in http://www.cs.cityu.edu.hk/ qiyang/
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4 Summary

In this paper we used functional rearrangements to express bilateral type filters
in terms of integral operators in the one-dimensional space [0, |Ω|].

In the case in which the spatial kernel, wρ, is homogeneous (e.g. the Neigh-
borhood filter), the level set structure of the image is left invariant through the
filtering process, allowing to compute the filter jointly for all the pixels in each
level set, instead of pixel-wise. This can be done also for the associated iterative
scheme, which is seen to be related to intensity-based histogram-related image
segmentation.

If the spatial kernel is not homogeneous the invariance of the u−level sets
through the filter is, in general, broken. Despite this fact, there still remains an
important property of the rearranged version: the range kernel Kh(u(x)− u(y))
is transformed into a pixel-independent kernel K(qk − qi), implying a large gain
in computational effort, as already observed for particular cases in [29].
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problčmes aux limites, vol 64. Springer (2008)
31. Ram I., Elad M., Cohen I.: Image processing using smooth ordering of its patches.

IEEE T Image Process 22(7), 2764–2774 (2013)
32. Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation based noise removal

algorithms. Physica D 60(1), 259–268 (1992)
33. Singer A., Shkolnisky Y., Nadler B.: Diffusion interpretation of nonlocal neighbor-

hood filters for signal denoising. SIAM J Imaging Sci 2(1), 118–139 (2009)
34. Smith S.M., Brady J.M.: Susan. a new approach to low level image processing. Int

J Comput Vision 23(1), 45–78 (1997)
35. Statistical Parametric Mapping (SPM) http://www.fil.ion.ucl.ac.uk/spm
36. Tomasi C., Manduchi R.: Bilateral filtering for gray and color images. In: Sixth

International Conference on Computer Vision, 1998, IEEE, pp 839–846 (1998)
37. Weiss B.: Fast median and bilateral filtering. ACM Siggraph 25, 519–526 (2006)
38. Yang Q., Tan K.H., Ahuja N.: Real-time O(1) bilateral filtering. CVPR 2009 (2009)
39. Yang Q., Ahuja N., Tan K.H.: Constant time median and bilateral filtering. Int J

Comput Vis DOI 10.1007/s11263-014-0764-y (2014)
40. Yaroslavsky L.P.: Digital picture processing. An introduction. Springer Verlag,

Berlin (1985)



Nonlocal filters and functional rearrangements 11

GT BPB ET ETBPB

Clock (256× 256)

h BPB BRR Y8 YRR BRR Y8 YRR BPB BRR Y8 YRR BRR Y8 YRR

4 3.62 3.62 -1.24 3.64 42.6 1.17 29.7 0.56 0.17 0.02 0.02 3.29 28 28

8 4.08 4.08 3.89 4.03 43.1 21.3 27.2 2.06 0.25 0.02 0.02 8.24 103 103

16 4.4 4.4 4.1 4.31 41.5 20.3 21.1 7.98 0.62 0.02 0.03 12.9 399 266

32 4.31 4.31 4.04 3.55 38.4 16 12.4 31.41 1.8 0.02 0.06 17.4 1570 524

Boat (512× 512)

4 10.6 10.6 4.36 10.6 42.7 5.26 29.4 2.19 0.68 0.1 0.06 3.22 21.9 36.5

8 11 11 10.5 10.7 42.1 20.6 26 8.33 1.12 0.06 0.08 7.44 138.8 104

16 9.23 9.23 8.8 8.69 40.7 18.3 20.3 32.64 2.44 0.06 0.14 13.4 544 233

32 4.83 4.83 4.22 3.95 38.4 15.8 14.2 132.1 7.27 0.06 0.22 18.2 2201 600

Airport (1024 × 1024)

4 3.83 3.83 3.15 3.83 42.6 11 29.4 8.76 2.78 0.24 0.23 3.15 36.5 38.1

8 3.89 3.89 3.85 3.87 42.2 21.7 26.7 33.37 4.29 0.22 0.3 7.78 151.7 111

16 3.6 3.59 3.59 3.59 41.1 17 21.7 132.8 9.36 0.22 0.58 14.2 603.8 229

32 2.45 2.44 2.35 2.38 38.7 11.5 15.5 529.5 28.1 0.2 0.92 18.8 2648 576

Table 1. Denoising experiment. From left to right. GT block: PSNR between the
ground truth image and the pixel-based Bilateral filter (BPB), its rearranged version
for 20 levels (BRR), Yang’s algorithm with 8 interpolation elements (Y8), and the
Yaroslavsky filter in its rearranged version (YRR). BPB block: PSNR between the
BPB and the other algorithms. ET block: Execution times of BPB, BRR, Y8, and
YRR. ETBPB block: Ratio between execution time of the algorithm and execution
time of BPB.

Dice coefficient

Freesurfer FSL SPM NF

white 0.9490 0.9435 0.9468 0.9563
grey 0.8509 0.8599 0.8835 0.8797

Table 2. Segmentation experiment. Comparison among several algorithms.
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Fig. 2. Segmentation experiment. Results of applying the Neighborhood filter (NF)
with several values of the window size h. Rows 1-3: Image, level curves and decreasing
rearrangement both of the original image and of the final result, showing the number
of segmented regions (flat regions). Columns for rows 1-3: Results of applying the NF
with h = 17, h = 20, and h = 50, respectively. Rows 4-5: Masks of the segmented
regions. Row 4: h = 17. The NF produces four regions, corresponding to background,
dura-mater and ventricles, grey matter and white matter. Row 5: h = 20. The NF
produces three regions, corresponding to background, duramatter and ventricles, grey
plus white matter.


