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Sketch of the Proof

Thank you for your attention …and stay tuned!
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The Tadpole Conjecture

Conjecture: [Bena, Blåbäck, Graña, Lüst ’20]

Nflux > α nstab for nstab ≫ 1 with α = O(1)
Refined bound:
α ≥ 1

3 D3-charge:
Nflux ≤ −QD3

Strict asymptotic regime
- Use of sl(2) decomposition

→ Nflux > 0.7 nstab

Large complex structure

???

Deep interior

- Vacua at symmetric
loci of moduli space
in F-theory

→ Nflux/nstab = 0.003

[Lüst, Wiesner ’22]

[Grimm, Plauschinn, van de Heisteeg ’22]
[Graña, Grimm, van de Heisteeg, Herraez, Plauschinn ’22]
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Type IIB flux compactifications and IIB1 scenario

• Axio-dilaton + CS sector

• Three-form fluxes:(∫
BI

F3,

∫
AI

F3

)
= (fB

0 , fB
i , f0

A, f i
A) | H3 : (hB

0 , hB
i , h0

A, hi
A)

IIB1 flux configuration: f0
A = 0 , h0

A = 0 and hi
A = 0

[Marchesano, Prieto, Wiesner ’21]

W is quadratic =⇒ simple linear system for axions + saxions
[TC, Marchesano, Prieto, Urkiola ’22]

Exploit eqs structure:

=⇒ Efficiently scan flux space −→ Solutions in the LCS regime
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Results

Geometry:
T 6/(Z2 ×Z2) with discrete torsion → h2,1 = 51

Symmetric fluxes and vevs:
Reduce # of variables

Strict asymptotic regime
- Use of sl(2) decomposition

→ Nflux > 0.7 nstab

Large complex structure
- Our vacua with even fluxes
→ Nflux/nstab ≥ 0.337
- With potential lifted D7 moduli
→ Nflux/nstab ≥ 0.1675
- Allow odd flux quanta
→ Nflux/nstab ≥ 0.084

Deep interior

- Vacua at symmetric
loci of moduli space
in F-theory

→ Nflux/nstab = 0.003

[Lüst, Wiesner, ’22]

[Grimm, Plauschinn, van de Heisteeg ’22]
[Graña, Grimm, van de Heisteeg, Herraez, Plauschinn ’22]
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Thank you for your attention!
Papers: 2212.02533 and 2304.04789
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Motivation

How can we understand the structure of the higher derivative terms
that appear as a series expansion in α′?

Are there any additional hidden structures that make the corrections
more manifest?

Use manifest symmetries → T-duality, constrains background to be
O(d, d) invariant

1 Marina David — T-duality building blocks



Motivation

How can we understand the structure of the higher derivative terms
that appear as a series expansion in α′?

Are there any additional hidden structures that make the corrections
more manifest?

Use manifest symmetries → T-duality, constrains background to be
O(d, d) invariant

1 Marina David — T-duality building blocks



Motivation

How can we understand the structure of the higher derivative terms
that appear as a series expansion in α′?

Are there any additional hidden structures that make the corrections
more manifest?

Use manifest symmetries

→ T-duality, constrains background to be
O(d, d) invariant

1 Marina David — T-duality building blocks



Motivation

How can we understand the structure of the higher derivative terms
that appear as a series expansion in α′?

Are there any additional hidden structures that make the corrections
more manifest?

Use manifest symmetries → T-duality, constrains background to be
O(d, d) invariant

1 Marina David — T-duality building blocks



Strategy

▶ revisit higher derivative corrections

Type II
String Theory

compactification
d-dimensional

EFT

▶ formulate O(d, d) invariant building blocks
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Make hidden structures manifest

▶ field redefinitions and re-express Lagrangian with T-duality
building blocks

What we have done
▶ T-duality building blocks for HD’s for torus compactifications
▶ first order α′ corrections to heterotic and bosonic string

What we want to do
▶ covariant/gauge invariant 10D expressions from building blocks
▶ inclusion of Kaluza-Klein and winding gauge fields
▶ nature of the redundancies that arise after compactification
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Bounds on quantum evolution complexity via lattice
cryptography
Gongshow Eurostrings 2023

Marine De Clerck

University of Cambridge

Based on work with B. Craps, O. Evnin, P. Hacker and M. Pavlov (arXiv:2202.13924).



Nielsen’s complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to
construct a given unitary:

U = U1U2 · · ·Un

Nielsen geometrized this idea and defined the complexity via the shortest length
between the identity and U on the manifold of unitaries

I

U
• metric?
• simple building blocks?
→ modify the metric to penalize ‘hard’ directions

Goal
Apply Nielsen’s complexity to dynamical models and characterize their unitary
evolution operator U = e−iHt.
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A practical upper bound on Nielsen’s complexity

Problem: Geodesics on U(D) with an anisotropic metric are generally hard to find

 Variational ansatz: Restrict the minimization to curves of constant velocity

→ using the boundary conditions, one finds:

Cbound(t) = min
k∈ZD

{∑
mn

(Ent− 2πkn)
[
δnm + (µ− 1)Qnm

]
(Emt− 2πkm)

}1/2
,

with Qnm ≡ δnm −
∑
α

⟨n|Tα|n⟩⟨m|Tα|m⟩.
E⃗ t

k⃗ ∈ ZD

Question
Is this upper bound sensitive to different types of dynamics ?
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→ using the boundary conditions, one finds:

Cbound(t) = min
k∈ZD

{∑
mn

(Ent− 2πkn)
[
δnm + (µ− 1)Qnm

]
(Emt− 2πkm)

}1/2
,

with Qnm ≡ δnm −
∑
α

⟨n|Tα|n⟩⟨m|Tα|m⟩.
E⃗ t

k⃗ ∈ ZD

Question
Is this upper bound sensitive to different types of dynamics ?
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Integrable models have lower complexity
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arxiv:2304.xxxxx

In an upcoming paper,1 we demonstrate that:

• random matrix theory can be used to understand the behavior of our bound
for generic chaotic models

• the complexity reduction in integrable systems originates from shortcuts on
the manifold of unitaries that appear when conserved operators point in
‘easy’ directions

1with B. Craps, O. Evnin and P. Hacker.
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Unifying the 6D N = (1,1) String Landscape

Bernardo Fraiman (CERN)


Based on


arXiv:2209.06214 [with H.P de Freitas]


Eurostrings Gijón 2023|Gong-Show talk



What kind of QFTs can be coupled to gravity?


 Exploration of string landscape.


Restricting to 16 supercharges  it seems possible to be exhaustive.


→

⟶

In :      and SO(32) string theories  fixed gauge symmetryD = 10 E8 × E8 →

In :   Het on   rank 16+d simply-laced groups

Complete classification for 

studying charge lattices.

D ≤ 9 Td →
D ≥ 6 [Font, BF, Graña, Núñez, P. de Freitas ’20]


                                     [BF, P. de Freitas ’21]

Theories with reduced rank symmetries  Het. on orbifolds, M-th., F-th, IIA on 
K3 with frozen sing.      Also doubly and triply-laced groups.

→



Narain theory (Het on )


M-theory on ( )/ with n = 2 to 8


M-theory on ( )/  with n = 2, 3, 4, 6


Het on /( ) (quadruple)


IIA on /  (string island)


F-th. on  (  angle) with n = 2, 3, 4 

T4

K3 × S1 ℤn

T4 × S1 ℤn

T4 ℤ2 × ℤ2

T4 ℤ5

S1 × (T4 × S1)/ℤn θ

In D = 6 there are 17 known theories:

[P. de Freitas, Montero ‘22]

[Dabholkar, Harvey ‘98]

[de Boer et al. ‘01]

[Narain ’85]

Connections between these theories: rank reduction maps on gauge groups.

Narain CHL M on KB DP, θ = 0 DP, θ = π 

[BF, P. de Freitas ‘21]

[P. de Freitas ‘22]

Our construction reproduces all of them and predicts 30 more!



The map:

In D = 6, map acts on vacua at the level of gauge groups, only if they have 
nontrivial topology.

(Rank reduced by 8)

(Rank reduced by 12)

Transformation is determined by element of fundamental group and maps to 
a given moduli space.


             Classification of gauge groups  =  Classification of moduli spaces
(In Narain moduli space)



Conclusions:
✓  17 known moduli spaces in D = 6 with 16 supercharges are related through 

map according to gauge group topology.  

✓  This map naturally predicts a total of 47 moduli spaces in an unified way. 

✓  16 of these moduli spaces are UV completions of pure SUGRA (1 is known). 

✓  Odd rank reduction is possible in D = 6.

Future work:
❑ How can these new theories be constructed?


❑ Generalization to less (or none) supercharges.


❑ Explain this structure trough swampland constraints.



Thank you very much!



Black holes’ quasinormal modes from N = 2 gauge theory and
integrability

Daniele Gregori
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Based on: arXiv:2208.14031, arXiv:2112.11434, arXiv:1908.08030

with Davide Fioravanti (INFN, Univ. Bologna) and Hongfei Shu (BIMSA)
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Introduction

On quantum integrability and N = 2 gauge theory

Broadly speaking, integrability can be considered as the study of non-linear phenomena
in nature in a quantitative exact way (non perturbative).
The hallmark of quantum integrability is the presence of infinite (local) integrals of
motion commuting with each other

[I2n−1, I2m−1] = 0 , (1)

which are also asymptotic expansion coefficients of the Baxter’s Q operator

ln Q(θ) ' −C0e
θ −

∞∑
n=1

eθ(1−2n)CnI2n−1 θ → +∞ . (2)

Integrable structures appear also in 4D SUSY gauge theories, typically with N = 4
supersymmetry (AdS/CFT correspondence) but also with N = 2.
In N = 2 SUSY, the prepotential F is obtained from gauge periods a, aD of
Seiberg-Witten differential λ as

(a, aD) =

∮
A,B

λ(x) dx , aD =
∂F
∂a

=⇒ F (3)

Daniele Gregori (NORDITA) BHs quasinormal modes, N = 2 SUSY & integrability Eurostrings 2023, 2023/4/25 2 / 6
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Introduction

Three different physical theories, same mathematics!
The ODE/IM correspondence allows to derive the integrability structures from some
ODE. In particular, the Q function (vacuum eigenvalue of Q operator) is defined as

Q = W [ψ+, ψ−] with ψ±(y)→ 0 y → ±∞ . (4)

− d2

dy2
ψ(y) +

[
2e2θ cosh y + P2

]
ψ(y) = 0 INTEGRABILITY (sd-Liouville) (5)

}
Λ0

=
ε1
Λ0

= e−θ
u

Λ2
0

=
1

2
P2e−2θ

wwww� (6)

−}2

2

d2

dy2
ψ(y) + [Λ2 cosh y + u]ψ(y) = 0 N = 2 NS GAUGE TH. (SU(2) Nf = 0) (7)

r = Ley/2 ωL = −2ieθ P =
1

2
(l + 2)

wwww� φ(r) = ey/2ψ(y) (8)

d2φ

dr2
+

[
ω2

(
1 +

L4

r4

)
−

(l + 2)2 − 1
4

r2

]
φ(r) = 0 BLACK HOLES PERT. (D3 brane) (9)

Daniele Gregori (NORDITA) BHs quasinormal modes, N = 2 SUSY & integrability Eurostrings 2023, 2023/4/25 3 / 6



New characterizations of QNMs

Quasinormal modes in integrability and N = 2 gauge theory
The quasinormal modes (QNMs) are the frequencies of the
damped oscillations in the ringdown phase of BHs merging and
have a direct connection to GWs observations.

While computing QNMs is well understood in General Relativity,
in modified gravity theories it is still a challenge and it is
important to develop new methods (analytic and numeric).

We proved that the QNMs definition is a Bethe root (zero)
condition on the Q = W [ψ+, ψ−] function

Q(θn) = 0 ⇐⇒ Q(θn ± iπ/2) = ±i . (10)

We proved an identification of Q function with the gauge
period from which it follows that QNMs are given also by it

Q(θ,P) = exp
2πi

}
aD(}, u,Λ0) =⇒ 1

}
aD(i},−u,Λ0) =

i

2

(
n +

1

2

)
.

(11)
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New characterizations of QNMs

Computing QNMs from Thermodynamic Bethe Ansatz

The Q (or Y = Q2) functions satisfy functional equations which can be inverted into the
Thermodynamic Bethe Ansatz (TBA) for ε(θ) = −2 lnQ(θ) (here for SU(2) Nf = 0):

ε(θ) =
16
√
π3

Γ( 1
4 )2

eθ − 2

∫ ∞
−∞

ln [1 + exp{−ε(θ′)}]
cosh(θ − θ′)

dθ′

2π
, (12)

with ε(θ,P) ' 8Pθ, l ∼ P > 0 as θ → −∞.

Through the we have a new exact
method to numerically compute
QNMs, through

ε(θn − iπ/2) = −iπ(2n + 1) . (13)

For now we have all this for D3 branes
and extremal black holes, but we are
working in its generalization.

n l TBA Leaver
0 0 1.36912 − 0.504048i 1.36972− 0.504311i
0 1 2.09118 − 0.501788i 2.09176− 0.501811i
0 2 2.8057 − 0.501009i 2.80629− 0.501000i
0 3 3.51723 − 0.500649i 3.51783− 0.500634i
0 4 4.22728 − 0.500453i 4.22790− 0.500438i

Table: Comparison of QNMs of the D3 brane from
TBA (12) (through (13) with n = 0), Leaver
method (with L = 1).
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Thank you
for your attention!
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Cubic vector model on the boundary

Sabine Harribey

Work in progress with Igor Klebanov and Zimo Sun
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General motivations

Yang-Lee model: purely imaginary fixed point, no unitarity

Cubic vector model: real stable IR fixed point for large N

Complex fixed points for N < Ncrit ≈ 1038.27

What happens on a boundary?

What is the range of N with real stable IR fixed points

Can we find unitary fixed points?



2/3

Model

S [ϕ] =

∫
dd+1x

[
1
2
∂µϕI (x)∂

µϕI (x) +
λ4

4!
(ϕI (x)ϕI (x))

2
]

+

∫
ddx

[
λ1

2
ϕN(x)ϕa(x)ϕa(x) +

λ2

3!
ϕ3
N

]

d = 3:
Cubic interaction marginal on the boundary

Quartic interaction marginal in the bulk

⇒ Bulk interactions modify boundary fixed points



3/3

Results and future work

N = 1: Real fixed points but unstable

Large N:
Only complex fixed points
One pair of purely imaginary stable fixed points

Critical N: no real fixed points for N > Ncrit = 7.1274 − 3.6951ϵ

Stable fixed points always purely imaginary

Dimensions of operators, CFT data

ϵ = 1: compare with plane defect of [Krishnan, Metlitski arXiv:2301.05728]?



New Inequalities in Extended Black 
Hole Thermodynamics

Robie A. Hennigar


Eurostrings 2023


Based on Work with Masaya Amo and Antonia Frassino (to appear)



What is Extended Thermodynamics?
• Study the role of Pressure and Volume terms in the laws of black 

hole thermo


• Pressure  Cosmological constant


• Volume  Komar integrals


• Original motivation: Smarr’s formula/first law with 

⇔

⇔

Λ

D. Kastor, J. Traschen, S. Ray [0904.2765] 



• CGKP: the thermodynamic volume and entropy satisfy a reverse 
isoperimetric inequality 


• “Proof by example”


• No counter-examples for asymptotically AdS black holes in D ≥ 4

The Reverse Isoperimetric Inequality

M. Cvetic, G. Gibbons, D. Kubiznak, C. Pope [1012.2888]

( V
𝒱0 )

1/(D−1)

( 𝒜0

A )
1/(D−2)

≥ 1



Refining the Conjecture

M. Amo, A. M. Frassino, R. A. Hennigar (to appear) [2305.?????]

• Our objective: Understand the necessary/sufficient conditions for the validity 
of the conjecture


• One path: Construct stronger versions; easier to find counter-examples? 
Hierarchy of inequalities

( V
𝒱0 )

1/(D−1)

( 𝒜0

A )
1/(D−2)

≥ 1 ⇔ A(V) ≤ ASchw(V)

A(V, J) ≤ AKerr−AdS(V, J)



Large N Partition Functions, Holography, and
Black Holes
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2203.14981, 2210.09318, 2304.01734, & 2210.15326

with Nikolay Bobev, Valentin Reys, & Sunjin Choi
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Question & Approach

• String/M-theory: theories of quantum gravity!

• Question:

Path integral of string/M-theory

beyond the 2-derivative supergravity approximation?

• Step I. AdS/CFT correspondence provides a stage:

ZCFT = Zstring/M-theory
∣∣
AdS solution .

• Step II. Supersymmetry (localization) allows for the exact calculation of

ZSCFT = Zstring/M-theory
∣∣
susy AdS solution .

Junho Hong Eurostrings 2023 Gijón
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Example: ABJM ↔ M-theory, setup

3d U(N)k×U(N)−k ABJM theory ↔ M-theory on AdS4 × S7/Zk

• S3
b partition function

Z
S3
b

ABJM = ZM-theory
∣∣
Squashed AdS4×S7/Zk

• S1 × Σg topologically twisted index

Z
S1×Σg

ABJM = ZM-theory
∣∣
Reissner-Nordström AdS4 BH×S7/Zk

• S1 ×ω S2 superconformal index

ZS1×ωS2

ABJM = ZM-theory
∣∣
Kerr-Newman AdS4 BH×S7/Zk

Evaluate them beyond the large N limit (= 2-der sugra limit)!

Junho Hong Eurostrings 2023 Gijón
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Example: ABJM ↔ M-theory, results

S3
b partition function (Q ≡ b+ b−1) [Bobev-JH-Reys 22] [Hristov 22] :

F
S3
b

ABJM = − log

[(
32

π2kQ4

) 1
3

e
Ab(k)Ai

[(
32

π2kQ4

)− 1
3

(
N −

k

24
−

1

k

(
4

Q2
−

2

3

))]]
+O(e

−
√

N
) .

S1 × Σg topologically twisted index [Bobev-JH-Reys 22] :

F
S1×Σg
ABJM =

π(1 − g)
√
2k

3

(
N −

k

24
+

2

3k

) 3
2 −

3

k

(
N −

k

24
+

2

3k

) 1
2


+

1 − g

2
log

(
N −

k

24
+

2

3k

)
− (1 − g)f̂0(k) + O(e

−
√

N
) .

S1 ×ω S2 superconformal index (ω → 0) [Bobev-Choi-JH-Reys 22] :

F
S1×ωS2

ABJM =
2

ω

[
π
√
2k

12

(
N −

k

24
+

2

3k

) 3
2

+ ĝ0(k)

]
+ F

S1×Σg=0
ABJM + O(ω, e

−
√

N
) .

1

N
-perturbative expansions of F = − logZ have closed-form expressions!

Junho Hong Eurostrings 2023 Gijón
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On non-supersymmetric fixed points in five
dimensions

Francesco Mignosa (Technion)

Based on:
M.Bertolini, F.M., J.Van Muiden JHEP 10 (2022) 064
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Brief motivation

▶ CFTs are interesting: second order phase transition, endpoints of RG
flows, perturbative quantum gravity via AdS/CFT...;

▶ In 5d, CFTs only known thanks to SUSY and string constructions

Are there non-SUSY CFTs in 5d?
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Soft SUSY breaking

SUSY breaking deformation m̃ of E1 SCFT: PT at 1/g2 ∼
√
m̃;

YM 2,3/2 YM -2,-3/2

YM -2,3/2 YM 2,-3/2

SYMSYM E1 1
g2

m̃

Symmetry broken phase

1st/2nd order phase transition

Order of phase transition?

3 / 5



pq-web analysis

Generalization: X1,N theory at large N

▶ (1,-1) 5-brane in (1,1) bckg: distinct vacua if 1/g2 <
√
m̃:

<latexit sha1_base64="VAi0XHooUEe6pD3yRevj0C9hm9k=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiDoZZjESOIt6MVjAmaBZAg9nZqkTc9Cd48QhnyBFw+KePWTvPk3dhZBRR8UPN6roqqeFwuutON8WJmV1bX1jexmbmt7Z3cvv3/QUlEiGTZZJCLZ8ahCwUNsaq4FdmKJNPAEtr3x9cxv36NUPApv9SRGN6DDkPucUW2kxlk/X3Ds0mXVOa+SBSlXvkiJFG1njgIsUe/n33uDiCUBhpoJqlS36MTaTanUnAmc5nqJwpiyMR1i19CQBqjcdH7olJwYZUD8SJoKNZmr3ydSGig1CTzTGVA9Ur+9mfiX1020X3VTHsaJxpAtFvmJIDois6/JgEtkWkwMoUxycythIyop0yabnAnh61PyP2mV7OKF7TTKhdrVMo4sHMExnEIRKlCDG6hDExggPMATPFt31qP1Yr0uWjPWcuYQfsB6+wTrCY0G</latexit>
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Introduction

This work lies in the interface between two fundamental realms of today’s high-energy
physics:

Higher-Order
Gravities

Holography



Higher-order gravities

A higher-order gravity is characterized by the presence of (purely gravitational)
higher-curvature terms like

R2 , RαβR
αβRµνρσR

µνρσ , R27RµνRαβR
µανβ .

and/or matter terms with nonminimal couplings to gravity, like

R14F 2 , R3RµνF
µαF να , RµνρσFµρFνσ .

for a U(1) gauge vector with field strength Fµν .

Specific higher-order gravities arise from quantum corrections to effective actions. In
recent years, intrinsic interest by themselves (EFT approach).

We focus on higher-order extensions of four-dimensional Einstein-Maxwell theory with
exact electromagnetic duality invariance.

Such theories exist and have been fully characterized to quadratic order in Fµν [Cano,
Murcia ’21].
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Higher-order gravities and holography

Holographically, theories of gravity and vector field on AdS correspond to boundary
CFTs with a current Ja.

Natural to compute the linear response of the current in presence of non-trivial source
(given by boundary value of vector field).

This is encoded in the conductivity. For CFT in flat space:

σj(ω, k) = −Im

(
Cjj
ω

)
, j = spatial directions ,

where Cab stands for current-current retarded correlator.

Following usual holographic prescriptions [Son, Starinets ’02; Policastro, Son, Starinets
’02], conductivities of holographic Einstein-Maxwell theory have been examined
[Herzog, Kovtun, Sachdev, Son ’07]. Interesting properties were found and argued to be
due to duality invariance.

Holographic conductivities associated to generic duality-invariant extensions
of Einstein-Maxwell theory?
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Results

We have proven several universal properties of conductivities which hold in every CFT
holographic to a general four-dimensional duality-invariant higher-order theory:

1 We explicitly verify that the conductivity at zero momentum is a universal constant.

2 Analytical expressions for non-zero momentum for the conductivities are derived in
the limit of large and small frequencies, observing a hydrodynamic-to-collissionless
crossover in the longitudinal channel.

3 When covariant derivatives of the curvature do not couple to the Fµν :

If GR background is chosen, the conductivities associated to any such holo-
graphic theory at any frequency and momentum coincide exactly with those
of Einstein-Maxwell theory.

If higher-curvature terms correct the background, conductivities get modified,
but contributions from nonminimal couplings of gauge field to gravity are
subleading.

¡Muchas gracias!
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In one sentence:

 We provide two new AdS  classes of solutions to massive 
type IIA supergravity realising an  superconformal 

algebra for  

3
!"#(n |2)

n = 5,6



Motivation:

2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT 
correspondence.

The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more 
tractable than their higher dimensional counterparts. 

AdS  geometries arise as near horizon geometries of 5d extremal BHs, so these scenarios are relevant for the 
microscopic description of BHs.

3

Via the AdS/CFT correspondence one might presume that there is a 2d conformal field  theory
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Goal: We partially fill this gap by finding two new classifications of AdS  solutions to massive IIA supergravity with 
an  superconformal algebra, for , with a view towards holography

3
!"#(n |2) n = 5,6

Via the AdS/CFT correspondence one might presume that there is a 2d conformal field  theory
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The strategy:

• We set up our work in terms of pure spinor formalism, which implies the construction of spinors that ensure 
consistency with the superconformal algebra "%(2) ⊕ "!(n)

• Exploit an existing  AdS  classification to obtain sufficient conditions on the geometry and fluxes for a 
solution with   in IIA to exist. 
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(Dibitetto, Lo Monaco, Passias, Petri, Tomasiello’ 18) 
(Passias, Prints’ 19)  

(Macpherson, Tomasiello’  21) 



Results:

The local  are defined in terms of two functions,  and , 

,                 , 

      ,          ,               .  

the RR sector:  ,               ,           .

* = (5,0) h(r) u(r)

ds2

2π
= |hu |

Δ1
ds2

AdS3
+

Δ1

4 |u | [ 2
|h′ ′ | (ds2

S4 + 1
Δ2

(Dyi)2) + 1
|h |

dr2] e−Φ =
|u | |h′ ′ |3

2 Δ1

2 πΔ
1
4
2

Δ1 = 2hh′ ′ u2 − (uh′ − hu′ )2 Δ2 = 1 + 2h′ u′ 
uh′ ′ B2 = 4π[( uh′ − hu′ 

uh′ ′ − (r − k)) J2 + u′ 
2h′ ′ ( h

u
+ hh′ ′ − 2(h′ )2

2h′ u′ + uh′ ′ ) (J2 − J̃2)]

F0 = − 1
2π

h′ ′ ′ F2 = B2F0 + 2(h′ ′ − (r − k)h′ ′ ′ )J2 F4 = − π volAdS3
∧ d (h′ + hh′ ′ u(uh′ + hu′ )

Δ1 ) + magnetic terms
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Conclusions & Open problems

• We present two new AdS  solutions to massive type IIA, for the case of an  

superconformal algebra with  

• These solutions suggest new (6, 0) and (5, 0) quiver SCFTs 

• CFT side appears undeveloped but AdS/CFT suggests such constructions exist  

• In the massless  case, we obtain the  

• We also show that AdS3 vacua for  only exist in d = 11 supergravity  

3 !"#(n |2)

n = 5,6

* = (6,0) AdS4 × ℂℙ3

n = 7,8

Can construct duals to CFT  3

but also duals to  BPS defects in  CSm theories
1
2 * = 6
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superconformal algebra with  

• These solutions suggest new (6, 0) and (5, 0) quiver SCFTs 

• CFT side appears undeveloped but AdS/CFT suggests such constructions exist  

• In the massless  case, we obtain the  

• We also show that AdS3 vacua for  only exist in d = 11 supergravity  

3 !"#(n |2)

n = 5,6

* = (6,0) AdS4 × ℂℙ3

n = 7,8

Can construct duals to CFT  3

but also duals to  BPS defects in  CSm theories
1
2 * = 6

Thank you!



Ronnie Rodgers, with Federico Capone, A. O’Bannon, S. Thakur, E. Parisini
Cosmic Strings and Celestial Entanglement



ds2 = − du2 − 2 du dr +
4r2

(1 + |z |2 )2
dz dz̄ + …

Asymptotically flat space:

Superrotations:

z → w(z) + … u →
1 + |z |2

1 + |w |2 |w′￼|u + … r →
1 + |w |2

1 + |z |2
1

|w′￼|
r + …

= Lorentz transformations

 when w(z) =
az + b
cz + d

Celestial holography: 4D flat space scattering amplitudes = 2D CFT correlators
[He-Mitra-Strominger, Pasterski-Strominger-Shao, …]



Conformal transformations Superrotations

w(z) = ( z − z1

z − z2 )
1/n

Uniformisation map
Entanglement entropy via replica trick
[Calabrese-Cardy]

Cosmic string
Bulk conical singularity
[Penrose, Strominger-Zhiboedov]

c.f. AdS/CFT [Ryu-Takayanagi, Lewkowycz-Maldacena, Dong]



Outlook:
Multiple intervals?
Higher dimensions?

c =
3iL2

4GN

Sn =
c
6 (1 +

1
n ) log [ 2

ϵ
sin ( ℓ

2 )]

Partition function with cosmic string:

AdS3

AdS3

dS3

i�

i+

I+

i0

I�



T-linear resistivity and optical conductivity for a
holographic local quantum critical metal in a

periodic potential

F.Balm, N. Chagnet, S. Arend, J. Aretz, K. Grosvenor, M.
Janse, O. Moors, J. Post, V. Ohanesjan, D.R.F., K. Schalm, J.

Zaanen

Based on
arXiv:[2211.05492]

Instituto de F́ısica Teórica
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Motivation

• High Tc superconductors
have been widely
explored, both
theoretically and
experimentally

• Cuprates display a phase
whose properties elude
Fermi liquid theory
(ρ ∼ T )

The ions that conform the crystal lattice interact with the flowing
electrons (Umklapp effect). The lattice breaks translational
invariance.

T-linear resistivity and optical conductivity in holography



In our work, we examine the gauge dual to the Gubser-Rocher
(GR) geometry with 2-Dim/1-Dim lattice potential (ESB).

S =
1

16πGN

∫
d4x
√
−g
[
R − Z (φ)

4
F 2 − 1

2
∂ (φ)2 + V

]
Z (φ) = exp

(
φ/
√

3
)
,V (φ) =

6

L2
cosh

(
φ/
√

3
)

This model is a consistent truncation of d = 11 supergravity
compactified on AdS4 × S7

ESB given by

µ(x , y) = µ
{

1 + A [cos (Gx) + cos (Gy)]
}

Comment

At large lattice potentials, momentum is strongly broken. The
system approaches the incoherent metal regime [Hartnoll].
Hydrodynamics relies then only on energy and charge conservation.

T-linear resistivity and optical conductivity in holography



Results

Figure: DC resistivity at small (A = 0.15, left panel) and intermediate
(A = 1.1, right panel) lattice potential of the GR metal.

ρDC ∼ T reasonably good at T/µ� 1

We define

FSum(∆)

∫ ∆

0
σ(ω)dω, Γ−1

corrected = σDC/FSum(∆), Γbare = σDC/ω
2
p

T-linear resistivity and optical conductivity in holography



Figure: Left figure: FSum as a function of ω/µ. Right figure: ”Bare” and
”corrected” relaxation rates. Data for 1D GR model with
T = 0.06 ,G = 0.12

At large A, the saturation of Γ−1
bare is not exact, whilst the

saturation of Γ−1
corrected it is

Γ−1
corrected ∼ 2πT , (τGR ∼ ~/(2πkBT )) .

T-linear resistivity and optical conductivity in holography



Gravitational Waves from First Order Phase Transitions

Mikel Sanchez Garitaonandia


First-order phase transitions are common in nature

Presumably also in Neutron Star mergers and the Early Universe

Naturally induce out-of-equilibrium physics     Gravitational Waves

No FOPT in the SM and QCD phase diagram is unknown

Detecting GW means potential observation of new/unknown physics  

First Order Phase Transitions



FOPT get realized through nucleation of bubbles on the metastable phase

Bubbles expand and their collision drives the system out of equilibrium

Crucial parameter is the wall speed: out-of-equilibrium                 Holography

Direct signal from FOPT in NS mergers not considered in the past

Bubble dynamics and GW



Bea, Casalderrey-Solana, Giannakopoulos, 
Mateos, MSG, Zilhão ‘21

Bea, Casalderrey-Solana, Giannakopoulos, 
Jansen, Mateos, MSG, Zilhão ‘22





Simple arguments suggest that the signal is peaked in MHz >> kHz

Potentially observable by future superconducting radio-frequency detectors

Holography can help understanding the dynamics of bubbles at finite density 
and at strong coupling

GW from FOPT in NS mergers

Casalderrey-Solana, Mateos, MSG ‘22

D’Agnolo ‘21



Thank you!



5d theories, defects and F-theorems
with Christoph Uhlemann (out very soon!)

Leonardo Santilli

Yau Mathematical Sciences Center
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Superconformal field theories in 5d

Goal: To study codimension 2 defects in 5d CFT with 8 supercharges.

Problem: 5d SCFTs are strongly coupled.

5d SCFT

=⇒ Need better tools.
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5d SCFTs, string and M-theory

5d SCFTs

5-Brane webs in Type IIB M-theory on CY3

Gauge theoryAdS6/CFT5

study geometry
to learn physics

holography strong coupling

worldvolume

• • • •
• • • •
• • • •

• • • •

Leonardo Santilli (YMSC) April 25, ’23 3 / 6



3d defects in 5d SCFTs

3d defects ⊂ 5d SCFTs

D3-brane ⊥ 5-brane web
in Type IIB

M5-brane on Lagrangian
L ⊂ CY3

3d chirals on S3

⊂ 5d gauge theory on S5AdS4 ⊂ AdS6

Leonardo Santilli (YMSC) April 25, ’23 4 / 6



Defect F-maximization

Massive deformations of the defect =⇒ Defect F-theorem FUV > FIR .

3d defects in 5d gauge theory =⇒ 1 parameter = position along quiver.

3d defects in 5d SCFT =⇒ no parameter.
?

F-maximization along the quiver gives conformal defect.

Defect RG flows =⇒ defects attached to other nodes.
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Summary

Study 3d defects inside 5d linear quiver SCFTs, via:

• D3-brane defects in Type IIB 5-brane webs;
• M5-brane on Lagrangian inside toric CY3;
• AdS4 defect inside AdS6;
• 3d chiral multiplets inside 5d gauge theory.

Many 3d defects in 5d gauge theory ?−−−−−→ one 3d defect in 5d SCFT:

F-maximization of position of defect along quiver

2 deformations: mass & position =⇒ Defect F-theorem.

Thank you for your attention.
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Integrable deformations of AdS3 superstrings

Fiona Seibold

EuroStrings 2023 Gong Show

Mainly based on [1] JHEP 09 (2022) 018 arXiv:2206.12347 with B. Hoare and A. Tseytlin
[2] JHEP 04 (2023) 024 arXiv:2212.08625 with B. Hoare and N. Levine



× ×

Strings on AdS3×S3×T4

• Can be supported by a mixture of NSNS and RR fluxes

H3 = x Ĝ , F3 =
√

1− x2 Ĝ , Ĝ = Vol(AdS3) + Vol(S3) .

• Preserves 16 supersymmetries

• Symmetries ⊃ su(1, 1)L ⊕ su(1, 1)R︸ ︷︷ ︸
AdS3

⊕ su(2)L ⊕ su(2)R︸ ︷︷ ︸
S3

⊂ psu(1, 1|2)L ⊕ psu(1, 1|2)R︸ ︷︷ ︸
16 SUSY

• Free strings described by a classically integrable σ-model → physical observables

• Example where “S-duality rotation” preserves integrability

• Deform target space geometry while preserving exact solvability?
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1− x2 Ĝ , Ĝ = Vol(AdS3) + Vol(S3) .

• Preserves 16 supersymmetries

• Symmetries ⊃ su(1, 1)L ⊕ su(1, 1)R︸ ︷︷ ︸
AdS3

⊕ su(2)L ⊕ su(2)R︸ ︷︷ ︸
S3

⊂ psu(1, 1|2)L ⊕ psu(1, 1|2)R︸ ︷︷ ︸
16 SUSY

• Free strings described by a classically integrable σ-model → physical observables

• Example where “S-duality rotation” preserves integrability

• Deform target space geometry while preserving exact solvability?



[picture: Niles Johnson]

Strings on squashed (AdS3×S3)∆×T4

ds2(S3
∆) =

1

4

(
dθ2 + sin2 θdφ2︸ ︷︷ ︸

ds2(S2)

+(1−∆)
(
dϕ− cos θdφ︸ ︷︷ ︸

A(S2)

)2
)

• Can also be supported by a mixture of NSNS and RR fluxes

H3 = x1Ĝ + y1Ǧ , F3 = x2Ĝ + y2Ǧ , F5 = Ĝ ∧ Jx + Ǧ ∧ Jy ,

‖x‖2 = 1−∆ , ‖y‖2 = ∆(1−∆) , x · y = 0 .

• New 3-form Ǧ = d
(
A(AdS2) ∧ A(S2)

) Jx = x3J
(1)
2 + x4J

(2)
2 + x5J

(3)
2

Jy = y3J
(1)
2 + y4J

(2)
2 + y5J

(3)
2

• Interpolates between AdS3 × S3 × T 4 (∆ = 0) and AdS2 × S2 × T 6 (∆ = 1)

• Symmetries ⊃ u(1)L ⊕ su(1, 1)R︸ ︷︷ ︸
AdS3

⊕ u(1)L ⊕ su(2)R︸ ︷︷ ︸
S3

⊂ u(1)⊕2
L ⊕ psu(1, 1|2)R︸ ︷︷ ︸

8 SUSY
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What about Integrability?

• Classically integrable → Another example where S-duality preserves integrability

• Hidden quantum group symmetry u(1)⊕2
L ⊂ UqL(psu(1, 1|2))

• Can bootstrap the worldsheet S-matrix & compute physical observables

• In some limits ∃ brane construction and holographic interpretation has been studied

AdS3 × S3 × T 4

(AdS3 × S3)∆ × T 4

T- and S-dualities

Integrable η-deformation of
AdS3 × S3 × T 4

T-dualities only
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A whole web of integrable deformations!

AdS3 × S3 × T 4

gL ⊕ gR
NATD σ-model

Squashing
UqL(g)⊕ gR

Squashing
+ NATDR

Squashing
+ PLTDL

Squashing
+ PLTD & NATD

η-deformation
UqL(g)⊕ UqR (g) λ-deformation

Hybrid η-λ

Non-Abelian T-Duality (NATD)

Poisson-Lie T-duality (PLTD)

NATD

PLTD

PLTD PLTD

PLTD

NATD

16 SUSY

8 SUSY

0 SUSY

qL → 1

qR → 1
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The first realization 

- in string theory,

- of a fully-backreacted 
holographic dual of a confining 
theory in 3D,

- at finite baryon density,

- (without flavor branes).

In collaboration with Antón Faedo and Carlos Hoyos.
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Confined phase
(regular horizonless solutions)

Deconfined phase
(black brane solutions)

“at finite baryon 
density”



Thanks!

The first realization 

- in string theory,

- of a fully-backreacted 
holographic dual of a confining 
theory in 3D,

- at finite baryon density,

- (without flavor branes).

In collaboration with Antón Faedo and Carlos Hoyos.

Check digital poster here!
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WLs and RG flows in ABJM theory

Motivation

W = Tr P exp
[
i

∮
(Aµ + matter) dxµ

]

• Mapped to fundamental strings via AdS/CFT

• Localization
- probe at weak and strong coupling

• 1 dCFT
- superconformal bootstrap
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WLs and RG flows in ABJM theory

Features

W = Tr P exp
[
i

∮ (
Aµ + matter(⊛,⊖, ⊘,⊚)

)
dxµ

]

• Parametric dependence: ⟨W ⟩ = f(⊛,⊖, ⊘,⊚)

• Non-trivial β-functions (β⊛, · · · , β⊚): RG flows connecting WLs

1 Constrain parameters such that WLs are BPS ⇒ Enriched flows ’22
MT, L. Castiglioni, S. Penati, D. Trancanelli

2 Generic parameters ⇒ Defect RG flows ’23
MT, L. Castiglioni, S. Penati, D. Trancanelli

(to appear soon)
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WLs and RG flows in ABJM theory

Results

Enriched flows

0 1

0 x

y
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WLs and RG flows in ABJM theory

Results

Defect RG flows
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WLs and RG flows in ABJM theory

Open questions

• Holographic description: interpolation and boundary conditions

• Framing and anomaly

• g-theorem and defect entropy

• 1/2 BPS fixed points: (non-)unitary dCFT and its dual distinction
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