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WELL-POSEDNESS OF A CROSS-DIFFUSION POPULATION
MODEL WITH NONLOCAL DIFFUSION∗
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Abstract. We prove the existence and uniqueness of a solution of a nonlocal cross-diffusion
competitive population model for two species. The model may be considered as a version, or even an
approximation, of the paradigmatic Shigesada–Kawasaki–Teramoto cross-diffusion model, in which
the usual diffusion differential operator is replaced by an integral diffusion operator. The proof of
existence of solutions is based on a compactness argument, while the uniqueness of the solution is
achieved through a duality technique.
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1. Introduction. Let T > 0 and Ω ⊂ Rd (d ≥ 1) be an open and bounded set
with Lipschitz continuous boundary. We consider the following problem. For i = 1, 2,
find ui : [0, T ]× Ω→ R+ such that

∂tui(t,x) =

∫
Ω

J(x− y) (pi(u(t,y))− pi(u(t,x))) dy + fi(u(t,x)),(1.1)

ui(0,x) = u0i(x),(1.2)

for (t,x) ∈ QT = (0, T ) × Ω, and for some u0i : Ω → R+. Here, R+ = [0,∞),
u = (u1, u2), the diffusion kernel, J : Rd → R+, is an even function, and, for i, j = 1, 2,
i 6= j, the diffusion and reaction functions are given by

pi(u) = ui(ci + aiui + uj), fi(u) = ui (αi − (βi1u1 + βi2u2)) ,(1.3)

for some nonnegative constant coefficients ci, ai, αi, βij .
Problem (1.1)–(1.2) with diffusion and reaction functions given by (1.3) is a non-

local diffusion version of the Shigesada–Kawasaki–Teramoto (SKT) population model
introduced in [17], which reads, for i = 1, 2,

∂tvi = ∆pi(v) + fi(v) in QT ,(1.4)

∇pi(v) · n = 0 on (0, T )× ∂Ω,(1.5)

vi(0, ·) = u0i in Ω.(1.6)

The SKT problem (1.4)–(1.6) has attracted much attention in recent decades due
to several factors, including its capacity of producing nonuniform steady states, of
capturing population segregation phenomena, or of exhibiting instability with respect
to the uniform steady states leading to pattern formation. None of these properties
are verified if the diffusion functions, pi, lack the cross terms u1u2.
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In addition, the mathematical theory developed to prove the well-posedness of the
model is quite sophisticated, mainly due to the fact that cross-diffusion systems of
PDEs do not enjoy, in general, a comparison principle allowing it to employ classical
techniques such as the method of sub- and supersolutions. Moreover, no maximum or
minimum principles hold, so that even the nonnegativity of the solution components
is not evident.

The literature on the SKT problem is abundant. Regarding the problem of ex-
istence of weak solutions, the first global existence result is due to Kim [14], for a
simplified version of the problem (ai = 0, one space dimension). Yagi [21] deduced
that if the self-diffusion coefficients are small (8ai > 1), a global weak solution does
exist, the smallness condition implying that the diffusion matrix is positive definite,
and hence the problem is uniformly parabolic. This result was extended in [11] to the
coefficient restriction ai > 0. In this case, the diffusion matrix is not, a priori, definite
positive, and entropy estimates obtained by using the test functions ln(ui) play a key
role in overcoming the difficulty of obtaining suitable gradient estimates. The result in
[11], holding for one-dimensional spatial domains, was extended by Chen and Jüngel
[5] to up to three-dimensional domains. In a generalization of their techniques, Jüngel
[13] showed, among other properties, that the domain dimension may be arbitrarily
taken and further generalized the form of the diffusion functions. This generaliza-
tion had already been studied by Desvillettes, Lepoutre, and Moussa [7], who also
contributed to the understanding of the triangular system (when one of the u1u2

cross-diffusion terms is absent in the equations) [8], extending the particular results
obtained by Amann [1] from his general theory on quasi-linear parabolic systems.

Regarding the problem of uniqueness of solutions of the SKT problem, Amann
[1] proved the result in the triangular case. In [9], uniqueness of the full system is
proven for weak solutions under the assumption ∇ui ∈ L∞(QT ). More recently, Chen
and Jüngel [6] have proven the weak-strong uniqueness property for renormalized
solutions under several parameter restrictions. That is, given a renormalized solution
u of (1.4)–(1.6), if a strong solution ũ, with ∂tũi, ∇ũi ∈ L∞(QT ), does exist, then
u = ũ. However, the uniqueness of a weak solution of the full SKT problem in the
same functional space in which existence is proven remains an open problem.

Efforts also have been pointed out in other directions: the existence of global
classical solutions (see, e.g., [15]), the existence of nonuniform steady states (e.g.
[16]), or the onset of instabilities from perturbations of uniform steady states leading
to pattern formation [12], among others.

To motivate terming problem (1.1)–(1.2) as a nonlocal diffusion version of the
SKT problem (1.4)–(1.6) let us consider the following example, introduced and ana-
lyzed by Andreu-Vaillo et al. [3]. This example shows that the Neumann problem for
the heat equation

∂tv = ∆v in QT ,(1.7)

∇v · n = 0 on (0, T )× ∂Ω,(1.8)

v(0, ·) = v0 in Ω(1.9)

may be approximated by nonlocal diffusion problems of the type

∂tu(t,x) =

∫
Ω

J(x− y)(u(t,y)− u(t,x))dy,(1.10)

u(0,x) = u0(x),(1.11)
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for (t,x) ∈ QT , under an appropriate rescaling of the diffusion kernel, which we
assume here to be radially symmetric. Indeed, defining

Jδ(z) =
c1
δ2+d

J
(z
δ

)
with c−1

1 =
1

2

∫
Rd

J(z)z2
ddz,(1.12)

it is proven that the sequence uδ obtained as solutions of (1.10)–(1.11) with J replaced
by Jδ is such that

lim
δ→0
‖uδ − v‖L∞(QT ) = 0,

where v is the solution of the heat problem (1.7)–(1.9). Similar results are obtained
for nonlinear heat equations or p-Laplacian diffusion operators; see [3].

A formal argument justifying this convergence result is easy to describe in the
one-dimensional setting. Consider a smooth function, u, and the integral operator

Aδ(u)(x) =

∫
R
Jδ(x− y)(u(y)− u(x))dy.

Introducing the change y = x− δz and using the Taylor’s expansion of u in powers of
δ, we get

Aδ(u)(x) =
c1
δ

∫
R
J(z)zdzu′(x) +

c1
2

∫
R
J(z)z2dzu′′(x) +O(δ).

Since J is even, the first term of the right-hand side vanishes, so we deduce

Aδ(u)(x)→ u′′(x) as δ → 0.

A similar formal argument applies to (1.1)–(1.2), and in this sense we interpret that
(1.1)–(1.2) is a nonlocal diffusion version (or approximation) of the SKT original
problem (1.4)–(1.6).

The theory developed by Andreu-Vaillo et al. to tackle the problem of existence
of solutions to nonlinear versions of the nonlocal diffusion problem (1.10)–(1.11) is
mainly based on semigroup theory and strongly relies on the monotonicity of the
nonlocal diffusion operator. However, nonmonotone diffusion functions appear often
in applications, especially those arising in image processing. For instance, the image
restoration bilateral filter [19, 20, 4], in its continuous evolution formulation, takes
the form

∂tu(t,x) =

∫
Ω

exp

(
−|x− y|2

ρ2

)
exp

(
−|u(t,x)− u(t,y)|2

h2

)
(u(t,y)− u(t,x))dy

(1.13)

for (t,x) ∈ QT , where Ω is the space of pixels, u(0, ·) is the image to be filtered, and
ρ and h are positive constants modulating the space and range neighborhoods where
the filtering process takes place.

Due to the lack of monotonicity of the integral operator in (1.13) with respect to
u, the theory developed in [3] is not applicable to this problem. In [10], we introduced
a compactness argument to show the existence of global solutions of a general class
of problems including (1.13). Our proof is based on obtaining suitable estimates of
the gradient of the solution by differentiating (1.13). Assuming enough regularity
on the kernel and diffusion functions, the gradient estimate only depends on the
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L∞(QT ) boundedness of the solution. In the scalar case, this bound is obtained as a
consequence of the kernel and diffusion functions symmetry, implying a comparison
principle.

Extending this idea to systems of equations, in particular to the SKT problem,
relies again on obtaining suitable L∞(QT ) estimates of the solution components which
provide, after differentiation of (1.1), estimates of their gradients too, leading to the
compactness of an appropriate sequence of approximating functions.

Recall that the L∞(QT ) boundedness of solutions of the local diffusion SKT model
(1.7)–(1.6) has not been proved [13], a fact that introduces serious difficulties in the
analysis of this problem. In the local diffusion case, the compactness argument is
based on introducing the Lyapunov functional, also known as the entropy functional,

E(t) =

2∑
i=1

∫
Ω

(ui(ln(ui)− 1) + 1) ≥ 0,(1.14)

and, by formally using ln(ui) as a test function in (1.7), deducing the following entropy
and gradient estimates [11, 5]:

E(t) +

2∑
i=1

ai

∫
Qt

|∇ui|2 ≤ E(0) + c.

Interestingly, in the nonlocal diffusion problem the entropy functional plays also an
important role, in this case for obtaining the L∞(QT ) boundedness of the solution.
The formal argument is the following. Assuming the (non-trivial) property ui > 0 in
QT , and integrating (1.1) in (0, t) for t < T , we obtain

ui(t,x) ≤ u0i(x) + C‖J‖L∞
(
‖ui‖L1 + ‖ui‖2L2 + ‖u1‖L2‖u2‖L2

)
(1.15)

+ αi

∫ t

0

ui(τ,x)dτ.

Thus, if L1(QT ) and L2(QT ) estimates of ui are provided, and if u0i ∈ L∞(Ω), then
Gronwall’s lemma implies ui ∈ L∞(QT ). The L1(QT ) estimate of ui is obtained by
direct integration of (1.1) in Ω. The L2(QT ) estimate of ui is also trivial if βii > 0 and
is deduced by integration of (1.1) in QT . However, if βii = 0 (and ai > 0) we must
resort to using the test function ln(ui) to obtain the following entropy and L2(QT )
estimate of ui:

E(t) +

2∑
i=1

ai

∫
Qt

|ui|2 ≤ E(0) + c.

We thus see that the result of testing the differential equations of both the local and
nonlocal diffusion problems with ln(ui) leads to the compactness of an appropriate
sequence of approximating solutions—for the local diffusion problem, due to direct
estimation of the gradients, and for the nonlocal diffusion problem, due to the esti-
mation of the L∞(QT ) norms which yield, thanks to the Lipschitz continuity of the
diffusion and reaction functions, the gradient estimates.

Of course, the previous estimations are just formal because the possibility of
ui vanishing in some subset of QT may not be overridden. The aim of this article
is giving conditions on the data and formulating an approximating scheme which
lead to proving the existence of solutions of (1.1)–(1.2). The L∞(QT ) regularity of
the resulting solutions is the main tool to prove that, in fact, there exists a unique
solution.
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Remark 1.1. Although we gave motivation for why the solution of the nonlocal
SKT problem may be viewed as an approximation to the local diffusion SKT problem,
we can not expect the L∞(QT ) bound of the former to be transferred to the latter.
Indeed, (1.15) shows that the L∞(QT ) bound for the nonlocal problem depends on
the L∞(Ω) bound of the kernel function, J . Since the nonlocal-local diffusion approx-
imation procedure depends on the introduction of a singular kernel, Jδ (see (1.12)),
the corresponding L∞(QT ) bound of the sequence of solutions of the nonlocal problem
(approximating to the local diffusion problem) will, in general, blow up as δ → 0.

The organization of the paper is the following. In section 2 we state the assump-
tions on the data which ensure the existence and uniqueness of solutions of problem
(1.1)–(1.2) and formulate our main result. In section 3 we solve an approximated
and regularized problem for which we are able to obtain suitable uniform entropy and
L∞(QT ) estimates of its solutions. In section 4 we pass to the limit in the regularizing-
approximating parameter, proving the existence of solutions of problem (1.1)–(1.2).
Finally, in section 5 we prove the uniqueness of solution.

2. Assumptions and main results. Since Ω ⊂ Rd is bounded, we have x−y ∈
B for all x,y ∈ Ω, for some open ball B ⊂ Rd centered at the origin. Thus, for J
defined on Rd, we may always replace it in (1.1) by its restriction to B, J |B . Abusing
notation, we write J instead of J |B in the rest of the paper.

We always assume, at least, the following hypothesis on the data.
Assumptions (H).
1. The final time, T > 0, is arbitrarily fixed. The spatial domain, Ω ⊂ Rd

(d ≥ 1), is an open and bounded set with Lipschitz continuous boundary.
2. The kernel function J ∈ L∞(B) ∩BV (B) is even and nonnegative, with

{x ∈ B : ‖x‖ ≤ ρ} ⊂ supp(J),(2.1)

for some positive constant ρ.
3. The initial data u0i ∈ L∞(Ω) ∩BV (Ω) are nonnegative for i = 1, 2.
4. For i, j = 1, 2, i 6= j, the constants ci, ai, αi, βij are nonnegative.

In the following theorem we state the main result of this article. There are some
important differences in the results for the local and nonlocal diffusion models. On
one hand, nonlocal diffusion operators do not produce a spatial regularization effect
on the solution with respect to the initial data [3]. Thus, since it does not provide
compactness, the diffusion operator does not play an essential role for the existence
of solutions of the model. This is reflected in the possibility of allowing the linear and
self-diffusion coefficients to vanish. That is, the case ci = ai = 0 is not excluded (if
βii > 0) for the nonlocal diffusion model. However, such a case is certainly excluded
in the local diffusion model.

On the other hand, in the local diffusion model the initial data may be taken from
a large space of distributions, being the corresponding notion of solution interpreted
in the weak sense. Our result for the nonlocal diffusion problem assumes u0i ∈
L∞(Ω) ∩ BV (Ω) and returns a strong solution. While the L∞(QT ) boundedness of
the initial data is a common assumption in reaction-diffusion systems, the bounded
variation is a technical assumption needed to give sense to the spatial differentiation of
(1.1). However, notice that the BV regularity is a usual standard in image processing
problems like (1.13) and that, nonetheless, scalar problems with monotone diffusion
functions only need L1(Ω) regularity of the initial data [3, 10].
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Theorem 2.1. Assume (H) and

ai + βii > 0 for i = 1, 2.

Then, there exists a unique strong solution (u1, u2) of problem (1.1)–(1.2) with ui ≥ 0
a.e. in QT and such that, for i = 1, 2 and t ∈ [0, T ],

ui ∈W 1,∞(0, T ;L∞(Ω)) ∩ C([0, T ];L∞(Ω) ∩BV (Ω)),

E(t) +

2∑
i=1

ai

∫
Qt

∫
Ω

J(x− y)
(
ui(s,x)− ui(s,y)

)2
dydxds ≤ E(0) + c,(2.2)

with E(t) defined by (1.14), and for some constant c > 0 independent of J .

Remark 2.2.
1. The notion of a strong solution of (1.1)–(1.2) is the usual: a function u with
ui ∈ W 1,1(0, T ;L1(Ω)) ∩ C([0, T ];L2(Ω) satisfying the equations in the a.e.
sense in QT .

2. It is a common assumption to impose the normalizing condition
∫
Rd J(y)dy =

1, implying ∫
Rd

J(y − x)dy = 1 for a.e. x ∈ Ω.(2.3)

However, this property is no longer true if the integration is performed in
Ω. Condition (2.1) and the Lipschitz continuity of ∂Ω, implying the interior
cone property, allow us to keep a property weaker than (2.3) but enough to
our purposes. Defining m : Ω→ R+ by m(x) =

∫
Ω
J(x− y)dy, we have, for

some constant J0 > 0,

J0 ≤ m(x) ≤ ‖J‖L1(B) for a.e. x ∈ Ω.(2.4)

3. Existence of solutions of a regularized and approximated problem.
Let ε ∈ (0, 1) and consider two sequences of functions Jε and u0εi satisfying (H) and,
in addition,

Jε ∈W 1,1(B), u0εi ∈W 1,∞(Ω).(3.1)

We may construct these sequences to have, as ε→ 0,

Jε → J strongly in Lq(B), with ‖Jε‖L∞(B) ≤ K,
u0εi → u0i strongly in Lq(Ω), with ‖u0εi‖L∞(Ω) ≤ K,

for any q ∈ [1,∞), where K > 0 is independent of ε, and

‖∇Jε‖L1(B) → TV(J), ‖∇u0εi‖L1(Ω) → TV(u0i),

where TV denotes the total variation with respect to the x variable; see [2]. Notice
that, in particular,

∇Jε is uniformly bounded in L1(B),(3.2)

∇u0εi is uniformly bounded in L1(Ω),(3.3)
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and that the function

mε(x) =

∫
Ω

Jε(x− y)dy(3.4)

may be taken satisfying property (2.4), possibly redefining the ε- independent constant
J0 > 0. More in general, and using the L1(Ω) uniform boundedness of Jε, we deduce
that mε satisfies

J0 ≤ mε(x) ≤ J1 for a.e. x ∈ Ω(3.5)

for some positive constants J0, J1 independent of ε.
In this section, we prove the existence of solutions of the following approximated

and regularized problem. For i = 1, 2, find ui : [0, T ) × Ω → R such that, for
(t,x) ∈ QT ,

∂tui(t,x) =

∫
Ω

Jε(x− y)
(
pi(u

+(t,y) + ε)− pi(u+(t,x) + ε)
)
dy + fi(u

+(t,x) + ε),

ui(0,x) = u0εi(x),

where we used the notation vi = v+
i −v

−
i for splitting a scalar function into its positive

and negative parts, and write v+ = (v+
1 , v

+
2 ). We also denote by (L) the following

straightforward property: For i = 1, 2,

pi, fi and the positive part are Lipschitz continuous functions. (L)

3.1. Existence of solutions of a time independent problem. Let N ∈ N,
M0 = maxi=1,2 ‖u0εi‖L∞ ≤ K, and set Mj = M0

∑j
k=0 2−k for j = 0, 1, . . . , N , so

that Mj ≤ 2M0 for all j. Consider the collection of complete metric spaces

Vj = {v ∈W 1,∞(Ω)×W 1,∞(Ω) : ‖vi‖L∞ ≤Mj for i = 1, 2}.

Let u0
ε = u0ε. For j = 0, 1, . . . , N − 1, assume that ujε ∈ Vj is given and consider the

operator Tj+1 defined on Vj+1 by, for i = 1, 2,

T j+1
i (v)(x) = ujεi(x) + τj+1

∫
Ω

Jε(x− y)
(
pi(v

+(y) + ε)− pi(v+(x) + ε)
)
dy(3.6)

+ τj+1fi(v
+(x) + ε),

where τj+1 > 0 is a constant to be fixed.
Let us check that Tj+1 has a fixed point in Vj+1. To do this, we employ the

Banach’s fixed point theorem.
First notice that (3.1) and (L) imply Tj+1(Vj+1) ⊂W 1,∞(Ω)×W 1,∞(Ω). Using

that Jε is uniformly bounded in L∞(B) and the explicit expressions of pi and fi, we
obtain

|T j+1
i (v)(x)| ≤Mj + C0τj+1(1 +Mj+1 +M2

j+1),

where C0 is a constant independent of j and ε. Taking into account that M0 ≤Mj ≤
2M0 for all j and choosing

τj+1 <
C(M0)

2j+1
,

with C(M0) ≤M0/(C0(1 + 2M0 + 4M2
0 )), we deduce Tj+1(Vj+1) ⊂ Vj+1.
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To prove the contractivity, let v,w ∈ Vj+1. Then

T j+1
i (v)(x)− T j+1

i (w)(x) = τj+1

∫
Ω

Jε(x− y)
(
pi(v

+(y) + ε)− pi(w+(y) + ε)
)
dy

− τj+1mε(x)
(
pi(v

+(x) + ε)− pi(w+(x) + ε)
)

+ τj+1

(
fi(v

+(x) + ε)− fi(w+(x) + ε)
)
.

Using (3.5), (L) and the uniform boundedness of Mj , we deduce

2∑
i=1

|T j+1
i (v)(x)− T j+1

i (w)(x)| ≤ C1τj+1(Lp + Lf )‖v −w‖L∞ ,

where C1 is a constant independent of j and ε and with Lp and Lf denoting the
Lipschitz continuity constants of p and f in the interval [−2M0, 2M0]. Choosing

τj+1 < min

(
C(M0)

2j+1
,

1

C1(Lp + Lf )

)
,(3.7)

we find that Tj+1 is a strict contraction in Vj+1, and therefore there exists a unique
fixed point of Tj+1 in Vj+1 that we denote by uj+1

ε . To simplify the notation we
write in the following u, uj , τ instead of uj+1

ε , ujε, τj+1, respectively. Observe that
u satisfies, for x ∈ Ω,

ui(x) = uji (x) + τ

∫
Ω

Jε(x− y)
(
pi(u

+(y) + ε)− pi(u+(x) + ε)
)
dy(3.8)

+ τfi(u
+(x) + ε)

and that τ is independent of ε.

Remark 3.1. Since
∑
j τj ≤ C(M0), if we construct a solution of problem (1.1)–

(1.2) interpolating in time from the sequence of solutions of (3.8), the final time can not
be arbitrarily large. That is, the solution will be a solution local in time. However,
we shall obtain a posteriori estimates on uj+1

ε which will allow us to continue the
solution to any arbitrarily fixed final time.

Lemma 3.2. Let (u1, u2) ∈ W 1,∞(Ω) × W 1,∞(Ω) be given by (3.8). Then, for
i = 1, 2 and for some positive constant c, independent of ε and τ , the following
estimates hold:

2∑
i=1

(
‖u+

i ‖L1 + τβii‖u+
i ‖

2
L2

)
≤

2∑
i=1

(
‖(uji )

+‖L1 + cτ‖u+
i ‖L1

)
+ cτε,(3.9)

2∑
i=1

‖u−i ‖L1 ≤
2∑
i=1

(
‖(uji )

−‖L1 + cτε(1 + ‖u+
i ‖L1)

)
,(3.10)

2∑
i=1

‖ui‖L∞ ≤
2∑
i=1

(
‖uji‖L∞ + cτ

(
‖u+

i ‖L∞ + ‖u+
i ‖L1 + ‖u+

i ‖
2
L2

)
(3.11)

+ cτε(1 + ‖u+
i ‖L∞)

)
,
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2∑
i=1

(
Ei − ln(ε)‖u−i ‖L1 + τai

∫
Ω

∫
Ω

Jε(x− y)
(
u+
i (y)− u+

i (x)
)2
dydx

)
(3.12)

≤
2∑
i=1

(
Eji − ln(ε)‖(uji )

−‖L1 + cτ
(
Ei + ‖u+

i ‖L1 + ε
))
,

2∑
i=1

‖∇ui‖L∞ ≤
2∑
i=1

‖∇uji‖L∞ + cτL(‖u‖L∞)

(
1 +

2∑
i=1

‖∇ui‖L∞

)
,(3.13)

where L(‖u‖L∞) is the maximum of the Lipschitz continuity constants of p and f in
{s ∈ R2 : |si| ≤ ‖ui‖L∞} and where we introduced the notation

Eji =

∫
Ω

((uji )
+(x) + ε)

(
ln((uji )

+(x) + ε)− 1
)
dx.

In particular, (3.12) implies

2∑
i=1

(
Ei − ln(ε)‖u−i ‖L1 + 2τaiJ0‖u+

i ‖
2
L2

)
≤

2∑
i=1

(
Eji + ln(ε)‖(uji )

−‖L1(3.14)

+ cτ
(
Ei + ai‖u+

i ‖
2
L1 + ‖u+

i ‖L1 + ε
) )
.

Proof.
• L1(QT ) estimates. Integrating the first equation of (3.8) in Ω and using the

symmetry of Jε, we obtain∫
Ω

u+
1 (x)dx + τβ11

∫
Ω

|u+
1 (x)|2dx ≤

∫
Ω

u−1 (x)dx +

∫
Ω

uj1(x)dx(3.15)

+ τα1

∫
Ω

u+
1 (x)dx + τεα1|Ω|.

Integrating the first equation of (3.8) in {u1 < 0}, we get

−
∫

Ω

u−1 (x)dx =

∫
u1<0

uj1(x)dx

+ τ

∫
u1<0

∫
Ω

Jε(x− y)
(
p1(u+(y) + ε)− p1((ε, u+

2 (x) + ε))
)
dydx

+ τ

∫
u1<0

f1((ε, u+
2 (x) + ε))dx.

Therefore, using the explicit expressions of p1 and f1, we deduce∫
Ω

u−1 (x)dx ≤−
∫
u1<0

uj1(x)dx + τ

∫
u1<0

∫
Ω

Jε(x− y)p1((ε, u+
2 (x)+ε))dydx

− τ
∫
u1<0

f1((ε, u+
2 (x) + ε))dx

≤
∫

Ω

(uj1)−(x)dx + τε

∫
Ω

∫
Ω

Jε(x−y)(c1+a1ε+u
+
2 (x)+ε)dydx

− τε
∫
u1<0

(
α1 − ε(β11 + β12)− β12u

+
2 (x)

)
dx

≤
∫

Ω

(uj1)−(x)dx + τεJ1

(
(c1 + ε(1 + a1))|Ω|+

∫
Ω

u+
2 (x)dx

)
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+ τε

(
ε(β11 + β12)|Ω|+ β12

∫
Ω

u+
2 (x)dx

)
≤
∫

Ω

(uj1)−(x)dx + cτε

(
1 +

∫
Ω

u+
2 (x)dx

)
.(3.16)

Replacing (3.16) in (3.15) yields

∫
Ω

u+
1 (x)dx + τβ11

∫
Ω

|u+
1 (x)|2dx ≤

∫
Ω

(uj1)+(x)dx + τα1

∫
Ω

u+
1 (x)dx

(3.17)

+ cτε

(
1 +

∫
Ω

u+
2 (x)dx

)
.

Estimates similar to (3.16) and (3.17) are obtained from the second equation
(i = 2) of (3.8), leading to (3.9) and (3.10).

• L∞(Ω) estimate. On one hand, if x ∈ {y ∈ Ω : u1(y) < 0} we deduce from
(3.8)

u−1 (x) = uj1(x) + τ

∫
Ω

Jε(x− y)
(
p1(u+(y) + ε)− p1(ε, u2(x)+ + ε)

)
dy

+ τf1(ε, u2(x)+ + ε).

Hence,

u−1 (x) ≤ −uj1(x)+τεJ1

(
c1+a1ε+ε(u2(x)++ε)

)
+τε

(
β11ε+β12(u2(x)++ε)

)
≤ (uj1)−(x) + cτε(1 + u+

2 (x)).

On the other hand, if x ∈ {y ∈ Ω : u1(y) ≥ 0}, then (3.8) yields

u+
1 (x) ≤ uj1(x) + τ

∫
Ω

Jε(x− y)
(
p1(u+(y) + ε)dy + τα1(u+

1 (x) + ε),

implying

u+
1 (x) ≤ (uj1)+(x) + cτ‖Jε‖L∞

(
‖u+

1 ‖L1 + ‖u+
1 ‖2L2 + ‖u+

1 ‖L2‖u+
2 ‖L2

)
+ cτ(u+

1 (x) + ε).

Therefore, for any x ∈ Ω, and recalling that Jε is uniformly bounded in
L∞(B) and that |v(x)| = v+(x) + v−(x), we deduce

|u1(x)| ≤|uj1(x)|+ cτ
(
|u+

1 (x)|+ ‖u+
1 ‖L1 + ‖u+

1 ‖2L2 + ‖u+
1 ‖L2‖u+

2 ‖L2

)
+ cτε(1 + u+

2 (x)).

A similar estimate may be obtained for |u2(x)|, leading to (3.11).
• Entropy estimate. We multiply (3.8) by ln(u+

i + ε) and integrate in Ω,
obtaining

∫
Ω

ui(x) ln(u+
i (x) + ε)dx =

∫
Ω

uji (x) ln(u+
i (x) + ε)dx

(3.18)

− τ

2

∫
Ω

Jε(x− y)
(
pi(u

+(y) + ε)− pi(u+(x) + ε)
)

×
(
ln(u+

i (y) + ε)− ln(u+
i (x) + ε)

)
dy

+ τ

∫
Ω

fi(u
+(x) + ε)) ln(u+

i (x) + ε)dx.
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We now estimate the different terms of (3.18).
– The discrete time derivative. Like in [5, (2.15)], we deduce∫

Ω

(ui(x)− uji (x)) ln(u+
i (x) + ε)dx(3.19)

≥ Ej+1
i − Eji − ln(ε)

∫
Ω

(u−i (x)− (uji )
−(x))dx.

– The diffusion term. Using the explicit expression of pi, the second term of
the right-hand side of (3.18) (the diffusion term) may be expressed as −τIi,
with Ii split as Ii = Ii0 + Ii1 + Iik2 , where

Ii0 =
ci
2

∫
Ω

∫
Ω

Jε(x−y)
(
u+
i (y)−u+

i (x)
) (

ln(u+
i (y) + ε)− ln(u+

i (x) + ε)
)
dydx,

Ii1 =
ai
2

∫
Ω

∫
Ω

Jε(x− y)
(
u+
i (y) + u+

i (x) + 2ε
) (
u+
i (y)− u+

i (x)
)

×
(
ln(u+

i (y) + ε)− ln(u+
i (x) + ε)

)
dydx,

Iik2 =
1

2

∫
Ω

∫
Ω

Jε(x− y)
(
(u+
i (y)+ε)(u+

k (y) + ε)−(u+
i (x) + ε)(u+

k (x) + ε)
)

×
(
ln(u+

i (y) + ε)− ln(u+
i (x) + ε)

)
dydx,

for i, k = 1, 2, i 6= k.
The nonnegativity of Ii0 and I12

2 +I21
2 is directly deduced from the monotonic-

ity of the ln function. This is straightforward for Ii0. For the cross-diffusion
terms, we have,

I12
2 +I21

2 =
1

2

∫
Ω

∫
Ω

Jε(x− y)
(
(u+

1 (y)+ε)(u+
2 (y)+ε)−(u+

1 (x)+ε)(u+
2 (x)+ε)

)
×
(
ln
(
(u+

1 (y) + ε)(u+
2 (y) + ε)

)
− ln

(
(u+

1 (x) + ε)(u+
2 (x) + ε)

))
dydx ≥ 0.

Due to the symmetry of Jε, the self-diffusion terms may be expressed as

Ii1 = ai

∫
Ω

∫
Ω

Jε(x− y)
(
u+
i (y) + ε

) (
u+
i (y)− u+

i (x)
)

×
(
ln(u+

i (y) + ε)− ln(u+
i (x) + ε)

)
dydx.

Using the elementary inequality

s(ln(s)− ln(σ)) ≥ s− σ for all s, σ > 0,(3.20)

we obtain

Ii1 ≥ ai
∫

Ω

∫
Ω

Jε(x− y)
(
u+
i (y)− u+

i (x)
)2
dydx.

This estimate and the nonnegativity of Ii0 and I12
2 + I21

2 imply

2∑
i=1

Ii ≥
2∑
i=1

ai

∫
Ω

∫
Ω

Jε(x− y)
(
u+
i (y)− u+

i (x)
)2
dydx.(3.21)
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– The Lotka–Volterra term. We have, for i, k = 1, 2, i 6= k,∫
Ω

fi(u
+(x) + ε) ln(u+

i (x) + ε)dx = αi

∫
Ω

(u+
i (x) + ε) ln(u+

i (x) + ε)dx

− βii
∫

Ω

(u+
i (x) + ε)2 ln(u+

i (x) + ε)dx

− βik
∫

Ω

(u+
i (x) + ε)(u+

k (x) + ε) ln(u+
i (x) + ε)dx = F i0 + F i1 + F ik2 .

The first term may be rewritten as

F i0 = αiEi + αi‖u+
i ‖L1 + αi|Ω|ε.

For the second term, using that s2 ln(s) ≥ − 1
2e for s > 0 , we obtain F i1 ≤

βii

2e .
The cross terms are bounded as follows. If β12 = β21 = 0, then we have
nothing to do. Assume, without loss of generality, that β12 > 0 and β12 > β21,
and let r = β21/β12. Then, for s, σ > 0, we have

β12sσ ln(s) + β21sσ ln(σ) = β12σ
1−rsσr ln(sσr).

Using the inequality (3.20), we deduce

β12sσ ln(s) + β21sσ ln(σ) ≥ β12σ
1−r(sσr − 1) ≥ −β12σ

1−r.

Therefore, from Hölder’s inequality we deduce

F 12
2 + F 21

2 ≤ β12

∫
Ω

(u+
2 (x) + ε)1−rdx ≤ β12|Ω|r

(∫
Ω

(u+
2 (x) + ε)dx

)1−r

≤ c(1 + ‖u+
2 ‖L1),

where we used |x|1−r ≤ 1+|x|, for r ∈ (0, 1). Gathering the previous estimates
yields

2∑
i,k=1
k 6=i

(F i0 + F i1 + F ik2 ) ≤ c

(
1 +

2∑
i=1

(
Ei + ‖u+

i ‖L1

))
.(3.22)

Finally, using (3.19), (3.21), and (3.22) in (3.18), we deduce (3.12).
• W 1,∞(Ω) estimate. Differentiating (1.1) with respect to xk, for k = 1, . . . , d,

we obtain, for i = 1, 2,

∂xk
ui(x) = ∂xk

uji (x)

+ τ

∫
Ω

∂xk
Jε(x− y)

(
pi(u

+(y) + ε)− pi(u+(x) + ε)
)
dy

− τ
(
∂1pi(u

+(x)+ε)∂xk
u+

1 (x) + ∂2pi(u
+(x) + ε)∂xk

u+
2 (x)

) ∫
Ω

Jε(x−y)dy

+ τ
(
∂1fi(u

+(x) + ε)∂xk
u+

1 (x) + ∂2fi(u
+(x) + ε)∂xk

u+
2 (x)

)
.

Therefore, using (3.2) and (L), we obtain

|∂xk
ui(x)| ≤ |∂xk

uji (x)|+τ max(1, J0)L(‖u‖L∞)

(
‖∂xk

Jε‖L1 +

2∑
n=1

∂xk
un(x)

)
.
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Summing in i = 1, 2, taking the supremum in k = 1, . . . , d, and recalling that
‖∂xk

Jε‖L1 is uniformly bounded, we deduce (3.13).
Finally, (3.14) is deduced as follows:

1

2

∫
Ω

∫
Ω

Jε(x− y)
(
u+
i (y)− u+

i (x)
)2
dydx =

∫
Ω

∫
Ω

Jε(x− y)dy|u+
i (x)|2dx

−
∫

Ω

∫
Ω

Jε(x− y)u+
i (y)u+

i (x)dydx ≥ J0‖u+
i ‖

2
L2 − ‖Jε‖L∞‖u+

i ‖
2
L1 .(3.23)

Remark 3.3. Identity (3.23) leads to a nonlocal variant of Poincaré’s inequality
which provides an estimate of the L2(Ω) norm of a function in terms of its L1(Ω)
norm and the norm of its nonlocal gradient in L2(Ω). More explicitly, for v ∈ L2(Ω)
and J satisfying (H), we have

‖v‖2L2 ≤
‖J‖L∞

J0
‖v‖2L1 +

1

2J0

∫
Ω

∫
Ω

J(x− y) (v(y)− v(x))
2
dydx.

See [3] for a generalization to Lq(Ω).

3.2. Passing to the limit τ → 0. Consider the partition of the interval [0, tN ]

given by t0 = 0 and tj =
∑j
k=1 τk−1 for j = 1, . . . , N , where τk satisfies (3.7). We

define, for (t,x) ∈ (tj , tj+1]×Ω, for j = 0, . . . , N −1, the time piecewise constant and
piecewise linear functions given by

u
(τ)
i (t,x) = uj+1

i (x), ũ
(τ)
i (t,x) = uj+1

i (x) +
tj+1 − t
τj

(uji (x)− uj+1
i (x)),

where (uj+1
1 , uj+1

2 ) is the solution of (3.8). We also consider the shift operator

στu
(τ)
i (t, ·) = uji for t ∈ (tj , tj+1]. With this notation, (3.8) may be rewritten as,

for (t,x) ∈ QtN ,

∂tũ
(τ)
i (t,x) =

∫
Ω

Jε(x− y)
(
pi((u

(τ))+(t,y) + ε)− pi((u(τ))+(t,x) + ε)
)
dy(3.24)

+ fi((u
(τ))+(t,x) + ε).

Corollary 3.4. For i = 1, 2, the norms

‖∇u(τ)
i ‖L∞(QtN

), ‖∇ũ(τ)
i ‖L∞(QtN

)

are uniformly bounded with respect to τ . In addition, for c independent of ε and τ ,

‖u(τ)
i ‖L∞(QtN

) ≤ c, ‖(u(τ)
i )−‖L∞(0,tN ;L1(Ω)) ≤ cε, ‖∂tũ(τ)

i ‖L∞(QtN
) ≤ c,(3.25)

and, for t ∈ [0, tN ],

E(τ)(t) +

2∑
i=1

ai

∫
Qt

∫
Ω

Jε(x− y)
(

(u
(τ)
i )+(s,y)− (u

(τ)
i )+(s,x)

)2

dydxds

− ln(ε)

2∑
i=1

‖(u(τ)
i )−‖L1 ≤ E(τ)(0) + c(1 + ε)(3.26)

with

E(τ)(t) =

2∑
i=1

∫
Ω

((u
(τ)
i )+(t,x) + ε)

(
ln((u

(τ)
i )+(t,x) + ε)− 1

)
dx.
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Proof. The result is a straightforward consequence of the estimates obtained in
Lemma 3.2 and Gronwall’s lemma. For instance, from (3.9) we get, summing on
j = 0, . . . , N − 1,

2∑
i=1

(
‖(u(τ)

i )+(tN )‖L1(Ω) + βii‖(u(τ)
i )+‖2L2(QtN

)

)
≤

2∑
i=1

‖(u(τ)
0i )+‖L1(Ω)(3.27)

+ c

2∑
i=1

‖(u(τ)
i )+‖L1(QtN

) + cεtN .

Gronwall’s inequality implies

2∑
i=1

(
‖(u(τ)

i )+(tN )‖L1(Ω) ≤ ectN
(

2∑
i=1

‖(u(τ)
0i )+‖L1(Ω) + cεtN

)
≤ c,

and then from (3.27) we also get

2∑
i=1

βii‖(u(τ)
i )+‖2L2(QtN

) ≤ c.

Similarly, we obtain from (3.10)

2∑
i=1

‖(u(τ)
i )−(tN )‖L1(Ω) ≤ cε

and then, from (3.14),

2∑
i=1

ai‖(u(τ)
i )+‖2L2(QtN

) ≤ c.

Because the L1(QtN ) and the L2(QtN ) norms of u
(τ)
i are uniformly bounded with re-

spect to τ and ε, the uniform bound for its L∞(QtN ) norm is then deduced from (3.11)
and Gronwall’s lemma. And then, the uniform bounds with respect to τ for the norms

of ∇u(τ)
i , ∇ũ(τ)

i are deduced from (3.13) and the uniform bound on ‖u(τ)
i ‖L∞(QtN

).
Observe that these bounds are not uniform with respect to ε, since they depend on

‖∇u0εi‖L∞ ; see (3.1). By definition, the norm ‖∂tũ(τ)
i ‖L∞(QtN

) is bounded in terms

of ‖u(τ)
i ‖L∞(QtN

) and thus uniformly bounded with respect to τ and ε. Finally, (3.26)

is deduced from the previous estimates and Gronwall’s lemma applied to (3.12).

Corollary 3.4 implies the existence of functions ui ∈ L∞(0, tN ;W 1,∞(Ω)) and
ũi ∈W 1,∞(QtN ) such that, at least for subsequences (not relabeled),

u
(τ)
i → ui weakly* in L∞(0, tN ;W 1,∞(Ω)),

ũ
(τ)
i → ũi weakly* in W 1,∞(QtN ),(3.28)

as τ → 0. In particular, by compactness

ũ
(τ)
i → ũi uniformly in C([0, tN ]× Ω̄).
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Since, for t ∈ (tj , tj+1],

|u(τ)
i (t,x)− ũ(τ)

i (t,x)| =
∣∣∣∣ (j + 1)τ − t

τ
(uji (x)− uj+1

i (x))

∣∣∣∣
≤ τ‖∂tũ(τ)

i ‖L∞(QtN
),

we deduce both ui = ũi and, up to a subsequence,

u
(τ)
i → ui strongly in L∞(QtN ) and a.e. in QtN .(3.29)

With the properties of convergence (3.28) and (3.29) the passing to the limit τ → 0
in (3.24) is justified, finding that, for i = 1, 2, ui ∈W 1,∞(QtN ) is a solution of

∂tui(t,x) =

∫
Ω

Jε(x− y)
(
pi(u

+(t,y) + ε)− pi(u+(t,x) + ε)
)
dy(3.30)

+ fi(u
+(t,x) + ε),

ui(0,x) = u0iε(x).(3.31)

Moreover, from (3.25) and (3.26) we deduce

‖ui‖L∞(QtN
) ≤ c, ‖u−i ‖L∞(0,tN ;L1(Ω)) ≤ cε, ‖∂tui‖L∞(QtN

) ≤ c,(3.32)

and, for t ∈ [0, tN ],

E(t) +

2∑
i=1

ai

∫
Qt

∫
Ω

Jε(x− y)
(
u+
i (s,y)− u+

i (s,x)
)2
dydxds− ln(ε)

2∑
i=1

‖u−i ‖L1

≤ E(0) + c(1 + ε)(3.33)

for some constant c > 0 independent of ε.
Thanks to the L∞(QtN ) uniform estimate on ui, we may go back to the fixed

point operator (3.6) and obtain a sequence of functions satisfying (3.8) for the initial
iteration u0

ε = uε(tN , ·). These functions satisfy the estimates of Lemma 3.2, so we
may define from them a solution of (3.30)–(3.31) in the time interval [0, 2tN ]. This
procedure may be continued until reaching any arbitrarily fixed final time, T .

4. Passing to the limit ε → 0. Let us denote by uε to the solution of (3.30)–
(3.31) so that (3.32) is rewritten as, for some constant c > 0 independent of ε,

‖uεi‖L∞(QT ) ≤ c, ‖u−εi‖L∞(0,T ;L1(Ω)) ≤ cε, ‖∂tuεi‖L∞(QT ) ≤ c.(4.1)

Because u0ε, Jε are smooth functions, we may deduce an L∞(QT ) bound for ∇uε as
in (3.13), not necessarily uniform in ε, but allowing to differentiate (3.30) with respect
to xk to obtain, for k = 1, . . . , d, i, j = 1, 2, i 6= j,

∂t∂xk
uεi(t,x) =

∫
Ω

∂xk
Jε(x− y)

(
pi(u

+
ε (t,y) + ε)− pi(u+

ε (t,x) + ε)
)
dy(4.2)

+

2∑
j=1

[(
∂jfi(u

+
ε (t,x) + ε)−mε(x)∂jpi(u

+
ε (t,x) + ε)

)
× sign(uεj(t,x) + ε)∂xk

uεj(t,x)]
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with mε given by (3.4). Identity (4.2) may be written in matrix form as

∂tvε(t,x) = Aε(t,x)vε(t,x) + bε(t,x),(4.3)

with vεi(t,x) = ∂xk
uεi(t,x),

Aεij(t,x) =
(
∂jfi(u

+
ε (t,x) + ε)−mε(x)∂jpi(u

+
ε (t,x) + ε)

)
sign(uεj(t,x) + ε),

bεi(t,x) =

∫
Ω

∂xk
Jε(x− y)

(
pi(u

+
ε (t,y) + ε)− pi(u+

ε (t,x) + ε)
)
dy.

Since uεi is uniformly bounded in L∞(QT ) and ∂xk
Jε is uniformly bounded in L1(B)

we deduce, using properties (3.5) and (L), that Aεij , bεi are uniformly bounded in
L∞(QT ). Integrating (4.3) in (0, t) we obtain

∂xk
uεi(t,x) = Gεi(t,x) +Hεi1(t,x)∂xk

u0ε1(x) +Hεi2(t,x)∂xk
u0ε2(x)

with Gεi, Hεij uniformly bounded in L∞(QT ). Finally, since ∂xk
u0εi is uniformly

bounded in L1(Ω) (see (3.3)), we deduce

∂xk
uεi is uniformly bounded in L∞(0, T ;L1(Ω)).(4.4)

The time derivative bound in (4.1) and (4.4) allow us to deduce, using the compactness
result [18, Corollary 4, p. 85], the existence of ui ∈ C([0, T ];L∞(Ω) ∩ BV (Ω)) such
that uεi → ui strongly in Lq(QT ), for all q <∞, and a.e. in QT . The time derivative
uniform bound in (4.1) also implies that, up to a subsequence (not relabeled), we have
∂tuεi → ∂tui weakly* in L∞(QT ).

These convergences allow us to pass to the limit ε → 0 in (3.30)–(3.31) (with u
replaced by uε) and identify the limit

ui ∈W 1,∞(0, T ;L∞(Ω)) ∩ C([0, T ];L∞(Ω) ∩BV (Ω))

as a solution of (1.1)–(1.2). Observe that since uεi satisfies the second bound of (4.1)
we also deduce that ui ≥ 0 a.e. in QT . Finally, the strong and a.e. convergences of
uε and Jε also allow us to pass to the limit in (3.33) to deduce (2.2).

Remark 4.1. Observe that, like in the local diffusion problem, the nonnegativity
of the limit solution may also be deduced from the entropy inequality (3.33).

5. Uniqueness of solution. We use a duality technique to prove the uniqueness
of solution. Let u, v be two solutions of (1.1)–(1.2) and set w = u − v. Then, for
i = 1, 2 and (t,x) ∈ QT , we have wi(0,x) = 0 and

∂twi(t,x) =

∫
Ω

J(x− y)
(
pi(u(t,y))− pi(v(t,y))−

(
pi(u(t,x))− pi(v(t,x))

))
dy

+ fi(u(t,x))− fi(v(t,x)).

Testing this equation with some ϕi ∈W 1,1(0, T ;L1(Ω)), we obtain, for i, j = 1, 2
and i 6= j,∫

Ω

∂twi(t,x)ϕi(t,x)dx

=−
∫

Ω

∫
Ω

J(x− y) (pi(u(t,x))− pi(v(t,x))) (ϕi(t,y)− ϕi(t,x)) dydx

+

∫
Ω

(
fi(u(t,x))− fi(v(t,x))

)
ϕi(t,x)dx.
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Integrating in (0, T ), imposing ϕi(T,x) = 0, and using that wi(0,x) = 0 and the
explicit form of p and f , we get∫
QT

wi(t,x)∂tϕi(t,x)dxdt

=−
∫
QT

wi(t,x)

∫
Ω

J(x− y)Kij(t,x) (ϕi(t,y)− ϕi(t,x)) dydxdt

−
∫
QT

wj(t,x)

∫
Ω

J(x− y)vi(t,x) (ϕi(t,y)− ϕi(t,x)) dydxdt

+

∫
QT

wi(t,x)Lij(t,x)ϕi(t,x)dxdt+

∫
QT

wj(t,x)βijvi(t,x)ϕi(t,x)dxdt,(5.1)

where Kij = ci + ai(u1 + u2) + uj and Lij = αi − βii(u1 + u2)− βijuj . We introduce
the change of time variable t → T − t and consider the following coupled linear
problem: For i, j = 1, 2 and i 6= j, find ϕi ∈ L∞(0, T ;L1(Ω)) such that for (t,x) ∈ QT ,

∂tϕi(t,x) = wi(t,x) +

∫
Ω

J(x− y)Kij(t,x) (ϕi(t,y)− ϕi(t,x)) dy(5.2)

+

∫
Ω

J(x− y)vj(t,x) (ϕj(t,y)− ϕj(t,x)) dy

− Lij(t,x)ϕi(t,x)− βjivj(t,x)ϕj(t,x),

ϕi(0,x) = 0.(5.3)

Observe that if this problem has a solution, then, summing (5.1) for i = 1, 2 (and
recalling the change of time variable), we obtain

2∑
i=1

∫
QT

|wi(t,x)|2dxdt = 0,

implying wi = 0 a.e. in QT and therefore proving the uniqueness of solution of (1.1)–
(1.2). The existence of solutions of the linear problem for the test functions may be
proved by Banach’s fixed point theorem. Let T0 ∈ (0, T ] be a constant to be fixed
and consider the Banach space XT0

= L∞(0, T0;L∞(Ω)). We define the operator
G = (G1, G2) in XT0

×XT0
by, for (t,x) ∈ QT0

, i, j = 1, 2 with i 6= j,

Gi(ψ)(t,x) =

∫ t

0

wi(t,x)dt+

∫ t

0

∫
Ω

J(x− y)Kij(t,x) (ψi(t,y)− ψi(t,x)) dydt

+

∫ t

0

∫
Ω

J(x− y)vj(t,x) (ψj(t,y)− ψj(t,x)) dydt

−
∫ t

0

(Lij(t,x)ψi(t,x) + βjivj(t,x)ψj(t,x)) dt.

Since solutions of (1.1)–(1.2) are L∞(QT ) functions, we have Kij , Lij , vi ∈ L∞(QT0
).

Therefore

‖G(ψ)‖XT0
=

2∑
i=1

‖Gi(ψ)‖XT0
≤ cT0(1 + ‖ψ‖XT0

)

with c depending on the L∞(QT ) norms of u, v and where, abusing notation, we
denote by ‖ · ‖XT0

both the norms of scalar and vector functions. Therefore, G(XT0 ×
XT0) ⊂ XT0 ×XT0 .
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To prove the contractivity, let ψ, ξ ∈ XT0
×XT0

. We have, for (t,x) ∈ QT0
, i, j = 1, 2

with i 6= j,

Gi(ψ)(t,x)−Gi(ξ)(t,x)

=

∫ t

0

∫
Ω

J(x− y)Kij(t,x) (ψi(t,y)− ξi(t,y)− (ψi(t,x)− ξi(t,x))) dydt

+

∫ t

0

∫
Ω

J(x− y)vj(t,x) (ψj(t,y)− ξj(t,y)− (ψj(t,x)− ξj(t,x))) dydt

−
∫ t

0

(Lij(t,x)(ψi(t,x)− ξi(t,x)) + βjivj(t,x)(ψj(t,x)− ξj(t,x))) dt.

Thus, for some c depending on the L∞(QT ) norms of u and v, we deduce

‖G(ψ)−G(ξ)‖XT0
≤ cT0‖ψ − ξ‖XT0

.

Choosing T0 < 1/c we obtain that G is a strict contraction on XT0 × XT0 . This
proves the existence of a local in time solution of the dual problem (5.2)–(5.3) in the
time interval [0, T0]. We may easily extend this solution to any arbitrary T > 0 by
matching solutions in the intervals [0, T0], [T0, 2T0], etc. Hence the uniqueness of the
solution of problem (1.1)–(1.2) follows.
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