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Abstract We present an automatic pipeline for spectral shape analysis of brain
subcortical hippocampal structures with the aim to improve the Alzheimer’s Disease
(AD) detection rate for early diagnosis. The hippocampus is previously segmented
from volumetric T1-weighted Magnetic Resonance Images (MRI) and then it is
modelled as a triangle mesh (Fang and Boas, Proceedings of IEEE international
symposium on biomedical imaging, pp 1142–1145, 2009) on which the spectrum
of the Laplace-Beltrami (LB) operator is computed via a finite element method
(Lai, Computational differential geometry and intrinsic surface processing. Doctoral
dissertation. University of California, 2010). A fixed number of eigenpairs is used
to compute, following (Li and Ben Hamza, Multimed Syst 20(3):253–281, 2014),
three different shape descriptors at each vertex of the mesh, which are the heat
kernel signature (HKS), the scale-invariant heat kernel signature (SIHKS) and
the wave kernel signature (WKS). Each of these descriptors is used separately in
a Bag-of-Features (BoF) framework. In this preliminary study we report on the
implementation of the proposed descriptors using ADNI (adni.loni.usc.edu), and
DEMCAM (T1-weighted MR images acquired on a GE Healthcare Signa HDX 3T
scanner) datasets. We show that the best quality of the DEMCAM dataset images
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have a great impact on the AD rate of detection which can reach up to 95 %. For
further development of the modelling approach, local deformation analysis is also
considered through a spectral segmentation of the hippocampal structure.

1 Introduction

Alzheimer’s disease (AD) is the most common form of cognitive disability in older
people, and the number of affected patients is expected to considerably increase in
the next future due to the population longer living. Early diagnosis of AD would
greatly benefit the public health and society, resulting in patient quality of life and
reduced treatment costs.

The development of magnetic resonance images (MRI) has given rise to a
deeper study of the architecture of the human body. More precisely, diagnosis of
Alzheimer’s disease has benefited from this fact due to the possibility of studying the
structure of the different components of the brain which show anatomical changes
as the disease advances (see for example [18]).

The hippocampus, which is located in the medial temporal lobe of the brain, and
is important for memory and spatial navigation, has been shown as one of the main
components of the brain that changes in the progression of AD [1]. Its atrophy due
to neurodegenerative diseases such as AD can be evaluated in terms of the global
change in the volume of the hippocampus as well as through the quantification of the
global and local changes in its shape. Hippocampal volumetry on MR images has
been shown to be a useful tool in AD diagnosis, providing significant discrimination
ability. It is, however, inadequate to fully describe the effect of the disease on the
morphology of hippocampus. In addition to volumetry, hippocampal shape analysis
is an emerging field enlarging the understanding of the development of the disease.
Among the different methods employed to model the hippocampus and to detect the
shape changes (deformation) caused by AD, shape surface processing represented
by spherical harmonics [8] and statistical shape models (SSMs) have been proved
to be efficient in modeling the variability in the hippocampal shapes among the
population [16].

In this work, we primarily focus on spectral techniques based on the Laplace-
Beltrami operator. Such techniques have been successfully applied to shape recog-
nition of subcortical structures [10]. In [19] a heat kernel based cortical thickness
estimation algorithm, which is driven by the graph spectrum and the heat kernel
theory, is used to capture grey matter geometry information from in vivo brain MR.
These approaches allow to compute some shape spectral descriptors such as the heat
kernel signature (HKS), the scale invariant heat kernel signature (SIHKS) and wave
kernel signature (WKS), which we apply to the ADNI and DEMCAM datasets. In
order to assist the diagnosis of Alzheimer we merge the spectral analysis into a
Bag of Features (BoF) (see [13] for details) framework proposed in [11] for shape
retrieval. The diagnosis (discrimination) is then effected in the space of descriptors
through the comparison of their histograms. Finally we propose a novel method



Spectral Shape Analysis of the Hippocampal Structure for Alzheimer’s Disease. . . 3

for anatomical structure segmentation based on the decreasing rearrangement of the
second eigenfunction of the Laplace-Beltrami (LB) operator. As an application, we
consider a partition of the hippocampus into three regions exploring if just one of
them mostly encapsulate the early damages caused by this dementia.

The rest of this paper is organized as follows. In Sect. 2, we consider the heat
equation on a closed surface, introducing the LB operator on compact manifolds.
In order to expand the solution into eigenfunctions of the LB operator we define its
discretization using FEM which leads to solve a generalized eigenvalue problem. In
Sect. 3, the BoF approach for shape recognition is presented and the three different
shape descriptors are introduced. Local analysis is performed in Sect. 4 through
a spectral segmentation algorithm which exploits the properties of the decreasing
rearrangement of a function. The experiments and results obtained are described
in Sect. 5. Finally we summarize the conclusions of our study which is an on-
going research in the framework of Project TEC2012-39095-C03-02: Mathematical
Models based on Biomarkers.

2 Spectral Analysis of the LB Operator

The heat diffusion process has recently been applied successfully to shape recogni-
tion [10, 11]. In this section, we present the heat equation and eigenvalue problem on
a compact manifold representing the hippocampus surface. We discretize the heat
equation in a triangular mesh, which is automatically generated (see [5]) in order to
find the LB spectrum using FEM.

Assume M � R3, where R denotes the set of real numbers, to be a compact
connected Riemannian manifold. Then, the heat diffusion process in the manifold is
described by the following equation

ut D �Mu; 8 .x; t/ 2 M � Œ0;1/ (1)

u.x; 0/ D f .x/; 8 x 2 M (2)

where the scalar field u W M � Œ0;1/ ! R is the amount of heat at a point on the
surface (hippocampus) at time t, and �M is the LB operator defined as follows:

�M f D divM .rM f / D 1p
G

2X

iD1
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where G D det.gij/ and .gij/ is the inverse of the metric matrix. Considering
u.x; 0/ D ı.x � y/, the solution k.x; y; t/ of the Eq. (1) is called the heat kernel
(HK), which is a measure of the amount of heat that moves from x to y after time t.
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The HK corresponding to the solution to problem (1)–(2) can be expressed as

k.x; y; t/ D
1X

iD1
e��i t�i.x/�i.y/: (3)

where .�i; �i/ are the eigenpairs (spectrum) of the LB operator. Notice that being the
manifold closed, we find that �1 D 0 and the first eigenfunction �1 is constant. The
rest of the eigenvalues satisfy 0 < �2 < �3 < : : :, being this sequence diverging.

In order to expand the solution in terms of the eigenpairs, we need to solve first
the following eigenvalue problem:

�M�n D ��n�n; n D 1; 2; � � � : (4)

Instead of solving the previous eigenvalue problem, we use a finite element
method (FEM) to find numerically an approximate solution in a triangular mesh
[10].

Hence, we consider the following weak formulation of the problem: Find � 2
H1.M /, such that for any test function u 2 H1.M /, it is satisfied

Z

M
.�M�/u dV D ��

Z

M
�u dV: (5)

After the weak formulation for the problem is found, its discretization is the
second step according to FEM. Hence, we consider the manifold representing the
hippocampus surface as a triangular mesh composed of N vertices and L triangles:
fV D fpigN

1 ;T
h D fTlgL

1g, where the superindex h refers to the diameter of the
triangulation. Let Vh be the space generated by those functions: Vh D fuh 2
C.M /juhjk 2 P1; k 2 Thg; where Th is the set of triangles and P1 is the set of
two-variables linear functions. Each of the elements in Vh is called a linear finite
element. Following [10], the discrete version of (5) is: Find �h 2 Vh such that

X

l

Z

Tl

rM�h � rM h
i D �h

X

l

Z

Tl

�h h
i ; 8 h

i 2 Sh;

for i D 1; : : : ;N, where Sh is a basis of Vh consisting on the element shape functions
(Fig. 1).

Considering the following matrices involving every element of the mesh: �h DPN
1 xi 

h
i , Ah D .aij/N�N , where aij D P

l

R
Tl

rM h
i rM h

j ; and Bh D .bij/N�N ,
with bij D P

l

R
Tl
 h

i  
h
j ; the variational problem (5) is then equivalent to the

following eigenvalue problem:

Ahx D �hBhx;

where x D .x1; � � � ; xN/
t are the unknown associated eigenfunctions (i.e. eigen-

vectors which can be thought of as functions on the mesh vertices). This gener-
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Fig. 1 Representation of the first four eigenfunctions of the LB operator. Notice that the first
eigenfunction takes approximately a constant value, as expected. The second eigenfunction is
known by capturing well topological features and the geometry of the shape (it corresponds to
the sound we hear the best [7])

alized eigenvalue problem may be efficiently solved using the Arnoldi method of
ARPACK. The computation of the local integrals

R
Tl
 h

i  
h
j and

R
Tl

rM h
i rM h

j ;

is carried out following the ideas presented in [10] based in the use of barycenter
coordinates, and which we will briefly describe here. Let Tl be a triangle defined by
the vertices Tl D fp0; p1; p2g,  h

i 2 Sh and  h
i D f i;0;  i;1;  i;2g the corresponding

values at the vertices of the considered triangle. A point p 2 Tl may be expressed in
barycenter coordinates as

p D x1. p1 � p0/C x2. p2 � p0/C p0

such that 0 � x1; x2; x1 C x2 � 1. For p 2 Tl, the values of the functions  i and  j

might be estimated by using linear interpolation as follows:

h
i . p/ D x1. i;1 �  i;0/C x2. i;2 �  i;0/C  i;0;

h
j . p/ D x1. j;1 �  j;0/C x2. j;2 �  j;0/C  j;0:

Therefore, any of the integrals needed to find matrix B may be approximated as

Z

Tl

 h
i

h
j dv D

Z 1

0

Z 1�x1

0

h
i . p/ h

j . p/dx2dx1:
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Finally, we need to find an estimation of integrals taking part in the matrix A entries.
Note that in a linear finite element method, the gradient in each element will be
constant vectors. Thus, we may write

Z

Tl

r h
j � r h

i dv D area.Tl/.r h
i jTl � r h

j jTl /;

where area.Tl/ is the area of the element considered. The computation of the
gradients r h

i jTl and r h
j jTl , is carried out through the following expression for

r h
i jTl and analogously for r h

j jTl (see [10] for details):

r h
i jTl D . i;1 �  i;0;  i;2 �  i;0/

�
@x1 � @x1 @x1 � @x2

@x2 � @x1 @x2 � @x2

��1 �
p1 � p0
p2 � p0

�

where @x1 D p1 � p0 and @x2 D p2 � p0.

3 Modeling Shapes

Methods for recognizing 3D shapes by their meaningful parts may be broadly
divided into two categories. The first, following [11], is the skeleton based method
(see [9]). The second one, which is the one considered in our study, is the surface
based method. In the latter case, a shape is modelled as a frequency histogram,
which is later used to compare it. The bag of features, the chosen methodology in
this work, is an example of methodology that belongs to this group.

3.1 Bag of Features

The bag of features (BoF) paradigm (see [13] for details) is one of the most popular
feature-based methods for shape recognition, retrieval and detection. The steps for
the BoF methodology are the following: First, we detect and extract features from
every shape in the training database. Second, we compute a dictionary of visual
words using the training data, and allocate each feature to the closest vocabulary
word. Next, we obtain the histogram of frequency for every shape. And finally, given
a test shape, we model it as its histogram of frequency using the same signature, and
we determine its class by majority voting of the closest training neighbors.

Local descriptors have been proven to perform well on shape recognition tasks.
For every training sample, at each point of the mesh, a feature vector is computed.
We build different bag of features using each of the following descriptors: the heat
kernel signature (HKS), the scale-invariant heat kernel signature (SIHKS) and the
wave kernel signature (WKS).
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In order to quantize the feature space, the data are clustered using training
samples. These data representatives are called vocabulary features. In our study,
we use the k-means algorithm (see [12] for details). As each shape is modelled
by a histogram, comparing shapes is tantamount to measuring histogram similarity.
Two different histograms comparison metrics are used: chi-squared and Spearman
distances.

3.2 Shape Descriptors

As introduced before, two different kinds of descriptors will be used: heat-diffusion
and wave based descriptors. The former measures the amount of heat that remains
in a point of the shape after some time t. Therefore, it is possible to capture
shape information using small diffusion times and global characteristics when heat
diffuses for a longer time. In addition, several times t or scales will be considered
to build a feature vector for each point in the shape. The latter descriptor, which is
based on the resolution of the Schrödinger equation, describes a shape by means of
the probability of finding a quantum particle at a particular point of the shape.

3.2.1 HKS

At a given point of the mesh p 2 M , the heat left after a time t if initially
all of it was concentrated at one point, that is u.p; 0/ D ı.p/, is described by
k.p;p; t/ D Kt.p;p/ (see (3)), where t is the diffusion time or time scale. The heat
kernel signature at each p 2 M is defined as a n-dimensional vector

HKS.p/ D .Kt1 .p;p/; � � � ;Ktn.p;p//; (6)

where t1; � � � ; tn are different time scales.
The main advantages of the HSK are [4, 14]: it is robust to noise, it is easy to

compute as it is based on the first eigenvalues and eigenfunctions, and the HKS
of a shape is unique except under isometries. A major drawback of HKS is that it
depends on the pixels’ volume of the shape, therefore, the same hippocampus in two
different scales differs on this descriptor.

3.2.2 SIHKS

In order to overcome the just mentioned dependence of HKS on the scale of
the shape, Bronstein and Kokkinos [3] proposed an updated heat kernel signature
which is independent on the scale-space. The scale invariant heat kernel signature,
SIHKS (see [11]), which we consider in our study has been proven to improve
results related to the HKS or the WKS [3, 11]. Next, we shall briefly describe the



8 G. Maicas et al.

derivation of the SIHKS for reader’s convenience. Given a shape M , the heat kernel
signature at a point p 2 M at time t is given by (6). Considering the same shape
scaled, M 0 D ˇM , the relation between the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator of the two shapes satisfy �

0

i D ˇ2�i and �
0

i D ˇ�i; and
the heat kernel signature for each point p 2 M 0 at a time t can be written as

K
0

t .p;p/ D
1X

iD1
e.��iˇ

2t/�i�iˇ
2 D ˇ2Kˇ2 t.p;p/: (7)

The expression (7) relates the heat kernel signature of a point in the ˇ-scaled version
M 0 at time t with the descriptor of the non-scaled version of the shape at time
ˇ2t. In order to accomplish the scale invariance for the HKS, we need to remove ˇ
from (7). For this purpose, we shall first write the HKS in a logarithmic time t D ˛�

for each point p 2 M , K� D K˛� .p;p/: Hence, in the scaled version of the surface,
M 0 D ˇM , the heat kernel signature can be written as follows K

0

� D ˇ2K2log˛ˇC� ,
and (7) is translated into

K
0

� D ˇ2K�Cs (8)

where s D 2log˛ˇ. Now, taking logarithms in (8) and derivating with respect to � ,
we obtain that

d

d�
log K

0

� D d

d�
logˇ2 C d

d�
log K�Cs D 0C d

d�
log K�Cs; (9)

where d
d� log K

0

� will be computed in terms of the eigenpairs of the LB operator,
through the following identity:

d

d�
log K

0

� D � P
i�0 �i˛

� log˛e��i˛
�
�2i

� P
i�0 e��i˛� �2i

: (10)

Taking the discrete Fourier transform in (9) to obtain FK
0

.!/ D FK.!/e2�!s; and
computing the modulus of the Fourier transform, we find jFK

0

.!/j D jFK.!/j:
Therefore, jFK.!/j is scale-invariant, and we can consider the scale-invariant heat
kernel signature at each p 2 M defined as a n-dimensional vector

SIHKS.p/ D .jFK.!1/j; � � � ; jFK.!n/j/;

for different frequencies !1,. . . ,!n.

3.2.3 WKS

Instead of building a descriptor based on the heat diffusion on the manifold, Aubry
et al. [2] proposed a signature, the wave kernel signature (WKS), based on the
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consideration of the Schrödinger equation

@ 

@t
.x; t/ D i�M .x; t/;

whose solution is a wave function which describes quantum aspects of a system.
Hence, the use of WKS is in fact a quantum approach to shape analysis.

Next, we shall present a basic description of the WKS (see [2, 11] for more
details). The basic idea is to characterize a point p 2 M by the average probabilities
over time of quantum particles of different energy levels to be measured in p. So,
let f 2E be an energy probability distribution of the estimated energy E at time t D 0

of a quantum particle which position on the manifold is not known. Then, the wave
function of the particle  E.x; t/, if there are no repeated eigenvalues of the Laplace-
Beltrami operator, can be written as

E.x; t/ D
1X

kD0
eiEkt�k.x/fE.Ek/; (11)

where f.Ek; �k.x//g are the eigenpairs of the Laplace-Beltrami operator, which rep-
resent the energy levels of the quantum system (eigenvalues) and the corresponding
wave functions (eigenfunctions) which describe the associated energy state. In fact,
the probability to measure a particle at the point of the manifold p 2 M , is
j E.p; t/j2: Due to the fact that the time parameter has not clear interpretation in
our analysis, it will be not taken into consideration when defining the WKS. Then,
the wave kernel signature at a point p of the manifold M , is the probability to
measure a quantum particle overtime in an energy level

WKS.E;p/ D lim
T!1

1

T

Z T

0

j E.p; t/j2dt; (12)

which can be written as

WKS.E;p/ D
1X

kD0
�2k .p/f

2
E .Ek/: (13)

Regarding the energy distributions f 2E , in [2] it is discussed that the log-normal
probability distribution for f 2E models well the energies for our purpose. Therefore,
we choose f 2E to be a Gaussian distribution in the logarithmic scale. Considering
a logarithmic energy scale sc D log.E/, the wave kernel signature at p 2 M is
defined as follows:

WKS.sc;p/ D Csc

X

k

�2k .p/e
�.sc�log Ek/

2

2�2 ; (14)
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where Csc is the normalizing constant Csc D
�P

k e
�.sc�log Ek/

2

2�2

��1
. We obtain an

n-dimensional vector by considering different values for sc (different energy levels)
as well as � .

Two important properties led us to include this descriptor in out study. First, it is
invariant under isometries. In addition, if two shapes have the same WKS for every
point of it, then both shapes are the same except for an isometry. Secondly, it is
robust to noise, scale or holes in the shape.

4 Local Deformation

Recent findings suggest that the deformations on the hippocampus due to AD do
not occur uniformly [19]. This leads to the necessity to develop local deformation
analysis and an attempt is done here where we spectrally segment the hippocampus
into different regions (classes).

We propose to apply the Neighborhood filter (NF) in terms of the decreasing
rearrangement, which has recently been applied to image segmentation in [6]. In
order to find a spectral segmentation of the hippocampus, we apply this technique
to the quantized values of the second eigenfunction, since it is the first eigenfunction
which does not take a constant value and it captures well topological features and
the geometry of the shape (see [11]). In fact, the second eigenfunction of the LB
operator follows the pattern of the overall shape of an object, and this geometric
property is well known and used for various applications including mesh processing,
feature extraction, manifold learning, data embedding, etc. (see [17]).

It is important to remark that this technique is computationally extremely
efficient because the integrals involved are 1-dimensional. After applying the NF,
the fixed point solution is a staircasing piecewise constant function which defines,
through thresholding, a partition of the hippocampus into regions (classes) where
each one of them can be understood as a segmentation of the initial shape [6].

5 Experimental Results

In our experiments we compare hippocampi using the BoF built with the three
different spectral shape descriptors that we described in Sect. 3. Our aim is to
achieve an acceptation rate around 80 % or above, as volume or surface area
discriminate up to 80 %.

We classify hippocampi according to two disjoint classes: AD and control. To
evaluate similarity between shapes, we consider two different histogram metrics,
which are the chi-squared and Spearman distances. We use a total of seven
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eigenpairs of the LB operator to construct the descriptors. Experimentally we found
that no clear improvement is achieved when using a larger number.

5.1 Database

In order to carry out our analysis, we used two datasets.

DEMCAM The DEMCAM project was a research initiative developed in Madrid
for Alzheimer’s dementia early detection. This dataset was collected from several
hospitals of Madrid. It consists of 38 subjects, 19 control patients and 19 patients
suffering from Alzheimer’s disease. A total of nine subjects from each class are
used as training data and the rest is test data. For each subject, a 3D high-resolution
T1-weighted MR image was acquired on a GE Healthcare Signa HDX 3T scanner.
All original MRIs were automatically segmented using FreeSurfer, which process
included a bias field correction (N3 algorithm). Using the open source software
iso2mesh, we obtained the left and right hippocampus represented as a triangular
mesh. This mesh is described by its faces (triangles) and their vertices (Fig. 2).

ADNI The ongoing Alzheimer’s disease Neuroimaging Initiative (ADNI) has been
designed to provide researchers a common data framework to help in the evaluation
of new methods in Alzheimer’s disease detection. We considered a total of 180

300

Segmentation
Decreasing rearrangement

250

200

150

100

50

0
0 500 1000 1500 2000 2500 3000

Fig. 2 NF-Decreasing rearrangement of the second eigenfunction of the Laplace-Beltrami opera-
tor quantized in 256 levels for a control hippocampus
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subjects, 90 healthy patients and 90 ill subjects. We built a test data of 100 samples,
including 50 of each category. Forty of the remaining patients were used as training
data. Notice that the field strength (1.5T) is lower in ADNI than in DEMCAM (3T).
This fact will affect the rates of AD detection.

ADNI data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI (Principal Investigator Michael W. Weiner, MD) began in 2003 as
a public-private partnership. The aim of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-
bined to describe the development of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

Next, we present the experimental results obtained with the two datasets consid-
ering for classification just the left hippocampus, just the right hippocampus or the
whole hippocampal structure.

5.2 DEMCAM Database

It is remarkable that SIHKS achieves the best performance with an acceptance
rate of 95 % when considering both hippocampi. It outperforms WKS (90 % when
considering information only of right hippocampi) and HKS (85 % when taking
into account information from both hippocampi). In addition, as we expected,
more information is captured by combining descriptors from both left and right
hippocampi in the case of SIHKS and HKS. However, WKS uses right hippocampi
to distinguish better healthier from dementia patients. This suggests that combining
information leads to a better detection and also that the right hippocampus is more
damaged by this disease. In fact, right hippocampus detection outperforms left
hippocampus diagnosis in the maximum acceptance rates we obtained for SIHKS,
WKS and HKS (see Table 1).

Table 1 Acceptance rates
(%) with the standard BoF
using HKS, SIHKS and WKS
for DEMCAM data

DEMCAM HKS SIHKS WKS

Left hippocampus 65 80 70

Right hippocampus 80 90 90

Joined 85 95 85
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5.3 ADNI Database

Once again, SIHKS yields the best performance by correctly identifying 80 % of
cases. As it was expected, information from both hippocampi (left and right) is
taken into account in this outcome. HKS correctly classified 78 % of cases while
WKS obtained 74 %. Also, these maxima are achieved when combining information
from both left and right hippocampi (see Table 2). Regarding histogram similarity,
the results show that Spearman distance leads to obtain the maximum performance
for all signatures, as it occurs when considering the DEMCAM dataset.

Therefore, from this study we can argue that the scale-invariant heat kernel
signature is the most suitable descriptor for detecting Alzheimer’s disease. This
conclusion is in agreement with [11] where it is stated that SIHKS outperformed
the HKS and the WKS in most cases for shape retrieval.

5.4 Local Deformation Analysis

In order to find which zone of the hippocampus encodes more information for
identifying Alzheimer’s disease, we spectrally divide hippocampi into three regions,
applying the Neighborhood filter (NF) in terms of the decreasing rearrangement.

We consider the zones detailed in Fig. 3 to build a BoF for each of the descriptors.
In Table 3 we present the acceptance rates obtained for ADNI data for each of the
just mentioned zones. The results show that SIHKS encodes most of the information
for detecting Alzheimer’s disease from zone 3. Region analysis using WKS as
signature describes a similar behavior because encoding information from just
region 2 outperforms the general WKS approach by 1 %. On the other hand, no
clear information is obtained by using the HKS for local analysis. Nevertheless,
71 % of hippocampi were assigned correctly its class just by considering region
2. This descriptor needs a more global information of the shape for an accurate
diagnosis. Following [11] we also model each shape by concatenating histograms
corresponding to zones one, two and three, but this does not improve the descriptor
performances.

Table 2 Acceptance rates
(%) with the standard BoF
using HKS, SIHKS and WKS
for ADNI data

ADNI HKS SIHKS WKS

Left hippocampus 76 71 67

Right hippocampus 68 78 73

Joined 78 80 74
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Fig. 3 Segmentation
(partition) of a hippocampus
into three classes using the
NF in terms of the decreasing
rearrangement. Zone 1:
blue-colored region. Zone 2:
green-colored region. Zone 3:
red-colored region

Table 3 Acceptance rates
(%) for each region of the
hippocampus detailed in
Fig. 3, with the standard BoF
using HKS, SIHKS and WKS
for ADNI data

ZONE HKS SIHKS WKS

1 67 69 65

2 71 72 75
3 70 78 59

Concatenating 72 78 73

5.5 Preprocessing

In order to evaluate the effect of a preprocessing step in the hippocampus and to
analyze if the noise removal involves an improvement in the detection rates of
AD, we use the smoothing approach technique described in [15]. To be precise,
we solve numerically the diffusion equation on the hippocampus by means of the
convolution of the heat kernel, expressed as a series expansion of the eigenpairs of
the LB operator, with the signal consisting of the coordinates of each of the vertices
of the manifold.

According to our observations, no increase of performance is achieved by
smoothing hippocampi. In fact, SIHKS and WKS best performances decreased,
while HKS best acceptation rates remain constant [2]. This results suggests that
the three signatures are robust to small rates of topological noise. This property
is very important due to the fact that segmentation of the hippocampi from MRI
may include noise. Therefore, it seems not to be necessary to apply a preprocessing
step before building the BoF, which prevents from losing small details and saves
computation time. In addition, the lack of precise hippocampi extraction from
MRI may influence the performance of the techniques used here, as automatic
segmentation of the hippocampus might not include important details to detect AD.
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6 Conclusions

In this paper, we presented the use of three descriptors, namely HKS, SIHKS and
WKS, in the bag-of-features framework for automatic detection of Alzheimer’s dis-
ease. Our results showed that SIHKS is the best signature in detecting Alzheimer’s
disease in the proposed framework for both datasets. When the whole hippocampi
structure is considered, the performance of our method further increases.

In an effort to study if the hippocampal structure is deformed uniformly or
any of the regions is most damaged by this dementia, we proposed a spectral
segmentation method of the hippocampus based on the reformulation of a NF using
the decreasing rearrangement. Our preliminary results suggest that local analysis
deformation usually detects a region with a greater discriminative power, but it can
be different for various descriptors which makes premature any conclusion. Finally,
the detection rates for 3T (DEMCAM) images are relatively greater than for 1.5T
images (ADNI), which is a clear evidence that the proposed technique benefits from
image quality.
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