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@ No extra assumption, e.g., no supersymmetry
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The Tadpole Conjecture

Conjecture: [Bena, Blabéck, Grafia, Liist ’20]

Niux > QNgap for  ngeap > 1 with a = O(1)

Refined bound:
1

Deep interior

D3-charge:
Nﬂux < *QD3

- Vacua at symmetric
loci of moduli space

in F-theory
— Nitux/Nstay = 0.003

Large complex structure

Strict asymptotic regime
- Use of sl(2) decomposition
— Naux > 0.7 ngan

77

[Grimm, Plauschinn, van de Heisteeg '22]
[Grafia, Grimm, van de Heisteeg, Herraez, Plauschinn ’22]

Wiesner ’22] 1
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W is quadratic = simple linear system for axions +
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Exploit eqs structure:

— Efficiently scan flux space — Solutions in the LCS regime
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Thank you for your attention!

Papers: 2212.02533 and 2304.04789
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Motivation

How can we understand the structure of the higher derivative terms
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Are there any additional hidden structures that make the corrections
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Nielsen’s complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to
construct a given unitary:
U=UUy---Up

Nielsen geometrized this idea and defined the complexity via the shortest length
between the identity and U on the manifold of unitaries

- metric?
- simple building blocks?

— modify the metric to penalize ‘hard’ directions

Goal
Apply Nielsen’s complexity to dynamical models and characterize their unitary
evolution operator U = e='*t.
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Problem: Geodesics on U(D) with an anisotropic metric are generally hard to find
Variational ansatz: Restrict the minimization to curves of constant velocity

— using the boundary conditions, one finds:

Chound(t) = min { > (Ent — 27kn) [6om + (11 — 1)Qom] (Emt — 27Rm) }W/z’

D
keZ =
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Question
Is this upper bound sensitive to different types of dynamics ?



Integrable models have lower complexity
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arxiv:2304.XXxXxXx

In an upcoming paper,! we demonstrate that:

- random matrix theory can be used to understand the behavior of our bound
for generic chaotic models

- the complexity reduction in integrable systems originates from shortcuts on
the manifold of unitaries that appear when conserved operators point in

‘easy’ directions

with B. Craps, O. Evnin and P. Hacker.
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What kind of QFTs can be coupled to gravity?

— Exploration of string landscape.

Restricting to 16 supercharges — it seems possible to be exhaustive.

In D =10: Eg X Eqg and SO(32) string theories — fixed gauge symmetry

In D < 9: Heton 7% — rank 16+d simply-laced groups

Comp|Ete Classification for D > 6 [Font, BF, Grana, Nunez, P. de Freitas "20]
studying [BF, P. de Freitas "21]

Theories with reduced rank symmetries — Het. on orbifolds, M-th., F-th, IIA on
K3 with frozen sing.  Also and -laced groups.



In D = 6 there are 17 known theories:

‘Narain’gs]  Narain theory (Het on T

M-theory on (K3 X Sl)/anith n=2to8
M-theory on (T4 X Sl)/Zn withn=2 3,4,6
Het on T4/(Z2 X Z,) (quadruple)

[de Boer et al. ‘01]

[Dabholkar, Harvey ‘98]  |IA on T4/Z5 (string island)
[P. de Freitas, Montero 22]  F-th. on S1 X (T4 X Sl)/Zn (6 angle) withn=2, 3, 4

Our construction reproduces all of them and predicts 30 more!

Connections between these theories: rank reduction maps on gauge groups.

/\ \\ [BF, P. de Freitas “21]
M- M, M, M, M/ S

Narain CHL M on KB DP. O =0 DP.O=m [P. de Freitas ‘22]




The map:

In D = 6, map acts on vacua at the level of gauge groups, only if they have
nontrivial topology.

SPZ;(SQ) 5 Spin(17) (Rank reduced by 8)

(g

Fog %’gfj\x L6 5 Gy x Gy x G (Rank reduced by 12)
(3.

-y -

Transformation is determined by element of fundamental group and maps to
a given moduli space.

Classification of moduli spaces

Classification of gauge groups

(In Narain moduli space)



Conclusions:

v 17 known moduli spaces in D = 6 with 16 supercharges are related through
map according to gauge group topology.

v This map naturally predicts a total of 47 moduli spaces in an unified way.
v 16 of these moduli spaces are UV completions of pure SUGRA (1 is known).

v 0Odd rank reduction is possible in D = 6.

) How can these new theories be constructed?

FUtU re WOrk: J Generalization to less (or none) supercharges.

1 Explain this structure trough swampland constraints.



Thank you very much!
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Introduction

On quantum integrability and ANV = 2 gauge theory

o Broadly speaking, integrability can be considered as the study of non-linear phenomena
in nature in a quantitative exact way (non perturbative).

o The hallmark of quantum integrability is the presence of infinite (local) integrals of
motion commuting with each other

(lon—1,lom-1] =0, (1)
which are also asymptotic expansion cggfﬁcients of the Baxter’s @ operator
InQ(0) ~ —Coe’” = > "2V Clpn 0 +o0. (2)
n=1

Eurostrings 2023, 2023/4/25

Daniele Gregori (NORDITA) BHs quasinormal modes, A/ = 2 SUSY & integrability



On quantum integrability and ANV = 2 gauge theory

o Integrable structures appear also in 4D SUSY gauge theories, typically with N' = 4
supersymmetry (AdS/CFT correspondence) but also with N' = 2.
o In N =2 SUSY, the prepotential F is obtained from gauge periods a, ap of
Seiberg-Witten differential A as
(30)= § A, =5 — F 3)

)

Daniele Gregori (NORDITA) BHs quasinormal modes, A/ = 2 SUSY & integrability Eurostrings 2023, 2023/4/25



Introduction

Three different physical theories, same mathematics!

o The ODE/IM correspondence allows to derive the integrability structures from some
ODE. In particular, the Q function (vacuum eigenvalue of Q operator) is defined as

Q=W o]  with u(y) +0 y— Foo. (4)
2
_%My) + [2¢® coshy + P?] ¢(y) =0  INTEGRABILITY (sd-Liouville) (5)
E_il__e i_lz—ze
N Ao C a2 e H ©
h? d?
547 (y) +[N?coshy + u]yy(y) =0 N =2 NS GAUGE TH. (SU(2) Nf =0) (7)
r=Le? wlL=-2i P= %(/ +2) H o(r) = ey/21/’()’) (8)
2 4 2_ 1
% + |w? <1 + ;) - (/+2r)24] ¢(r) =0 BLACK HOLES PERT. (D3 brane) 9)

Daniele Gregori (NORDITA) BHs quasinormal modes, A/ = 2 SUSY & integrability Eurostrings 2023, 2023/4/25



New characterizations of QNMs

Quasinormal modes in integrability and NV = 2 gauge theory

o The quasinormal modes (QNMs) are the frequencies of the o
damped oscillations in the ringdown phase of BHs merging and 0/ o
have a direct connection to GWSs observations. ) {) ¢o

o While computing QNMs is well understood in General Relativity,a;;z\/\/\/\/\/\/

in modified gravity theories it is still a challenge and it is Bos|

-1.0

— Numerical relativity
s Reconstructed (template)

important to develop new methods (analytic and numeric).

Daniele Gregori (NORDITA) BHs quasinormal modes, A/ = 2 SUSY & integrability Eurostrings 2023, 2023/4/25 4/6



New characterizations of QNMs

Quasinormal modes in integrability and NV = 2 gauge theory

o The quasinormal modes (QNMs) are the frequencies of the

damped oscillations in the ringdown phase of BHs merging and 0/ R
have a direct connection to GWs observations. ) {) T
o While computing QNMs is well understood in General Relativity,a;;z_
in modified gravity theories it is still a challenge and it is ;22\/\/\/\/\/\/
important to develop new methods (analytic and numeric). Y e
o We proved that the QNMs definition is a Bethe root (zero)
condition on the Q = W[y, ¢ _] function N=2 Gauge Th.
Q(0,) =0 = Q(O, £ im/2) ==£i. (10)

Integrability BHs Physics
——
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New characterizations of QNMs

Quasinormal modes in integrability and NV = 2 gauge theory

o The quasinormal modes (QNMs) are the frequencies of the

damped oscillations in the ringdown phase of BHs merging and e/ R
have a direct connection to GWs observations. ) () T
o While computing QNMs is well understood in General Relativity,a;;z_
in modified gravity theories it is still a challenge and it is ;22\/\/\/\N\/
important to develop new methods (analytic and numeric). Y e
o We proved that the QNMs definition is a Bethe root (zero)
condition on the Q = W[y, ¢ _] function N=2 Gauge Th.
Q(0,) =0 — Q(O, £ im/2) ==£i. (10)
o We proved an identification of @ function with the gauge
period from which it follows that QNMs are given also by it Integrability BHs Physics
>
2mi 1 . i 1
Q0. P) = exp 2 ap(h.ha) = paolin—u.o) =1 (n+3)
(11)
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New characterizations of QNMs

Computing QNMs from Thermodynamic Bethe Ansatz

o The Q (or Y = Q?) functions satisfy functional equations which can be inverted into the
Thermodynamic Bethe Ansatz (TBA) for £(0) = —21In Q(6) (here for SU(2) Nf = 0):

3 o0 o / /
(0) = 16{?69_2/ In[1 4 exp{—&(# )}]ﬁ, (12)
r(z)? cosh(6 — 0') 27
with (0, P) ~8P0, | ~ P >0 as § — —oc.
o Through the we have a new exact

method to numerically compute
QNMs, through

— 00

‘ TBA ‘ Leaver ‘
1.36912 — 0.504048/ | 1.36972 — 0.504311/
2.09118 — 0.501788/ | 2.09176 — 0.501811/
2.8057 — 0.501009/ 2.80629 — 0.501000/
3.51723 — 0.500649/ | 3.51783 — 0.500634
4.22728 — 0.500453/ | 4.22790 — 0.500438/

O O OOOoO|s
A WN RO~

e(0p—in/2) = —im(2n+1). (13)

Comparison of QNMs of the D3 brane from
TBA (12) (through (13) with n = 0), Leaver
method (with L = 1).
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4.22728 — 0.500453/ | 4.22790 — 0.500438/

O O OOOoO|s
A WN RO~

e(0p—in/2) = —im(2n+1). (13)

i< f Comparison of QNMs of the D3 brane from
Q FOr now we haVe a” thIS or D3 bl’al’les TBA (12) (through (13) Wlth n—= 0)y LeaVer

and extremal black holes, but we are  method (with L = 1).
working in its generalization.
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General motivations

(7]

Yang-Lee model: purely imaginary fixed point, no unitarity

(]

Cubic vector model: real stable IR fixed point for large N

©

Complex fixed points for N < N,z ~ 1038.27

What happens on a boundary?

o What is the range of N with real stable IR fixed points

(]

Can we find unitary fixed points?



Model

ol = [ a¢ix [1am/(x)a~¢,(x) + 3 @10
+ [ on(00000s00 + 516

d=3:

@ Cubic interaction marginal on the boundary

@ Quartic interaction marginal in the bulk

= Bulk interactions modify boundary fixed points



Results and future work

o N = 1: Real fixed points but unstable

o Large N:
o Only complex fixed points
o One pair of purely imaginary stable fixed points
@ Critical N: no real fixed points for N > N,z = 7.1274 — 3.6951¢

o Stable fixed points always purely imaginary

(7]

Dimensions of operators, CFT data

@ ¢ = 1: compare with plane defect of [Krishnan, Metlitski arXiv:2301.05728]7
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What is Extended Thermodynamics?

* Study the role of Pressure and Volume terms in the laws of black
hole thermo

* Pressure <& Cosmological constant

 Volume < Komar integrals

 Original motivation: Smarr’s formula/first law with A

D. Kastor, J. Traschen, S. Ray [0904.2765]



The Reverse Isoperimetric Inequality

 CGKP: the thermodynamic volume and entropy satisfy a reverse
Isoperimetric inequality

1/(D-1) /(D=2
i (‘Q[O) o > 1
7, A "

* “Proof by example”

» No counter-examples for asymptotically AdS black holes in D > 4

M. Cvetic, G. Gibbons, D. Kubiznak, C. Pope [1012.2888]



Refining the Conjecture

* Our objective: Understand the necessary/sufficient conditions for the validity
of the conjecture

v 1/(D-1) of N\ VD=2
0
i i A <A (V
(70) (A ) > (V) Schol V)

* One path: Construct stronger versions; easier to find counter-examples?
Hierarchy of inequalities

A(V’ J) - AKerr—AdS(V’ J)
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Question & Approach

® Question:

String/M-theory: theories of quantum gravity!

Path integral of string/M-theory

beyond the 2-derivative supergravity approximation?

Step I. AdS/CFT correspondence provides a stage:

ZCFT = Zstring/M»theory{Ads solution

Step Il. Supersymmetry (localization) allows for the exact calculation of

ZscFT = Zstring/M—theory|SLIsy AdS solution *

Junho Hong Eurostrings 2023 Gijén

2/4



Example: ABJM < M-theory, setup

3d U(N)rxU(N)_j ABIM theory <+ M-theory on AdS, x S7/7Z,

* S partition function

SS
b —
Zpgim = L-theory | Squashed AdS, x S7 /7,

e Sl x 3, topologically twisted index

ZSIXED —z |
ABIM T “M-theory | peissner-Nordstrsm AdS 4 BH x S7 /Zy,

e S! %, S? superconformal index

Zsl XwS2 _ 7 ’
ABJM = “M-theory | Kerr-Newman AdS, BHx S7 /Z,

‘ Evaluate them beyond the large N limit (= 2-der sugra limit)! ‘

Junho Hong Eurostrings 2023 Gijén
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Example: ABJM < M-theory, results

S3 partition function (Q = b+ b=1) [Bobev-JH-Reys 22] [Hristov 22] :

1 1
=108 | (gn)” N (o) (v 551 (gs ) ] roe™
Faem = log[ 2rQt) ¢ Al zron Moo wla2 73 +O(e 7).

S x ¥, topologically twisted index [Bobev-JH Reys 22] :

3 1
slxs (1 — g)V2k k 2\2 3 k 2\ 32
Faoom & = ——— (N— +—> —7(N7—+—)

3 24 ' 3k k 24 ' 3k

+1*910g(1\,7i+7)7(1,g)f0( )+ 0 VN,

St x., S? superconformal index (w — 0) [Bobev-Choi-JH Reys 22] :

3
sly, g2 w2k k 5 slxs,_¢o _ VN
Fagm® :;[ 2 ( fﬂ+—) +a0(k)| + Fagyy ° " +O(w, e ).
1 . . .
N-perturbatlve expansions of F' = —log Z have closed-form expressions!

Junho Hong Eurostrings 2023 Gijén
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Brief motivation

» CFTs are interesting: second order phase transition, endpoints of RG
flows, perturbative quantum gravity via AdS/CFT...;

» In 5d, CFTs only known thanks to SUSY and string constructions

Are there non-SUSY CFTs in 5d?

2/5



Soft SUSY breaking

SUSY breaking deformation m of E; SCFT: PT at 1/g% ~ /m;

Symmetry broken phase

15t /27 order phase transition

YM3 3,2 YM 3 3/2
SYM SYM 1
A hd ra

YM 23/2 YM3, 3,2

Order of phase transition?

3/5



pg-web analysis

Generalization: Xp y theory at large N

> (1,-1) 5-brane in (1,1) bckg: distinct vacua if 1/g2 < v/m:

8—_=Q B X\ 8
> 1/g2 ~ h=+/m: single vacuum — 2" order PT!

e

4/5



Thank you for the attention!
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Introduction

This work lies in the interface between two fundamental realms of today’'s high-energy
physics:

Higher-Order

Holograph
Gravities grapiy




Higher-order gravities

A higher-order gravity is characterized by the presence of (purely gravitational)
higher-curvature terms like

R2 ) RaﬁRaBRuupo'Ruupa 5 R27RHVRaﬁRuaVB .
and/or matter terms with nonminimal couplings to gravity, like
RY“F?, R’R,F'F'., R""F,,F,.

for a U(1) gauge vector with field strength F,, .
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Higher-order gravities

A higher-order gravity is characterized by the presence of (purely gravitational)
higher-curvature terms like

R?, RapR*’Ruv,eR"™", R*R,,RasR""".
and/or matter terms with nonminimal couplings to gravity, like
RY“F?, R’R,F'F'., R""F,,F,.
for a U(1) gauge vector with field strength F,, .

Specific higher-order gravities arise from quantum corrections to effective actions. In
recent years, intrinsic interest by themselves (EFT approach).

We focus on higher-order extensions of four-dimensional Einstein-Maxwell theory with
exact electromagnetic duality invariance.

Such theories exist and have been fully characterized to quadratic order in F},, [Cano,
Murcia '21].
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Holographically, theories of gravity and vector field on AdS correspond to boundary
CFTs with a current J,.

Natural to compute the linear response of the current in presence of non-trivial source
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Higher-order gravities and holography

Holographically, theories of gravity and vector field on AdS correspond to boundary
CFTs with a current J,.

Natural to compute the linear response of the current in presence of non-trivial source
(given by boundary value of vector field).

This is encoded in the conductivity. For CFT in flat space:
ij . . . .
oj(w, k) = —Im ) I= spatial directions,

where Cy;, stands for current-current retarded correlator.

Following usual holographic prescriptions [Son, Starinets '02; Policastro, Son, Starinets
'02], conductivities of holographic Einstein-Maxwell theory have been examined
[Herzog, Kovtun, Sachdev, Son '07]. Interesting properties were found and argued to be
due to duality invariance.

Holographic conductivities associated to generic duality-invariant extensions
of Einstein-Maxwell theory?



We have proven several universal properties of conductivities which hold in every CFT
holographic to a general four-dimensional duality-invariant higher-order theory:

@ We explicitly verify that the conductivity at zero momentum is a universal constant.
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but contributions from nonminimal couplings of gauge field to gravity are
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We have proven several universal properties of conductivities which hold in every CFT
holographic to a general four-dimensional duality-invariant higher-order theory:

@ We explicitly verify that the conductivity at zero momentum is a universal constant.

@ Analytical expressions for non-zero momentum for the conductivities are derived in
the limit of large and small frequencies, observing a hydrodynamic-to-collissionless
crossover in the longitudinal channel.

© When covariant derivatives of the curvature do not couple to the F,,:

o If GR background is chosen, the conductivities associated to any such holo-
graphic theory at any frequency and momentum coincide exactly with those
of Einstein-Maxwell theory.

o If higher-curvature terms correct the background, conductivities get modified,
but contributions from nonminimal couplings of gauge field to gravity are
subleading.

iMuchas gracias!
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In one sentence:
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We provide two new AdS; classes of solutions to massive
type lIA supergravity realising an 03p(n | 2) superconformal
algebra forn = 35,6
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'Motivation:
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* AdS; geometries arise as near horizon geometries of 5d extremal BHs, so these scenarios are relevant for the
microscopic description of BHs.

* Via the AdS/CFT correspondence one might presume that there is a 2d conformal field theory

* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT
correspondence.

* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more
tractable than their higher dimensional counterparts.
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* AdS; geometries arise as near horizon geometries of 5d extremal BHs, so these scenarios are relevant for the
microscopic description of BHs.

* Via the AdS/CFT correspondence one might presume that there is a 2d conformal field theory

* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT
correspondence.

* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more
tractable than their higher dimensional counterparts.

* Canonical example: Near horizon of D1-D5 system.

AdS; x S° X CY, geometry realising small (4,4) superconformal symmetry

(Giveon, Kutasov and Seiberg ' 98)
Symmetric Product Orb|f0|d on CY2 (Eberhardt, Gaberdiel, Gopakumar ....)

One avatar where the CFT side is rather more developed than the gravity side is AdS;/CFT,

Maximal supersymmetric cases not all known

|
| G Oa I . We partially fill this gap by finding two new classifications of AdS; solutions to massive IIA supergravity with
|

[
|

an 03p(n|2) superconformal algebra, for n = 5,6, with a view towards holography

S = — = - — —_——
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The rest of NSNS and RR fields are turned on.
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@ We seek solutions AdS; solutions of type Il supergravity with a superconformal algebra
3[(2) ® 8o(n) for n=2>5,6
We want supersymmetric solutions,
(6,0): SO(6) R-symmetry CP?

(5,0): SO(5) R-symmetry SRR R

Geometrically, =
e W R
1
D N e ) a8 0 o) 2D( )+, )2 DRy
dsw=r'é dsAdS3+4<e dss4+e (Dyl))+e dr

—_—

; fibered S°
The rest of NSNS and RR fields are turned on.

® We set up our work in terms of pure spinor formalism, which implies the construction of spinors that ensure
consistency with the superconformal algebra 31(2) & 30(n)

® Exploit an existing /" = 1 AdS; classification to obtain sufficient conditions on the geometry and fluxes for a

solution with /" = (5,0) in llA to exist. (Dibitetto, Lo Monaco, Passias, Petri, Tomasiello’ 18)
(Passias, Prints’ 19)
(Macpherson, Tomasiello” 21)
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The local /' = (5,0) are defined in terms of two functions, h(r) and u(r),

<P’
e O
S ] \/A [ 2 <d2 X 1(D )2>+ 1 d2] B A |17 /B,
" Thea yi | =
T I AdSa A | S T S A 2\/-A4
2h'u’ uh’ — hu' u [(h hh"=2N)? <
A, = 2hh"u® — (uh’ — hu')?, ARG P ! I W i e T P S BN iy — o=sie
: ( ) 2 uh” e ”K uh’ ( )> 2 ow'\ w20 + uh” (5= )

1

hh// h/ + h /
the RR sector: Fy=——"hn", Fy, =B, Fy+2(h" — (r — k)h'")J,, Fy=—mvolpgs, Ad (h’ + U i)

A

+ magnetic terms.
2r
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/\3
CP
e e it —

S ] \/A [ 2 <d2 X 1(D Al I ) |17 /B,
—(Dy; e 0 e
e dspgs, + I TR 5 o 4 7] /Al
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The local /' = (5,0) are defined in terms of two functions, h(r) and u(r),
/\3
CP
e e it —

S ] \/A [ 2 <d2 X 1(D A I ) |17 /B,
—(Dy; e 0 e
e dspgs, + I TR 5 o 4 7] /Al

2h'u’ uh’ — hu' w (h hh" =20 o
A, =2hh"u* — (uh' — hu')?, A,=1+ , By=dn||———— - -k ) L+ =3 J—J5)].
1 ( ) 2 uh// 2 ﬂ[( uh// ( )> 2 2h// u 2h/u/+uh// ( 2 2)
1 hh"u(uh' + hu') .
the RR sector: Fj; = — z—h”’ Fy, =B, Fy+2(h" — (r — k)h'")J,, Fy=—mvolpgs, Ad | I+ m + magnetic terms.
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* Very reminiscent of AdS, solutions (Cremonesi, Tomasiello’ 15)
Supersymmetry implies u” = 0 globally u' = 0 we have a round CP’ 03p(6|2) AdS; solutions

*

u' #0 03p(5|2) AdS; solutions
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esults:

The local /' = (5,0) are defined in terms of two functions, h(r) and u(r),
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the RR sector: Fj; = — z—h”’ Fy, =B, Fy+2(h" — (r — k)h'")J,, Fy=—mvolpgs, Ad | I+ m + magnetic terms.
- 1
* Very reminiscent of AdS, solutions (Cremonesi, Tomasiello’ 15)
Supersymmetry implies u” = 0 globally u' = 0 we have a round CP’ 03p(6|2) AdS; solutions
*
u' #0 03p(5|2) AdS; solutions

1 1

Locally h =cy+cir+ 502”2 + ;03;’2

* Bianchi identities imply 4" =0

Globally A" can be discontinuities which imply D8 sources
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'Conclusions & Open problems

L

® We present two new AdS; solutions to massive type IIA, for the case of an 03p(n]2)

superconformal algebra with n = 5,6
® These solutions suggest new (6, 0) and (5, 0) quiver SCFTs

® CFT side appears undeveloped but AdS/CFT suggests such constructions exist

® Inthe massless ./ = (6,0) case, we obtain the AdS, x CP° Can construct duals to CFT,

1
but also duals to E BPS defects in /" = 6 CSm theories

® We also show that AdS;vacua for n = 7,8 only exist in d = 11 supergravity
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'Conclusions & Open problems
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L

® We present two new AdS; solutions to massive type IIA, for the case of an 03p(n]2)

superconformal algebra with n = 5,6
® These solutions suggest new (6, 0) and (5, 0) quiver SCFTs

® CFT side appears undeveloped but AdS/CFT suggests such constructions exist

® Inthe massless ./ = (6,0) case, we obtain the AdS, x CP° Can construct duals to CFT,

1
but also duals to 5 BPS defects in /" = 6 CSm theories

® We also show that AdS;vacua for n = 7,8 only exist in d = 11 supergravity

Thank you!
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Asymptotically flat space:

2

ds? = — du? — 2dudr A & dzdz +
| 2 o o o
(14 1z]7)?

Superrotations:

A
1+ ]z 1+ |w|* 1
z—=>w()+ ... U — W' |u+ ... r— > —r
1+ |w] 1+ |z]° v

= Lorentz transformations
az + b

cz+d

when w(z) =

Celestial holography: 4D flat space scattering amplitudes = 2D CFT correlators

[He-Mitra-Strominger, Pasterski-Strominger-Shao, ...]



Conformal transformations — Superrotations
7—7 1/n
w(z) = ( 1)
/ - \

Uniformisation map Cosmic string
Entanglement entropy via replica trick Bulk conical singularity
[Calabrese-Cardy] [Penrose, Strominger-Zhiboedov]

f\ f\

c.f. AdS/CFT [Ryu-Takayanagi, Lewkowycz-Maldacena, Dong]



Partition function with cosmic string:

C | 2 . (7
S,=—\(1+—)log |—sin| —
0 n € 2

3iL?
C p—
4Gy,

O