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Abstract

In previous works, we investigated the use of local filters based on partial differential
equations (PDE) to denoise one-dimensional signals through the image processing
of time-frequency representations, such as the spectrogram. In this image denoising
algorithms, the particularity of the image was hardly taken into account. We turn,
in this paper, to study the performance of non-local filters, like Neighborhood or
Yaroslavsky filters, in the same problem. The reformulation of the Neighborhood
filter using the decreasing rearrangement allows as to implement a efficient algo-
rithm. The integral histogram introduced by Porikly allows him in [18] to obtain
an implementation of the Yaroslavsky filter with a computational cost independent
of the size of the box spatial local kernel. We heuristically justify the connection
between the (fast) Neighborhood filter applied to a spectrogram and the corre-
sponding Nonlocal Means filter (accurate) applied to the Wigner-Ville distribution
of the signal. This correspondence holds only for time-frequency representations of
one-dimensional signals, not to usual images, and in this sense the particularity of
the image is exploited. We compare though a series of experiments on synthetic and
biomedical signals the performance of local and non-local filters.

Key words: Spectrogram, image restoration, local and non-local filtering,
instantaneous frequency, biomedical signals.

1 Introduction

Denoising one-dimensional signals is an important topic which is usually ad-
dressed from filter theory in time or frequency domains. In some applications
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in which processing speed is not a fundamental issue, filters defined in the
joint time-frequency domain may be considered, usually improving the filter-
ing process. Examples of this situation are found in Electrocardiogram (ECG)
and other biomedical signals [24], human voice analysis [26] or animal sound
analysis [12].

With respect to the latter, in previous works [6–8] we investigated the use of
time-frequency distributions to estimate the number of wolves howling in a
giving recording to provide an estimation of the number of individuals in a
pack. This estimation is the basis for counting regional wolf populations which
is of interest for both ecological and economic purposes, since authorities must
reimburse the cost of cattle killed by this protected specie [22]. Of course, and
despite the quality of recording devices, field recordings are usually affected
for a variety of undesirable signals which range from low amplitude broad
spectrum long duration signals, like wind, to signals localized in time, like
cattle bells, or localized in spectrum, like car engines. Clearly, the addition
of all these signals generates an unstructured noise in the background of the
wolves chorus which must be treated for a proper signal analysis.

Medical signals are another good example of this situation. Due to the electro-
magnetic fields created by measuring devices, the usual low frequency signals
to be acquired are contaminated by a background noise which is usually in
the same frequency band that the signal of interest. Therefore, fine denoising
techniques must be applied to segregate the signal of interest form the noise.

In general, the denoising procedure is not aimed to recovering a clean signal
but to produce a clean time-frequency representation of the signal which allows
further analysis techniques, for instance and importantly, the instantaneous
frequency (IF) estimation. For the examples given above, IF estimation allows
to count the number of different individuals howling in the recording (each
individual being identified with an IF line). We also provide an example in
which the spectrogram energy content of an ECG signal is filtered to identify
an arrhythmia episode.

In [6,7,9], we used nonlinear diffusion image denoising techniques applied to
the spectrogram of a sound signal, a wolf chorus. Although, as above men-
tioned, execution time is not a relevant issue for this type of problems, we
found that nonlinear diffusion algorithms require a high computational time,
making their use not operative in many situations. In addition, these filters do
not take advantage of the special characteristics of the image produced from
the spectrogram, i.e. they operate on the spectrogram as in any other image.
In this article we show that nonlocal filters such as Neighborhood filters [13]
are computationally more efficient to deal with these images and give similar
results. Moreover, we point out a relationship between the Nonlocal Means fil-
ter [3] and the Neighborhood filter which is exclusive of their implementation
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on images defined through time-frequency distributions.

The outline of the article is as follows. We present in Section 2 the mathemat-
ical framework of the problem and the filtering techniques proposed in this
article for one-dimensional signal denoising. In particular, we justify our choice
of the Neighborhood filter as an inexpensive approximation to the well known
Nonlocal Means filter for the special case of spectrogram images. In Section 3,
we introduce the discrete problem and deduce the corresponding formulas for
algorithm implementation. Apart from the Neighborhood filter, we consider
the Yaroslavsky-SUSAN [27,23] filter and a nonlinear diffusion filter based in
the Total Variation norm [20,9], for comparison porpouses. Then, we demon-
strate the performance of these filters by applying them to three noisy signals
(synthetic, wolf chorus and ECG) and give quantitative comparisons based
on the Mean Square Error (MSE), and the visual inspection of the processed
spectrograms and other related magnitudes.

2 Mathematical framework

Let f ∈ L2(R) denote a one-dimensional signal and WV(f ; ·, ·) be its Wigner-
Ville distribution, defined as

WV(f ; t, ω) =
∫
R
f(t+

s

2
)f̄(t− s

2
)e−iwsds,

where f̄ denotes the complex conjugate of f . The Wigner-Ville distribution has
received much attention for IF estimation due to its excellent concentration
for mono-signals and many other desirable mathematical properties, see [16].
However, it is well known that it presents high amplitude sign-varying cross-
terms for multi-component signals which makes its interpretation difficult. For
attenuating these interference terms several approaches have been followed,
mainly based on the smoothing of the WV by convolution with a suitable
regularizing kernel. Special mention is due to the spectrogram, which may
be defined either as the energy density function of the short time Fourier
transform

Gϕ(f ; t, ω) =
∫
R
f(s)ϕ(s− t)e−iωsds, (1)

for some real, symmetric and normalized window ϕ ∈ L2(R), i.e.

Sϕ(f ; t, ω) = Gϕ(f ; t, ω)Ḡϕ(f ; t, ω), (2)

or as the convolution product of the Wigner-Ville distributions of the signal
and the window

Sϕ(f ; t, ω) =
∫
R2

WV(ϕ; t̃, ω̃) WV(f ; t− t̃, ω − ω̃)dt̃dω̃. (3)
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In practice, for finite time duration and band-limited one-dimensional signals
the time-frequency domain is bounded. Let us denote this domain by Ω, and
write a generic time-frequency point (t, ω) ∈ Ω by x. Dropping the depen-
dence on the signal f and the window ϕ in the notation for the spectrogram,
the conservation of energy implies ‖S‖L2(Ω) = ‖f‖L2(0,T ), and the additional
assumption f, ϕ ∈ L∞(0, T ) implies S ∈ L∞(Ω) as may be easily deduced
from (1)-(2). Therefore, after a suitable normalization, we may consider the
spectrogram of a signal as an image and apply to it well-known techniques of
image denoising and enhancing for the estimation of the underlaying signal.
In addition, the definition of S as a convolution product involving the win-
dow ϕ ensures further regularity when ϕ is smooth. For instance, for Gaussian
windows, S ∈ C∞(Ω).

First attempts to denoising and enhancing of spectrogram images were made
via local differential filters [6,7,9] based on corresponding well established
methods, see [1,5,20], in which the filtering process of a intensity image S :
Ω → [0, 1] at x ∈ Ω is based only on the intensities in a neighborhood of x.
Although the resulting denoised spectrogram greatly improves the IF estima-
tion of the signal, both computational time and low energy harmonic removing
were drawbacks which motivated different approaches, see [8].

In this paper we show that nonlocal filters such as Neighborhood filters are
computationally more efficient to deal with these images and give similar re-
sults. The main idea in Neighborhood filters, see [3] for a detailed description,
is to take into account in the filtering process the global gray scale values to
define neighboring pixels. Thus, the denoised value at pixel x is defined as
an average of values at pixels having a gray scale value close to S(x). The
resulting nonlocal algorithm is written as

NFhS(x) =
1

C(x)

∫
Ω

exp

(
−|S(x)− S(y)|2

h2

)
S(y)dy, (4)

where C(x) =
∫

Ω exp (−|S(x)− S(y)|2)h−2) dy is a normalization factor.

An interesting variation of the Neighborhood filter algorithm is the Yaroslavsky
filter algorithm [27], in which the domain of integration in (4) is restricted to a
spatial neighborhood of the base pixel x, i.e. to a ballBρ(x) = {y ∈ Ω : d(y,x) < ρ},
where d is usually taken as the Euclidean distance, (however, we will take the
Chebyshev distance and we will implement also an efficient version of the
algorithm proposed by Porikly in [18])

Y NFh,ρS(x) =
1

C(x)

∫
Bρ(x)

exp

(
−|S(x)− S(y)|2

h2

)
S(y)dy. (5)

In this way, both local and nonlocal filtering are taken into account. Similar
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to the Yaroslavsky filter, SUSAN [23] and bilateral [25] filters incorporate the
domain restriction as a weighted distance to the reference pixel

SNFh,ρS(x) =
1

C(x)

∫
Ω

exp

(
−|y − x|2

ρ2
− |S(x)− S(y)|2

h2

)
S(y)dy. (6)

According to Buades et al. [4], an interpretation of bilateral type filters, based
on the relative size of h and ρ, may be given in terms of their asymptotic
equivalence to differential diffusion filters. When h is much larger than ρ, S is
filtered by a heat equation. If h and ρ have the same order, the filter behaves
as a filtering-enhancing algorithm depending on the magnitude of |∇S|, i.e.,
as a nonlinear diffusion Perona-Malik type filter. In the last case, if ρ is much
larger than h, the signal is hardly modified.

In [10], among other properties, a similar interpretation of the Neighborhood
filter is obtained through the introduction of the functional operation of de-
creasing rearrangement [14,19].

Let us denote by |E| the Lebesgue measure of a set E. For any measurable
function u : Ω → R, the function q ∈ R → mu(q) = |{x ∈ Ω : u(x) > q}|
is called the distribution function corresponding to u. Function mu is non-
increasing and therefore admits a unique generalized inverse, called the de-
creasing rearrangement.

In [10] it is shown that the Neighborhood filter (4) (and its iterative variant,
see (7)) may be computed in the one-dimensional space [0, |Ω|] as follows: For
x ∈ {y ∈ Ω : S(y) = S∗(σ)}, and σ ∈ [0, |Ω|], we have

NFhS(x) =
1

c(σ)

∫ |Ω|
0

exp

(
−|S∗(σ)− S∗(s)|2

h2

)
S∗(s)ds,

and c(σ) =
∫ |Ω|

0 exp (−|S∗(σ)− S∗(s)|2)h−2) ds. This reformulation of the
Neighborhood filter, apart from being exploited for the numerical implemen-
tation of the filter, allows to prove the asymptotic behavior of the filter with
respect to the window size h. Two main effects are present for small h: a loss
of contrast effect and an anti-diffusive shock filter behavior [2].

The denoising process is usually performed as an iteration of formula (4) by
the following scheme

Si+1(x) =
1

C0(x)

∫
Ω

exp

(
−|S0(x)− S0(y)|2)

h2

)
Si(y)dy, (7)

with C0(x) =
∫

Ω exp (−|S0(x)− S0(y)|2)h−2) dy. In Singer et al. [21], a prob-
abilistic approach is used for the understanding of iterated Neighborhood and
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Nonlocal Means filters, see (8)-(9) below. Their rate of convergence towards
the constant steady state and their blurring properties are analyzed interpret-
ing the successive iterations (7) as a random walk. The iterated composition
of the corresponding transition probability matrix is then shown to produce
the noise reduction at a certain asymptotic rate, acting specially on the high
frequency components.

We finish this section by describing an important property which is related
to the special character of the spectrogram interpretation as an image. The
Nonlocal Means algorithm uses, for a noisy image v : Ω → R, the following
regularization

NL(v)(x) =
1

C(x)

∫
Ω

exp

(
−F (x,y)

h2

)
v(y)dy, (8)

where C(x) =
∫

Ω exp (−F (x,y)h−2) dy is the normalization factor,

F (x,y) =
∫

Ω
Gσ(z)|v(x + z)− v(y + z)|2dz, (9)

and Gσ is a Gaussian kernel with standard deviation σ. The role of func-
tion F is to weight the point-wise Euclidean distance based similarity of v
on Gaussian neighborhoods Bσ(x) and Bσ(y) in the averaging procedure of
(8). Relaxing this effect to perform, instead of point-wise, averaged Euclidean
distance comparisons on Gaussian neighborhoods for WV(f ; ·), i.e. redefining
F as

F (x,y) =
∣∣∣∣∫

Ω
Gσ(z) (WV(f ; x + z)−WV(f ; y + z)) dz

∣∣∣∣2 ,
we obtain F (x,y) = |S(f ; x)−S(f ; y)|2 , where S(f ; ·) is obtained by using the
Gaussian Gσ = WV(ϕσ; ·) as convolution kernel in (3), for a Gaussian window
ϕσ of zero mean and standard deviation σ, see [16]. Therefore, considering the
regularization of WV(f ; ·) via (8)-(9), we obtain

NL(WV(f ; ·))(x) =
1

C(x)

∫
Ω

exp

(
−|S(f ; x)− S(f ; y)|2, )

h2

)
WV(f ; y)dy,

which is in close relation to (7) once the first iteration approximates the in-
tegrand WV(f ; ·) to S(f ; y). Thus, in a loose sense, the Nonlocal Means al-
gorithm applied to the Wigner-Ville distribution of a signal is related to the
direct application of the Neighborhood filter to the spectrogram of the signal,
as obtained through a Gaussian window.
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3 Discretization and numerical experiments

In this section we present numerical demonstrations on spectrograms of syn-
thetic and biomedical signals of the nonlocal Neighborhood filter (7), the
nonlinear Yaroslavsky filter with a box spatial local kernel (5) and a Total
Variation based PDE local filter, see (13)-(15) below. In order to compare the
results, we use an objective measure, the Mean Square Error (MSE) between
the denoised and the clean signals, and a subjective measure based on the
visual inspection of the spectrogram itself and on some related magnitudes:
the IF lines and the time-energy content.

3.1 Discretization

Computation of the spectrogram is a standard operation performed by apply-
ing the discrete fast Fourier transform (dfft) to the convolution of the signal
with the window, which we choose as a zero mean unit variance Gaussian
window. Once the spectrogram is produced, it is normalized in some range
[0, Q], with Q > 0, obtaining in this way a discrete function S : Ω → [0, Q].
The choice Q = 255 corresponds to the usual digital image range.

Let us consider the regular mesh of Ω = (0, T ) × (0, F ), as produced by the
spectrogram computation, given by {(tm, ωn)}, with tm = mT/(M + 1), for
m = 0, 1, . . . ,M+1 and ωn = nF/(N+1), for n = 0, 1, . . . , N+1, and consider
the corresponding barycenters xm,n for m = 0, 1, . . . ,M and n = 0, 1, . . . , N .
To each xm,n we associate a surface element dA = TF/MN .

For Q ∈ N, we consider the Q−quantized spectrogram S0(x) = k if S(x) ∈
[k− 1

2
, k+ 1

2
)∩ [0, Q], for k = 0, 1, . . . , Q, inducing the partition of Ω given by

Ω =
Q⋃
k=0

Bk, with Bk = {x ∈ Ω : S0(x) = k} . (10)

According to Eq. (7) for the iteration of the Neighborhood filter, and using
(10), we define for j = 0, 1, . . . , Q, and for the iteration index i = 0, 1, . . .

SNFi+1 ({x ∈ Bj}) =
1

C0(x)

∫
Ω

exp

(
−|S0(x)− S0(y)|2)

h2

)
SNFi (y)dy (11)

=

∑Q
k=0 e

−( j−k
h

)2
∫
Bk

SNFi (y)dy∑Q
k=0 e

−( j−k
h

)2 |Bk|
,
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with SNF0 = S0. We consider the zero-order approximations∫
Bk

SNFi (y)dy ≈
∑

ym,n∈Bk
SNFi (ym,n)dA, and |Bk| ≈ C(k)dA, (12)

where C(k) denotes the number on nodes contained in Bk. Relabeling SNFi+1 in
terms of its level sets, the approximation to formula (11) (for which we keep
the same notation) reads

SNFi+1 (j) =

∑Q
k=0 e

−( j−k
h

)2 ∑
ym,n∈Bk S

NF
i (ym,n)∑Q

k=0 e
−( j−k

h
)2C(k)

,

or, in a more compact form

SNFi+1 (j) =
< a(j, ·),S i >
< a(j, ·), C >

,

with
a(j, k) = e−( j−k

h
)2 , S i(k) =

∑
ym,n∈Bk

SNFi (ym,n),

and < ·, · > denoting the scalar product in RQ+1.

In a similar way, we may find the following expression for the iteration of the
bilateral type filter given by (6). However, for this filter we can not operate
on terms of level sets, and a particular expression for each xm,n ∈ Bj must be
given, explaining the large time execution differences between Neighborhood
and bilateral filtering:

SBi+1(xm,n) =

∑Q
k=0 e

−( j−k
h

)2
∫
Bk

e−(
y−xm,n

ρ
)2SBi (y)dy

∑Q
k=0 e

−( j−k
h

)2
∫
Bk

e−(
y−xm,n

ρ
)2dy

.

Approximating the integral terms as in (12), we obtain

SBi+1(xm,n) =

∑Q
k=0 e

−( j−k
h

)2 ∑
yp,q∈Bk e

−(
yp,q−xm,n

ρ
)2SBi (yp,q)∑Q

k=0 e
−( j−k

h
)2 ∑

yp,q∈Bk e
−(

yp,q−xm,n
ρ

)2
.

In the case of the Yaroslavsky filter, we obtain

SYi+1(xm,n) =

∑Q
k=0 e

−( j−k
h

)2 ∑
yp,q∈Bk 1Bρ(xm,n)(yp,q)S

Y
i (yp,q)∑Q

k=0 e
−( j−k

h
)2 ∑

yp,q∈Bk 1Bρ(xm,n)(yp,q)

and ∑
yp,q∈Bk

1Bρ(xm,n)(yp,q)S
Y
i (yp,q) = k

∑
yp,q∈Bρ(xm,m)

1Bk(yp,q)

8



The computational cost of this local histograms increases with the size of the
local window.

If we take the Chebyshev distance, Bρ(xm,n) are rectangles. Porikly in [18]
introduces the integral histogram that involves a propagation of point-wise
histograms on a sequence of image points followed by and intersection of (four)
histograms to determine the histogram of any rectangular region. In this way
he obtains a O(1) algorithm with a computational cost independent of the
filter size. Thie algorithm that he obtains is the same than ours.

Finally, for comparison porpouses, we used the following denoising algorithm
based on a convection-diffusion nonlinear PDE related to that introduced by
Rudin et al. [20]. The problem is written as: find S : [0, 1

ε
]× Ω → [0, Q] such

that

∂S

∂τ
+
ε

2
∇ log(S0∗) · ∇S − div

( ∇S
|∇S|

)
= 0 in [0,

1

ε
]× Ω, (13)

∇S · n = 0 on [0,
1

ε
]× ∂Ω, (14)

S(0, ·) = S0 in Ω, (15)

where S0∗ = Gσ ∗ S0, with Gσ a Gaussian regularizing kernel of variance σ.
Here, ε > 0 controls the strength of transport towards the maxima of S0, in
relation to the mean curvature diffusion term. The addition of the transport
term in (13), as well as the bounded time domain [0, 1

ε
], which are not usual

in image denoising algorithms, are motivated by the notion of differential
reassignment introduced by Auger et al. [5], which is proper of one-dimensional
signals, see [7] for further details.

The discretization of (13)-(15) follows the standard Finite Element method-
ology for the total variation denoising problem, see [9]. We consider a time
semi-implicit Euler scheme and a P1 continuous finite element approximation
in space. In particular, for the approximation, Sk+1, at time t = tk+1, we use
the diffusive coefficients obtained in the previous time step tk, that is,

Sk+1 − Sk
δt

+
ε

2
∇ log(S0∗) · ∇Sk − div

(
1√

|∇Sk|2 + ε̃2
∇Sk+1

)
= 0,

for some ε̃ > 0. The convective term is computed by an upwind scheme,
evaluating for each node the derivatives in the element corresponding to the
upwind direction. Therefore, for each time step, we solve an elliptic problem
with a diffusive term coefficient bounded from above.

As mentioned in the introduction to this section, we use two measures to
compare the denoising results:
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Neighborhood Yaroslavsky Nonlinear diff.

Experiment 1
MSE 0.28 0.24 0.17

Ex. time 2.33 650 255

Experiment 2 Ex. time 0.24 73 22

Experiment 3 Ex. time 1.03 99 32

Table 1
Mean square error (MSE) and execution time (seconds), of the different algorithms
and experiments. A smaller MSE indicates that the estimate is closer to the original
image. The numbers have to be compared on each row.

(1) The Mean Square Error between the clean spectrogram, Sc(x), and the
filtered spectrogram after I iterations, SI(x)

MSE =
‖Sc − SI‖
‖Sc‖

,

where ‖ · ‖ denotes the L2 norm of a matrix.
(2) The visual inspection of the IF lines. We use a simple algorithm to pro-

duce candidates to IF lines of the corresponding spectrograms. We con-
sider the truncation v(t, ω) = S(t, ω) if S(t, ω) ≥ β, and v(t, ω) = 0
elsewhere, with β = MeanΩ (S) in the experiments. For each t ∈ [0, T ]
we find the N connected components of the set {ω ∈ (0, F ) : v(t, ω) > 0},
say Cn(t), for n = 1, . . . , N(t), and define the function

IF(t, n) =

∫
Cn(t)

ωv(t, ω)dω∫
Cn(t)

v(t, ω)dω
, (16)

which is the frequency gravity center of the component Cn(t). In this
way, we shrink each connected component to one point to which we
assign the average image intensity through the function INT(t, n) =
MeanCn(t) (v(t, ·)). Finally, we plot function IF only for components with
averaged intensity, INT, greater than a certain threshold, i ∈ [0, Q]. This
final image does not seem to be very sensible under small perturbations
of the parameters β and i.

In all the experiments we have chosen the usual image quantization into 256
levels (Q = 255). For the Neighborhood and Yaroslavsky filters, the variance
of the Gaussian neighborhood for the level lines is taken as h = 10. For the
latter, we fix the variance of the local neighborhood as ρ = 10 so, according to
[3], the nonlinear diffusion regime applies. For the Neighborhood algorithm,
the iteration stopping criterium is established in terms of the relative difference
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h = ρ 8 16 32 64

Direct implementation 30 50 127 418

Integral histogram 105 112 110 106

Table 2
Execution time (seconds) per iteration of the two versions of the Yaroslavsky im-
plementation.

between two consecutive iterations, i.e. we stop the algorithm if

‖Si+1 − Si‖L2

‖Si‖L2

< tol,

with tol empirically chosen to perform few iterations. For the PDE based
filter algorithm we stop when the artificial time τend = 1/ε is reached. The
parameter ε, controlling the ratio transport-diffusion is empirically chosen. For
the Yaroslavsky filter we use the same number of iterations as for the PDE
algorithm. In Table 3.1, the execution time expressed in seconds refers to the
tic-toc Matlab command for a script run under a Core i7 (quad) processor,
built on a standard laptop.

Experiment 1. We use a one second 4KHz synthetic signal composed by
the addition of two signals. The first is the addition of pure tones and chirps:

x1(t) = c1

(
sin(2π500t) + sin(2π700t) + sin(2π1000t2) + sin(2π600t3)

)
,

while the second, x2, is a uniformly distributed real random variable. We
normalize them to have ‖xi‖L2 = 1 (so the constant c1) and define the test
signal as x = x1+x2, i.e., with SNR = 0. We then compute the spectrogram, S,
for a Gaussian window of unit variance. The size of the corresponding image is
2048×512 pixels. Other parameters are chosen as follows: tol = 0.04, ε = 0.02
and dτ = 2.5, implying τend = 50.

We have compared the two versions of the Yaroslavsky filter with different
values of ρ = h. The execution time per iteration is presented in Table 3.2. As
expected, the integral histogram version outperforms the direct implementa-
tion when the size of the kernel is large enough.

In Figure 1 we show the graphic results. The left panel contains the spec-
trogram of the noisy signal and the corresponding images filtered with the
three described algorithms. In comparison with the original spectrogram, all
filtered images are very closed from each other. We observe that the image
obtained by Neighborhood filtering keeps more noise than the others, but also
experiments less diffusive effects. This is specially noticeable in the broken IF
segments appearing at high frequencies, where the Yaroslavsky and the TV
filtering diffuse locally while the Neighborhood filter just remove the informa-
tion of this area. The similarity of these denoised images is also checked by
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comparing their corresponding MSE, see Table 3.1. However, the most impres-
sive result is that concerning the execution times which gives a ratio larger
than 200 in favor of the Neighborhood algorithm.

Experiment 2. We use a recording done in wilderness [15], from where we
extracted a signal of 2.25 seconds which is affected by a strong background
noise. Since field data recorders are set to 44.1 KHz meanwhile wolves signals
are rarely out of the range 200 − 3000 Hz, we start by filtering and down-
sampling the signal to speed up computations. The resulting spectrogram
image size is 172 × 690 pixels. Other parameters are chosen as follows: tol =
0.01, ε = 0.2 and dτ = 0.25, implying τend = 5.

In Figure 2 we show the graphic results. Again, the left panel contains the
spectrogram of the signal and the results of filtering. In this case, the noise is
not Gaussian and the filtering algorithms are less adapted to the problem. The
Neighborhood filter keeps most of the relevant information (the fairly straight
lines) but leaves part of the low frequency noise unfiltered. The Yaroslavsky
filter removes the noise, but also the IF lines with less energy content. In a
middle way, the TV algorithm removes most of the noise and keeps a large part
of the IF lines, being for this example the most adequate algorithm. However,
execution times show again large differences in favor of the Neighborhood
filter.

Experiment 3. We used ECG signals obtained from the MIT-BIH Noise
Stress Test Database [17,11], from which we extracted a segment of 240 seconds
(minutes 4 to 8), containing an arrhythmia episode in its central part.

The recording was made using physically active volunteers and standard ECG
recorders. Noise was added beginning after the first 5 minutes of each record,
during two-minute segments alternating with two-minute clean segments. The
signal-to-noise ratio was 12dB. The added noise was of the type electrode
motion artifact, which is generally considered the most troublesome, since it
can mimic the appearance of ectopic beats and cannot be removed easily by
simple filters, as can noise of other types.

For the clean image, see Fig. 3 (first row), the spectrogram (size 236 × 676)
shows the usual energy spread of arrhythmia episodes around t = 360. Inte-
gration of the energy in the frequency domain shows a pick at the same time
instant, which allows to detect the episode, see Fig. 3 (second row). In the
central column of the same figure we repeat these calculations for the noisy
signal. As it may be observed, the energy pick has been hidden due to the
time coincidence with the high energy noise. In the last column, we show the
result of a filtering-extraction procedure. Let S0 be the spectrogram of the
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noisy signal and Sn the image resulting from the application of the Neigh-
borhood filter. Then we substract Sn > α from S0, for some small α ∈ [0, Q]
(α = 1 in the experiment). The corresponding image and its integration in the
frequency domain are shown in the last column of Fig. 3. As we see, after the
substraction of the most energetic components of the noisy signal, the noise
and the normal beat frequency line, the arrhythmia episode may be again de-
tected. Although not shown, the results with the other algorithms are similar,
being again in this experiment much larger than that of the Neighborhood
filter algorithm.
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Fig. 1. Experiment 1. Left: spectrogram of the noisy signal and filtered images
obtained with the different algorithms. Right: corresponding IF lines according to
formula (16).
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Fig. 2. Experiment 2. Left: spectrogram of the noisy signal and filtered images
obtained with the different algorithms. Right: corresponding IF lines according to
formula (16).
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Fig. 3. Experiment 3. Recovery of an arrhythmia episode detection from a noisy
signal.
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