Conserved Currents at Infinite Distance in the Conformal Manifold

José Calderón Infante

Based on 2305.xxxxx with Florent Baume
Eurostrings 2023, Gijón, 25/04/2023

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}} \epsilon^{+}$

Zamolodchikov distance

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{\left.-\alpha_{\ell}(t)\right]}$

Zamolodchikov distance

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

This work: [Baume, JC; to appear]
Conformal perturbation theory + HS symmetry

Zamolodchikov distance

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t)}$

This work: [Baume, JC; to appear]
Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!

Zamolodchikov distance

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t)}$

Zamolodchikov distance

This work: [Baume, JC; to appear]
Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!
III. $\leftrightarrow \alpha_{\ell} \sim\left\langle K_{\ell-1} K_{\ell-1} \mathcal{O}\right\rangle_{\overparen{H S}} \neq 0$

Evaluated at HS point!

Higher-Spin Points are at Infinite Distance

Swampland Distance Conjecture in AdS/CFT?
[Baume, JC '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

CFT Distance Conjecture:

Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell} \oplus t}$

Zamolodchikov distance

This work: [Baume, JC; to appear] Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!

$$
\text { III. } \leftrightarrow \alpha_{\ell} \sim\left\langle K_{\ell-1} K_{\ell-1} \odot\right\rangle_{\overparen{H S}} \neq 0
$$

Evaluated at HS point!
No extra assumption, e.g., no supersymmetry

Sketch of the Proof

Conformal perturbation theory

Weakly-broken HS symmetry

Sketch of the Proof

$$
\begin{aligned}
& \text { Conformal perturbation theory } \\
& \delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}
\end{aligned}
$$

Weakly-broken HS symmetry

Sketch of the Proof

$$
\begin{gathered}
\text { Conformal perturbation theory } \\
\begin{array}{c}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \widehat{O}\right\rangle_{t} \\
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t
\end{array}
\end{gathered}
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$

Weakly-broken HS symmetry

Sketch of the Proof

Conformal perturbation theory
 $\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
 $\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$
 $$
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}
$$
 $$
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t
$$
 $$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \sigma}
$$

Weakly-broken HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J \sigma}(t) \delta t$

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J Q}
$$

Weakly-broken HS symmetry

$$
\begin{gathered}
\partial \cdot J_{\ell}=g K_{\ell-1} \\
\vdots \\
C_{J J O}=C_{J J O}^{H S}+C_{J K O}^{H S} g+C_{K K O}^{H S} g^{2}+\cdots
\end{gathered}
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
$$

Weakly-broken HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
$$

Weakly-broken HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
\gamma_{\ell} \sim g^{2}
$$

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \widehat{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$

$$
\frac{d \gamma_{e}}{d t}=-C_{J J O}
$$

Weakly-broken HS symmetry

$$
\begin{gathered}
\partial \cdot J_{\ell}=g K_{\ell-1} \\
C_{J J O}=\underset{\text { HS symmetry constraints }}{C H S O}+C_{J K O}^{H S} g+C_{K S O}^{H S} g^{2}+\cdots \\
\mid \gamma_{\ell} \sim g^{2} \\
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
\end{gathered}
$$

$$
\gamma_{e} \rightarrow 0 \text { as } t \rightarrow \infty \quad \forall J_{\ell}, \mathcal{O}: \text { All HS points are at infinite distance }
$$

Sketch of the Proof

Conformal perturbation theory

$$
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \widehat{O}\right\rangle_{t}
$$

$$
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t
$$

$$
\frac{d \gamma_{e}}{d t}=-C_{J J O}
$$

Weakly-broken HS symmetry

$$
\begin{gathered}
\partial \cdot J_{\ell}=g K_{\ell-1} \\
C_{J J O}=\underset{\text { HS symmetry constraints }}{C H S O}+C_{J K O}^{H S} g+C_{K S O}^{H S} g^{2}+\cdots \\
\mid \gamma_{\ell} \sim g^{2} \\
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
\end{gathered}
$$

$$
\gamma_{\ell} \rightarrow 0 \text { as } t \rightarrow \infty \quad \forall J_{\ell}, \mathcal{O}: \text { All HS points are at infinite distance }
$$

Universidad Autónoma de Madrid

Symmetric fluxes and small tadpoles

Thibaut Coudarchet
Instituto de Física Teórica UAM-CSIC

Eurostrings, Gijón, April 25, 2023

Based on 2212.02533 and 2304.04789, TC, F. Marchesano, D. Prieto and M. A. Urkiola

The Tadpole Conjecture

Conjecture: [Bena, Blăbäck, Graña, Lüst '20]
 $N_{\text {flux }}>\alpha n_{\text {stab }}$ for $n_{\text {stab }} \gg 1$ with $\alpha=\mathcal{O}(1)$

Refined bound:

The Tadpole Conjecture

$$
\begin{aligned}
& \frac{\text { Conjecture: }}{\begin{array}{l}
\text { [Bena, Blåbäck, Graña, Lüst '20] } \\
N_{\text {flux }}>\alpha n_{\text {stab }} \\
\text { for } n_{\text {stab }} \gg 1 \text { with } \alpha=\mathcal{O}(1) \\
\\
\\
\quad \alpha \geq \frac{1}{3}
\end{array}} \begin{array}{l}
\text { Refined bound: }
\end{array}
\end{aligned}
$$

The Tadpole Conjecture

$$
\begin{aligned}
& \frac{\text { Conjecture: [Bena, Blåbäck, Graña, Lüst '20] }}{N_{\text {flux }}>\alpha n_{\text {stab }} \text { for } n_{\text {stab }} \gg 1 \text { with } \alpha=\mathcal{O}(1)} \\
& \qquad \begin{array}{l}
\frac{\text { Refined bound: }}{\alpha \geq \frac{1}{3}} \\
\qquad \frac{\text { D3-charge: }}{N_{\text {flux }} \leq-Q_{\mathrm{D} 3}}
\end{array}
\end{aligned}
$$

The Tadpole Conjecture

Type IIB flux compactifications and IIB1 scenario

- Axio-dilaton + CS sector
- Three-form fluxes:

$$
\left(\int_{B^{I}} F_{3}, \int_{A_{I}} F_{3}\right)=\left(f_{0}^{B}, f_{i}^{B}, f_{A}^{0}, f_{A}^{i}\right) \quad \mid \quad H_{3}:\left(h_{0}^{B}, h_{i}^{B}, h_{A}^{0}, h_{A}^{i}\right)
$$

Type IIB flux compactifications and IIB1 scenario

- Axio-dilaton + CS sector
- Three-form fluxes:

$$
\left(\int_{B^{I}} F_{3}, \int_{A_{I}} F_{3}\right)=\left(f_{0}^{B}, f_{i}^{B}, f_{A}^{0}, f_{A}^{i}\right) \quad \mid \quad H_{3}:\left(h_{0}^{B}, h_{i}^{B}, h_{A}^{0}, h_{A}^{i}\right)
$$

IIB1 flux configuration: $f_{A}^{0}=0, h_{A}^{0}=0$ and $h_{A}^{i}=0$ [Marchesano, Prieto, Wiesner '21]
W is quadratic \Longrightarrow simple linear system for axions + saxions [TC, Marchesano, Prieto, Urkiola '22]

Type IIB flux compactifications and IIB1 scenario

- Axio-dilaton + CS sector
- Three-form fluxes:

$$
\left(\int_{B^{I}} F_{3}, \int_{A_{I}} F_{3}\right)=\left(f_{0}^{B}, f_{i}^{B}, f_{A}^{0}, f_{A}^{i}\right) \quad \mid \quad H_{3}:\left(h_{0}^{B}, h_{i}^{B}, h_{A}^{0}, h_{A}^{i}\right)
$$

IIB1 flux configuration: $f_{A}^{0}=0, h_{A}^{0}=0$ and $h_{A}^{i}=0$ [Marchesano, Prieto, Wiesner '21]
W is quadratic \Longrightarrow simple linear system for axions + saxions [TC, Marchesano, Prieto, Urkiola '22]

Exploit eqs structure:
\Longrightarrow Efficiently scan flux space \longrightarrow Solutions in the LCS regime

Results

Geometry:
 $T^{6} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ with discrete torsion $\rightarrow h^{2,1}=51$

Symmetric fluxes and vevs:
Reduce \# of variables

Results

Results

Results

Thank you for your attention!

Papers: 2212.02533 and 2304.04789

KULEUVEN

T-duality building blocks in stringy corrections

based on 2210.16593, 2108.04370 [MD, James Liu]

Marina David, KU Leuven
25 April 2023 EuroStrings

Motivation

How can we understand the structure of the higher derivative terms that appear as a series expansion in α^{\prime} ?

Motivation

How can we understand the structure of the higher derivative terms that appear as a series expansion in α^{\prime} ?

Are there any additional hidden structures that make the corrections more manifest?

Motivation

How can we understand the structure of the higher derivative terms that appear as a series expansion in α^{\prime} ?

Are there any additional hidden structures that make the corrections more manifest?

Use manifest symmetries

Motivation

How can we understand the structure of the higher derivative terms that appear as a series expansion in α^{\prime} ?

Are there any additional hidden structures that make the corrections more manifest?

Use manifest symmetries \rightarrow T-duality, constrains background to be $O(d, d)$ invariant

Strategy

- revisit higher derivative corrections

Strategy

- revisit higher derivative corrections

Type II
String Theory

compactification

d-dimensional
EFT

Strategy

- revisit higher derivative corrections

Type II
String Theory

$\xrightarrow{\text { compactification }} \quad$| d-dimensional |
| :---: |
| EFT |

- formulate $O(d, d)$ invariant building blocks

Strategy

- revisit higher derivative corrections

Type II
String Theory

$\xrightarrow{\text { compactification }} \quad$| d-dimensional |
| :---: |
| EFT |

- formulate $O(d, d)$ invariant building blocks

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

What we want to do

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

What we want to do

- covariant/gauge invariant 10D expressions from building blocks

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

What we want to do

- covariant/gauge invariant 10D expressions from building blocks
- inclusion of Kaluza-Klein and winding gauge fields

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

What we want to do

- covariant/gauge invariant 10D expressions from building blocks
- inclusion of Kaluza-Klein and winding gauge fields
- nature of the redundancies that arise after compactification

Make hidden structures manifest

- field redefinitions and re-express Lagrangian with T-duality building blocks

What we have done

- T-duality building blocks for HD's for torus compactifications
- first order α^{\prime} corrections to heterotic and bosonic string

What we want to do

- covariant/gauge invariant 10D expressions from building blocks
- inclusion of Kaluza-Klein and winding gauge fields
- nature of the redundancies that arise after compactification

Bounds on quantum evolution complexity via lattice cryptography
 Gongshow Eurostrings 2023

Marine De Clerck

University of Cambridge

Based on work with B. Craps, O. Evnin, P. Hacker and M. Pavlov (arXiv:2202.13924).

Nielsen's complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to construct a given unitary:

$$
U=U_{1} U_{2} \cdots U_{n}
$$

Nielsen's complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to construct a given unitary:

$$
U=U_{1} U_{2} \cdots U_{n}
$$

Nielsen geometrized this idea and defined the complexity via the shortest length between the identity and U on the manifold of unitaries

- metric?
- simple building blocks?

Nielsen's complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to construct a given unitary:

$$
U=U_{1} U_{2} \cdots U_{n}
$$

Nielsen geometrized this idea and defined the complexity via the shortest length between the identity and U on the manifold of unitaries

- metric?
- simple building blocks?
\rightarrow modify the metric to penalize 'hard' directions

Nielsen's complexity in a nutshell

Quantum computing: what is the smallest number of simple gates needed to construct a given unitary:

$$
U=U_{1} U_{2} \cdots U_{n}
$$

Nielsen geometrized this idea and defined the complexity via the shortest length between the identity and U on the manifold of unitaries

- metric?
- simple building blocks?
\rightarrow modify the metric to penalize 'hard' directions

Goal

Apply Nielsen's complexity to dynamical models and characterize their unitary evolution operator $U=e^{-i H t}$.

A practical upper bound on Nielsen's complexity

Problem: Geodesics on $U(D)$ with an anisotropic metric are generally hard to find

A practical upper bound on Nielsen's complexity

Problem: Geodesics on $U(D)$ with an anisotropic metric are generally hard to find Variational ansatz: Restrict the minimization to curves of constant velocity
\rightarrow using the boundary conditions, one finds:

$$
\mathcal{C}_{\text {bound }}(t)=\min _{k \in \mathbb{Z}^{0}}\left\{\sum_{m n}\left(E_{n} t-2 \pi k_{n}\right)\left[\delta_{n m}+(\mu-1) Q_{n m}\right]\left(E_{m} t-2 \pi k_{m}\right)\right\}^{1 / 2}
$$

with $\quad Q_{n m} \equiv \delta_{n m}-\sum_{\alpha}\langle n| T_{\alpha}|n\rangle\langle m| T_{\alpha}|m\rangle$.

A practical upper bound on Nielsen's complexity

Problem: Geodesics on $U(D)$ with an anisotropic metric are generally hard to find Variational ansatz: Restrict the minimization to curves of constant velocity
\rightarrow using the boundary conditions, one finds:

$$
\mathcal{C}_{\text {bound }}(t)=\min _{k \in \mathbb{Z}^{d}}\left\{\sum_{m n}\left(E_{n} t-2 \pi k_{n}\right)\left[\delta_{n m}+(\mu-1) Q_{n m}\right]\left(E_{m} t-2 \pi k_{m}\right)\right\}^{1 / 2},
$$

with

$$
Q_{n m} \equiv \delta_{n m}-\sum_{\alpha}\langle n| T_{\alpha}|n\rangle\langle m| T_{\alpha}|m\rangle .
$$

A practical upper bound on Nielsen's complexity

Problem: Geodesics on $U(D)$ with an anisotropic metric are generally hard to find Variational ansatz: Restrict the minimization to curves of constant velocity
\rightarrow using the boundary conditions, one finds:

$$
\mathcal{C}_{\text {bound }}(t)=\min _{k \in \mathbb{Z}^{0}}\left\{\sum_{m n}\left(E_{n} t-2 \pi k_{n}\right)\left[\delta_{n m}+(\mu-1) Q_{n m}\right]\left(E_{m} t-2 \pi k_{m}\right)\right\}^{1 / 2}
$$

with

$$
Q_{n m} \equiv \delta_{n m}-\sum_{\alpha}\langle n| T_{\alpha}|n\rangle\langle m| T_{\alpha}|m\rangle
$$

Question

Is this upper bound sensitive to different types of dynamics?

Integrable models have lower complexity

In an upcoming paper, ${ }^{1}$ we demonstrate that:

- random matrix theory can be used to understand the behavior of our bound for generic chaotic models
- the complexity reduction in integrable systems originates from shortcuts on the manifold of unitaries that appear when conserved operators point in 'easy' directions

[^0]
Unifying the 6D N = $(1,1)$ String Landscape

Bernardo Fraiman (CERN)

Based on
arXiv:2209.06214 [with H.P de Freitas]

Eurostrings Gijón 2023|Gong-Show talk

What kind of QFTs can be coupled to gravity?

\rightarrow Exploration of string landscape.

Restricting to 16 supercharges \longrightarrow it seems possible to be exhaustive.
$\ln D=10: \quad E_{8} \times E_{8}$ and $\mathrm{SO}(32)$ string theories \rightarrow fixed gauge symmetry
In $D \leq 9$: Het on $T^{d} \rightarrow$ rank $\mathbf{1 6 + d}$ simply-laced groups
Complete classification for $D \geq 6$
[Font, BF, Graña, Núñez, P. de Freitas '20]
studying charge lattices.
[BF, P. de Freitas '21]

Theories with reduced rank symmetries \rightarrow Het. on orbifolds, M-th., F-th, IIA on K3 with frozen sing. Also doubly and triply-laced groups.

In $D=6$ there are 17 known theories:
[Narain '85] Narain theory (Het on T^{4})
[de Boer et al. ‘01]
M-theory on $\left(\mathrm{K} 3 \times S^{1}\right) / \mathbb{Z}_{n}$ with $n=2$ to 8
M-theory on $\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{n}$ with $n=2,3,4,6$
Het on $T^{4} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ (quadruple)
[Dabholkar, Harvey '98] IIA on T^{4} / \mathbb{Z}_{5} (string island)
[P. de Freitas, Montero '22] F-th. on $S^{1} \times\left(T^{4} \times S^{1}\right) / \mathbb{Z}_{n}(\theta$ angle) with $n=2,3,4$
Our construction reproduces all of them and predicts 30 more!
Connections between these theories: rank reduction maps on gauge groups.

The map:

In $D=6$, map acts on vacua at the level of gauge groups, only if they have nontrivial topology.

$$
\begin{array}{rll}
\frac{\operatorname{Spin}(32)}{Z_{2}} & \rightarrow \operatorname{Spin}(17) & \text { (Rank reduced by 8) } \\
\frac{E_{6} \times E_{6} \times E_{6}}{T_{2}} & \rightarrow G_{2} \times G_{2} \times G_{2} & \text { (Rank reduced by 12) }
\end{array}
$$

Transformation is determined by element of fundamental group and maps to a given moduli space.

Classification of gauge groups $=$ Classification of moduli spaces
(In Narain moduli space)

Conclusions:

$\checkmark 17$ known moduli spaces in $D=6$ with 16 supercharges are related through map according to gauge group topology.
\checkmark This map naturally predicts a total of 47 moduli spaces in an unified way.
$\checkmark 16$ of these moduli spaces are UV completions of pure SUGRA (1 is known).
\checkmark Odd rank reduction is possible in $D=6$.

- How can these new theories be constructed?

Future work:

Generalization to less (or none) supercharges.
Explain this structure trough swampland constraints.

Thank you very much!

Black holes' quasinormal modes from $\mathcal{N}=2$ gauge theory and integrability

Daniele Gregori

Nordic Institute for Theoretical Physics (NORDITA), Stockholm, Sweden

Eurostrings 2023, Apr 25th 2023

Based on: arXiv:2208.14031, arXiv:2112.11434, arXiv:1908.08030
with Davide Fioravanti (INFN, Univ. Bologna) and Hongfei Shu (BIMSA)

On quantum integrability and $\mathcal{N}=2$ gauge theory

- Broadly speaking, integrability can be considered as the study of non-linear phenomena in nature in a quantitative exact way (non perturbative).
- The hallmark of quantum integrability is the presence of infinite (local) integrals of motion commuting with each other

$$
\begin{equation*}
\left[\mathbf{I}_{2 n-1}, \mathbf{I}_{2 m-1}\right]=0, \tag{1}
\end{equation*}
$$

which are also asymptotic expansion coefficients of the Baxter's Q operator

$$
\begin{equation*}
\ln \mathbf{Q}(\theta) \simeq-C_{0} e^{\theta}-\sum_{n=1}^{\infty} e^{\theta(1-2 n)} C_{n} \mathbf{I}_{2 n-1} \quad \theta \rightarrow+\infty \tag{2}
\end{equation*}
$$

Integrable structures appear also in 4D SUSY gauge theories, typically with $\mathcal{N}=4$ supersymmetry (AdS/CFT correspondence) but also with $\mathcal{N}=2$.
In $\mathcal{N}=2$ SUSY, the prepotential \mathcal{F} is obtained from gauge periods $a^{2} a_{D}$ of Seiberg-Witten differential λ as

On quantum integrability and $\mathcal{N}=2$ gauge theory

- Broadly speaking, integrability can be considered as the study of non-linear phenomena
in nature in a quantitative exact way (non perturbative)
The hallmark of quantum integrability is the presence of infinite (local) integrals of motion commuting with each other

which are also asymptotic expansion coefficients of the Baxter's Q operator
- Integrable structures appear also in 4D SUSY gauge theories, typically with $\mathcal{N}=4$ supersymmetry (AdS/CFT correspondence) but also with $\mathcal{N}=2$.
- $\ln \mathcal{N}=2$ SUSY, the prepotential \mathcal{F} is obtained from gauge periods a, a_{D} of Seiberg-Witten differential λ as

$$
\begin{equation*}
\left(a, a_{D}\right)=\oint_{A, B} \lambda(x) d x, \quad a_{D}=\frac{\partial \mathcal{F}}{\partial a} \quad \Longrightarrow \mathcal{F} \tag{3}
\end{equation*}
$$

Three different physical theories, same mathematics!

- The ODE/IM correspondence allows to derive the integrability structures from some ODE. In particular, the Q function (vacuum eigenvalue of Q operator) is defined as

$$
\begin{gather*}
Q=W\left[\psi_{+}, \psi_{-}\right] \quad \text { with } \quad \psi_{ \pm}(y) \rightarrow 0 \quad y \rightarrow \pm \infty . \tag{4}\\
-\frac{d^{2}}{d y^{2}} \psi(y)+\left[2 e^{2 \theta} \cosh y+P^{2}\right] \psi(y)=0 \quad \text { INTEGRABILITY (sd-Liouville) } \tag{5}\\
\frac{\hbar}{\Lambda_{0}}=\frac{\epsilon_{1}}{\Lambda_{0}}=e^{-\theta} \quad \frac{u}{\Lambda_{0}^{2}}=\frac{1}{2} P^{2} e^{-2 \theta} \quad \Downarrow \tag{6}\\
-\frac{\hbar^{2}}{2} \frac{d^{2}}{d y^{2}} \psi(y)+\left[\Lambda^{2} \cosh y+u\right] \psi(y)=0 \quad \mathcal{N}=2 \text { NS GAUGE TH. }\left(S U(2) N_{f}=0\right) \tag{7}\\
r=L e^{y / 2} \omega L=-2 i e^{\theta} \quad P=\frac{1}{2}(I+2) \quad \phi(r)=e^{y / 2} \psi(y) \tag{8}\\
\frac{d^{2} \phi}{d r^{2}}+\left[\omega^{2}\left(1+\frac{L^{4}}{r^{4}}\right)-\frac{(I+2)^{2}-\frac{1}{4}}{r^{2}}\right] \phi(r)=0 \quad \text { BLACK HOLES PERT. (D3 brane) } \tag{9}
\end{gather*}
$$

Quasinormal modes in integrability and $\mathcal{N}=2$ gauge theory

- The quasinormal modes (QNMs) are the frequencies of the damped oscillations in the ringdown phase of BH merging and have a direct connection to GWs observations.
- While computing QNMs is well understood in General Relativity, in modified gravity theories it is still a challenge and it is important to develop new methods (analytic and numeric).

We proved that the QNMs definition is a Bethe root (zero) condition on the $Q=W\left[\psi_{+}, \psi_{-}\right]$function

We proved an identification of Q function with the gauge period from which it follows that QNMs are given also by it $Q(\theta, P)=\exp \frac{2 \pi i}{\hbar} a_{D}\left(\hbar, u, \Lambda_{0}\right) \Longrightarrow \frac{1}{\hbar} a_{D}\left(i \hbar,-u, \Lambda_{0}\right)=\frac{i}{2}\left(n+\frac{1}{2}\right)$

Quasinormal modes in integrability and $\mathcal{N}=2$ gauge theory

- The quasinormal modes (QNMs) are the frequencies of the damped oscillations in the ringdown phase of BHs merging and have a direct connection to GWs observations.
- While computing QNMs is well understood in General Relativity, in modified gravity theories it is still a challenge and it is important to develop new methods (analytic and numeric).

- We proved that the QNMs definition is a Bethe root (zero) condition on the $Q=W\left[\psi_{+}, \psi_{-}\right]$function

$$
\begin{equation*}
Q\left(\theta_{n}\right)=0 \quad \Longleftrightarrow \quad Q\left(\theta_{n} \pm i \pi / 2\right)= \pm i \tag{10}
\end{equation*}
$$

We proved an identification of Q function with the gauge period from which it follows that QNMs are given also by it

Quasinormal modes in integrability and $\mathcal{N}=2$ gauge theory

- The quasinormal modes (QNMs) are the frequencies of the damped oscillations in the ringdown phase of BH merging and have a direct connection to GWs observations.
- While computing QNMs is well understood in General Relativity, in modified gravity theories it is still a challenge and it is important to develop new methods (analytic and numeric).

- We proved that the QNMs definition is a Bethe root (zero) condition on the $Q=W\left[\psi_{+}, \psi_{-}\right]$function

$$
\begin{equation*}
Q\left(\theta_{n}\right)=0 \quad \Longleftrightarrow \quad Q\left(\theta_{n} \pm i \pi / 2\right)= \pm i \tag{10}
\end{equation*}
$$

- We proved an identification of Q function with the gauge period from which it follows that QNMs are given also by it

$$
\begin{equation*}
Q(\theta, P)=\exp \frac{2 \pi i}{\hbar} a_{D}\left(\hbar, u, \Lambda_{0}\right) \Longrightarrow \frac{1}{\hbar} a_{D}\left(i \hbar,-u, \Lambda_{0}\right)=\frac{i}{2}\left(n+\frac{1}{2}\right) . \tag{11}
\end{equation*}
$$

Computing QNMs from Thermodynamic Bethe Ansatz

- The Q (or $Y=Q^{2}$) functions satisfy functional equations which can be inverted into the Thermodynamic Bethe Ansatz (TBA) for $\varepsilon(\theta)=-2 \ln Q(\theta)$ (here for $S U(2) N_{f}=0$):

$$
\begin{equation*}
\varepsilon(\theta)=\frac{16 \sqrt{\pi^{3}}}{\Gamma\left(\frac{1}{4}\right)^{2}} e^{\theta}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime}\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi}, \tag{12}
\end{equation*}
$$

with $\varepsilon(\theta, P) \simeq 8 P \theta, I \sim P>0$ as $\theta \rightarrow-\infty$.

- Through the we have a new exact method to numerically compute QNMs, through

$$
\begin{equation*}
\varepsilon\left(\theta_{n}-i \pi / 2\right)=-i \pi(2 n+1) \tag{13}
\end{equation*}
$$

For now we have all this for D3 branes and extremal black holes, but we are

n	I	TBA	Leaver
0	0	$\underline{1.36912}-\underline{0.504048 i}$	$\underline{1.36972-\underline{0.504311 i}}$
0	1	$\underline{2.09118}-\underline{0.501788 i}$	$\underline{2.09176}-\underline{0.501811 i}$
0	2	$\underline{2.8057}-\underline{0.501009 i}$	$\underline{2.80629-\underline{0.501000 i}}$
0	3	$\underline{3.51723}-\underline{0.5006} 49 i$	$\underline{3.51783-\underline{0.500634 i}}$
0	4	$\underline{4.22728}-\underline{0.500453 i}$	$\underline{4.227} 90-\underline{0.500438 i}$

Comparison of QNMs of the D3 brane from TBA (12) (through (13) with $n=0$), Leaver method (with $L=1$).

Computing QNMs from Thermodynamic Bethe Ansatz

- The Q (or $Y=Q^{2}$) functions satisfy functional equations which can be inverted into the Thermodynamic Bethe Ansatz (TBA) for $\varepsilon(\theta)=-2 \ln Q(\theta)$ (here for $S U(2) N_{f}=0$):

$$
\begin{equation*}
\varepsilon(\theta)=\frac{16 \sqrt{\pi^{3}}}{\Gamma\left(\frac{1}{4}\right)^{2}} e^{\theta}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime}\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi}, \tag{12}
\end{equation*}
$$

with $\varepsilon(\theta, P) \simeq 8 P \theta, I \sim P>0$ as $\theta \rightarrow-\infty$.

- Through the we have a new exact method to numerically compute QNMs, through

$$
\begin{equation*}
\varepsilon\left(\theta_{n}-i \pi / 2\right)=-i \pi(2 n+1) \tag{13}
\end{equation*}
$$

- For now we have all this for D3 branes and extremal black holes, but we are working in its generalization.

n	I	TBA	Leaver
0	0	$\underline{1.36912}-\underline{0.504048 i}$	$\underline{1.36972-\underline{0.504311 i}}$
0	1	$\underline{2.09118}-\underline{0.501788 i}$	$\underline{2.09176-\underline{0.501811 i}}$
0	2	$\underline{2.8057}-\underline{0.501009 i}$	$\underline{2.80629-\underline{0.501000 i}}$
0	3	$\underline{3.51723-\underline{0.500649 i}}$	$\underline{3.51783-\underline{0.500634 i}}$
0	4	$\underline{4.227} 28-\underline{0.500453 i}$	$\underline{4.227} 90-\underline{0.500438 i}$

Comparison of QNMs of the D3 brane from TBA (12) (through (13) with $n=0$), Leaver method (with $L=1$).

Cubic vector model on the boundary

Sabine Harribey

Work in progress with Igor Klebanov and Zimo Sun

Eurostrings 2023-April 25 ${ }^{\text {th }}$ - Gijón

General motivations

- Yang-Lee model: purely imaginary fixed point, no unitarity
- Cubic vector model: real stable IR fixed point for large N
- Complex fixed points for $N<N_{\text {crit }} \approx 1038.27$

What happens on a boundary?

- What is the range of N with real stable IR fixed points
- Can we find unitary fixed points?

Model

$$
\begin{aligned}
S[\phi] & =\int d^{d+1} x\left[\frac{1}{2} \partial_{\mu} \phi_{l}(x) \partial^{\mu} \phi_{l}(x)+\frac{\lambda_{4}}{4!}\left(\phi_{l}(x) \phi_{l}(x)\right)^{2}\right] \\
& +\int d^{d} x\left[\frac{\lambda_{1}}{2} \phi_{N}(x) \phi_{a}(x) \phi_{a}(x)+\frac{\lambda_{2}}{3!} \phi_{N}^{3}\right]
\end{aligned}
$$

$d=3:$

- Cubic interaction marginal on the boundary
- Quartic interaction marginal in the bulk
\Rightarrow Bulk interactions modify boundary fixed points

Results and future work

- $N=1$: Real fixed points but unstable
- Large N :
- Only complex fixed points
- One pair of purely imaginary stable fixed points
- Critical N : no real fixed points for $N>N_{\text {crit }}=7.1274-3.6951 \epsilon$
- Stable fixed points always purely imaginary
- Dimensions of operators, CFT data
- $\epsilon=1$: compare with plane defect of [Krishnan, Metlitski arXiv:2301.05728]?

New Inequalities in Extended Black Hole Thermodynamics

Eurostrings 2023

Based on Work with Masaya Amo and Antonia Frassino (to appear)

What is Extended Thermodynamics?

- Study the role of Pressure and Volume terms in the laws of black hole thermo
- Pressure \Leftrightarrow Cosmological constant
- Volume \Leftrightarrow Komar integrals
- Original motivation: Smarr's formula/first law with Λ
D. Kastor, J. Traschen, S. Ray [0904.2765]

The Reverse Isoperimetric Inequality

- CGKP: the thermodynamic volume and entropy satisfy a reverse isoperimetric inequality

$$
\left(\frac{V}{\mathscr{V}_{0}}\right)^{1 /(D-1)}\left(\frac{\mathscr{A}_{0}}{A}\right)^{1 /(D-2)} \geq 1
$$

- "Proof by example"
- No counter-examples for asymptotically AdS black holes in $D \geq 4$

Refining the Conjecture

- Our objective: Understand the necessary/sufficient conditions for the validity of the conjecture

$$
\left(\frac{V}{\mathscr{V}_{0}}\right)^{1 /(D-1)}\left(\frac{\mathscr{A}_{0}}{A}\right)^{1 /(D-2)} \geq 1 \quad \Leftrightarrow \quad A(V) \leq A_{\mathrm{Schw}}(V)
$$

- One path: Construct stronger versions; easier to find counter-examples? Hierarchy of inequalities

$$
A(V, J) \leq A_{\text {Kerr-AdS }}(V, J)
$$

M. Amo, A. M. Frassino, R. A. Hennigar (to appear) [2305.?????]

Large N Partition Functions, Holography, and Black Holes

Junho Hong

Eurostrings 2023 Gijón

April 2023
$2203.14981,2210.09318,2304.01734, \& 2210.15326$
with Nikolay Bobev, Valentin Reys, \& Sunjin Choi

KU LEUVEN

Question \& Approach

- String/M-theory: theories of quantum gravity!
- Question:

Path integral of string/M-theory
beyond the 2-derivative supergravity approximation?

- Step I. AdS/CFT correspondence provides a stage:

$$
Z_{\text {CFT }}=\left.Z_{\text {string } / \mathrm{M} \text {-theory }}\right|_{\text {AdS solution }}
$$

- Step II. Supersymmetry (localization) allows for the exact calculation of

$$
Z_{\text {SCFT }}=\left.Z_{\text {string } / \mathrm{M} \text {-theory }}\right|_{\text {susy AdS solution }}
$$

Example: ABJM \leftrightarrow M-theory, setup

3d $\mathrm{U}(N)_{k} \times \mathrm{U}(N)_{-k}$ ABJM theory \leftrightarrow M-theory on $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$

- S_{b}^{3} partition function

$$
Z_{\mathrm{ABJM}}^{S_{b}^{3}}=\left.Z_{\mathrm{M} \text {-theory }}\right|_{\text {Squashed } \mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}}
$$

- $S^{1} \times \Sigma_{\mathfrak{g}}$ topologically twisted index

$$
Z_{\text {ABJM }}^{S^{1} \times \Sigma_{\mathfrak{g}}}=\left.Z_{\mathrm{M}-\text { theory }}\right|_{\text {Reissner-Nordström } \mathrm{AdS}_{4} \mathrm{BH} \times S^{7} / \mathbb{Z}_{k}}
$$

- $S^{1} \times{ }_{\omega} S^{2}$ superconformal index

$$
Z_{\mathrm{ABJM}}^{S^{1} \times \omega S^{2}}=\left.Z_{\mathrm{M} \text {-theory }}\right|_{\text {Kerr-Newman } \mathrm{AdS}_{4} \mathrm{BH} \times S^{7} / \mathbb{Z}_{k}}
$$

Evaluate them beyond the large N limit (= 2-der sugra limit)!

Example: ABJM \leftrightarrow M-theory, results

S_{b}^{3} partition function $\left(Q \equiv b+b^{-1}\right)$ [Bobev-JH-Reys 22] [Hristov 22] :
$F_{\mathrm{ABJM}}^{S_{b}^{3}}=-\log \left[\left(\frac{32}{\pi^{2} k Q^{4}}\right)^{\frac{1}{3}} e^{\mathcal{A}_{b}(k)} \mathrm{Ai}\left[\left(\frac{32}{\pi^{2} k Q^{4}}\right)^{-\frac{1}{3}}\left(N-\frac{k}{24}-\frac{1}{k}\left(\frac{4}{Q^{2}}-\frac{2}{3}\right)\right)\right]\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)$.
$S^{1} \times \Sigma_{\mathfrak{g}}$ topologically twisted index [Bobev-JH-Reys 22] :

$$
\begin{aligned}
F_{\mathrm{ABJM}}^{S^{1} \times \Sigma_{\mathfrak{g}}}= & \frac{\pi(1-\mathfrak{g}) \sqrt{2 k}}{3}\left[\left(N-\frac{k}{24}+\frac{2}{3 k}\right)^{\frac{3}{2}}-\frac{3}{k}\left(N-\frac{k}{24}+\frac{2}{3 k}\right)^{\frac{1}{2}}\right] \\
& +\frac{1-\mathfrak{g}}{2} \log \left(N-\frac{k}{24}+\frac{2}{3 k}\right)-(1-\mathfrak{g}) \hat{f}_{0}(k)+\mathcal{O}\left(e^{-\sqrt{N}}\right)
\end{aligned}
$$

$S^{1} \times{ }_{\omega} S^{2}$ superconformal index $(\omega \rightarrow 0)$ [Bobev-Choi-JH-Reys 22] :

$$
F_{\mathrm{ABJM}}^{S^{1} \times \omega S^{2}}=\frac{2}{\omega}\left[\frac{\pi \sqrt{2 k}}{12}\left(N-\frac{k}{24}+\frac{2}{3 k}\right)^{\frac{3}{2}}+\hat{g}_{0}(k)\right]+F_{\mathrm{ABJM}}^{S^{1} \times \Sigma_{\mathfrak{g}=0}}+\mathcal{O}\left(\omega, e^{-\sqrt{N}}\right) .
$$

$\frac{1}{N}$-perturbative expansions of $F=-\log Z$ have closed-form expressions!

On non-supersymmetric fixed points in five dimensions

Francesco Mignosa (Technion)

Based on:
M.Bertolini, F.M., J.Van Muiden JHEP 10 (2022) 064

Eurostrings 2023, Gijón, 25/04/2023

Brief motivation

- CFTs are interesting: second order phase transition, endpoints of RG flows, perturbative quantum gravity via AdS/CFT...;
- In 5d, CFTs only known thanks to SUSY and string constructions

Are there non-SUSY CFTs in 5d?

Soft SUSY breaking

SUSY breaking deformation \tilde{m} of E_{1} SCFT: PT at $1 / g^{2} \sim \sqrt{\tilde{m}}$;

Order of phase transition?

pq-web analysis

Generalization: $X_{1, N}$ theory at large N

- $(1,-1) 5$-brane in $(1,1)$ bckg: distinct vacua if $1 / g^{2}<\sqrt{\tilde{m}}$:

- $1 / g^{2} \sim \tilde{h} \equiv \sqrt{\tilde{m}}$: single vacuum $\rightarrow 2^{\text {nd }}$ order PT!

Thank you for the attention!

Universal aspects of holographic quantum critical transport with self-duality

Ángel Jesús Murcia Gil
Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy)
Eurostrings 2023
Gijón (Kingdom of Spain)
Based on arXiv:2304.08510
Carried out in collaboration with Dmitri Sorokin

Introduction

This work lies in the interface between two fundamental realms of today's high-energy physics:

A higher-order gravity is characterized by the presence of (purely gravitational) higher-curvature terms like

$$
R^{2}, \quad R_{\alpha \beta} R^{\alpha \beta} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}, \quad R^{27} R_{\mu \nu} R_{\alpha \beta} R^{\mu \alpha \nu \beta}
$$

and/or matter terms with nonminimal couplings to gravity, like

$$
R^{14} F^{2}, \quad R^{3} R_{\mu \nu} F^{\mu \alpha} F_{\alpha}^{\nu}, \quad R^{\mu \nu \rho \sigma} F_{\mu \rho} F_{\nu \sigma}
$$

for a $\mathrm{U}(1)$ gauge vector with field strength $F_{\mu \nu}$.

A higher-order gravity is characterized by the presence of (purely gravitational) higher-curvature terms like

$$
R^{2}, \quad R_{\alpha \beta} R^{\alpha \beta} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}, \quad R^{27} R_{\mu \nu} R_{\alpha \beta} R^{\mu \alpha \nu \beta}
$$

and/or matter terms with nonminimal couplings to gravity, like

$$
R^{14} F^{2}, \quad R^{3} R_{\mu \nu} F^{\mu \alpha} F_{\alpha}^{\nu}, \quad R^{\mu \nu \rho \sigma} F_{\mu \rho} F_{\nu \sigma}
$$

for a $\mathrm{U}(1)$ gauge vector with field strength $F_{\mu \nu}$.
Specific higher-order gravities arise from quantum corrections to effective actions. In recent years, intrinsic interest by themselves (EFT approach).

A higher-order gravity is characterized by the presence of (purely gravitational) higher-curvature terms like

$$
R^{2}, \quad R_{\alpha \beta} R^{\alpha \beta} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}, \quad R^{27} R_{\mu \nu} R_{\alpha \beta} R^{\mu \alpha \nu \beta}
$$

and/or matter terms with nonminimal couplings to gravity, like

$$
R^{14} F^{2}, \quad R^{3} R_{\mu \nu} F^{\mu \alpha} F_{\alpha}^{\nu}, \quad R^{\mu \nu \rho \sigma} F_{\mu \rho} F_{\nu \sigma}
$$

for a $\mathrm{U}(1)$ gauge vector with field strength $F_{\mu \nu}$.
Specific higher-order gravities arise from quantum corrections to effective actions. In recent years, intrinsic interest by themselves (EFT approach).

We focus on higher-order extensions of four-dimensional Einstein-Maxwell theory with exact electromagnetic duality invariance.

Such theories exist and have been fully characterized to quadratic order in $F_{\mu \nu}$ [Cano, Murcia '21].

Higher-order gravities and holography

Holographically, theories of gravity and vector field on AdS correspond to boundary CFTs with a current J_{a}.

Natural to compute the linear response of the current in presence of non-trivial source (given by boundary value of vector field).

Holographically, theories of gravity and vector field on AdS correspond to boundary CFTs with a current J_{a}.

Natural to compute the linear response of the current in presence of non-trivial source (given by boundary value of vector field).

This is encoded in the conductivity. For CFT in flat space:

$$
\sigma_{j}(\omega, k)=-\operatorname{Im}\left(\frac{C_{j j}}{\omega}\right), \quad j=\text { spatial directions }
$$

where $C_{a b}$ stands for current-current retarded correlator.

Higher-order gravities and holography

Holographically, theories of gravity and vector field on AdS correspond to boundary CFTs with a current J_{a}.

Natural to compute the linear response of the current in presence of non-trivial source (given by boundary value of vector field).

This is encoded in the conductivity. For CFT in flat space:

$$
\sigma_{j}(\omega, k)=-\operatorname{Im}\left(\frac{C_{j j}}{\omega}\right), \quad j=\text { spatial directions }
$$

where $C_{a b}$ stands for current-current retarded correlator.
Following usual holographic prescriptions [Son, Starinets '02; Policastro, Son, Starinets '02], conductivities of holographic Einstein-Maxwell theory have been examined [Herzog, Kovtun, Sachdev, Son '07]. Interesting properties were found and argued to be due to duality invariance.

Higher-order gravities and holography

Holographically, theories of gravity and vector field on AdS correspond to boundary CFTs with a current J_{a}.

Natural to compute the linear response of the current in presence of non-trivial source (given by boundary value of vector field).

This is encoded in the conductivity. For CFT in flat space:

$$
\sigma_{j}(\omega, k)=-\operatorname{Im}\left(\frac{C_{j j}}{\omega}\right), \quad j=\text { spatial directions }
$$

where $C_{a b}$ stands for current-current retarded correlator.
Following usual holographic prescriptions [Son, Starinets '02; Policastro, Son, Starinets '02], conductivities of holographic Einstein-Maxwell theory have been examined [Herzog, Kovtun, Sachdev, Son '07]. Interesting properties were found and argued to be due to duality invariance.

Holographic conductivities associated to generic duality-invariant extensions of Einstein-Maxwell theory?

Results

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.
(2) Analytical expressions for non-zero momentum for the conductivities are derived in the limit of large and small frequencies, observing a hydrodynamic-to-collissionless crossover in the longitudinal channel.

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.
(2) Analytical expressions for non-zero momentum for the conductivities are derived in the limit of large and small frequencies, observing a hydrodynamic-to-collissionless crossover in the longitudinal channel.
(3) When covariant derivatives of the curvature do not couple to the $F_{\mu \nu}$:

Results

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.
(2) Analytical expressions for non-zero momentum for the conductivities are derived in the limit of large and small frequencies, observing a hydrodynamic-to-collissionless crossover in the longitudinal channel.
(3) When covariant derivatives of the curvature do not couple to the $F_{\mu \nu}$:

- If GR background is chosen, the conductivities associated to any such holographic theory at any frequency and momentum coincide exactly with those of Einstein-Maxwell theory.

Results

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.
(2) Analytical expressions for non-zero momentum for the conductivities are derived in the limit of large and small frequencies, observing a hydrodynamic-to-collissionless crossover in the longitudinal channel.
(3) When covariant derivatives of the curvature do not couple to the $F_{\mu \nu}$:

- If GR background is chosen, the conductivities associated to any such holographic theory at any frequency and momentum coincide exactly with those of Einstein-Maxwell theory.
- If higher-curvature terms correct the background, conductivities get modified, but contributions from nonminimal couplings of gauge field to gravity are subleading.

Results

We have proven several universal properties of conductivities which hold in every CFT holographic to a general four-dimensional duality-invariant higher-order theory:
(1) We explicitly verify that the conductivity at zero momentum is a universal constant.
(2) Analytical expressions for non-zero momentum for the conductivities are derived in the limit of large and small frequencies, observing a hydrodynamic-to-collissionless crossover in the longitudinal channel.
(3) When covariant derivatives of the curvature do not couple to the $F_{\mu \nu}$:

- If GR background is chosen, the conductivities associated to any such holographic theory at any frequency and momentum coincide exactly with those of Einstein-Maxwell theory.
- If higher-curvature terms correct the background, conductivities get modified, but contributions from nonminimal couplings of gauge field to gravity are subleading.

¡Muchas gracias!

AdS $_{3}$ SOLUTIONS AND HOLOGRAPHY

ANAYELI RAMÍREZ
Università di Milano-Bicocca

Based on 2304.today with N. Macpherson
EUROSTRINGS 2023, GONG SHOW

We provide two new AdS_{3} classes of solutions to massive type IIA supergravity realising an $\mathfrak{o} \mathfrak{p}(n \mid 2)$ superconformal

$$
\text { algebra for } n=5,6
$$

Motivation:

* AdS_{3} geometries arise as near horizon geometries of 5 d extremal BH s, so these scenarios are relevant for the microscopic description of BHs.
* Via the AdS/CFT correspondence one might presume that there is a 2 d conformal field theory
* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.

Motivation:

* AdS_{3} geometries arise as near horizon geometries of 5 d extremal BHs , so these scenarios are relevant for the microscopic description of BHs.
* Via the AdS/CFT correspondence one might presume that there is a 2 d conformal field theory
* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.
* Canonical example: Near horizon of D1-D5 system.

$$
\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2} \text { geometry realising small }(4,4) \text { superconformal symmetry }
$$

(Giveon, Kutasov and Seiberg ' 98)
Symmetric Product Orbifold on CY_{2}
(Eberhardt, Gaberdiel, Gopakumar)

Motivation:

* AdS_{3} geometries arise as near horizon geometries of 5 d extremal BH s, so these scenarios are relevant for the microscopic description of BHs.
* Via the AdS/CFT correspondence one might presume that there is a 2 d conformal field theory
* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.
* Canonical example: Near horizon of D1-D5 system.

$$
\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2} \text { geometry realising small }(4,4) \text { superconformal symmetry }
$$

$$
\text { Symmetric Product Orbifold on } \mathrm{CY}_{2} \quad \begin{aligned}
& \text { (Giveon, Kutasov and Seiberg' 98) } \\
& \text { (Eberhardt, Gaberdiel, Gopakumar) }
\end{aligned}
$$

One avatar where the CFT side is rather more developed than the gravity side is $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
Maximal supersymmetric cases not all known

Motivation:

* AdS_{3} geometries arise as near horizon geometries of 5 d extremal BH s, so these scenarios are relevant for the microscopic description of BHs.
* Via the AdS/CFT correspondence one might presume that there is a 2 d conformal field theory
* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.
* Canonical example: Near horizon of D1-D5 system.

$$
\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2} \text { geometry realising small }(4,4) \text { superconformal symmetry }
$$

(Giveon, Kutasov and Seiberg ' 98)

$$
\text { Symmetric Product Orbifold on } \mathrm{CY}_{2} \text { (Eberhardt, Gaberdiel, Gopakumar) }
$$

One avatar where the CFT side is rather more developed than the gravity side is $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Maximal supersymmetric cases not all known

Goal: We partially fill this gap by finding two new classifications of AdS_{3} solutions to massive IIA supergravity with an $\mathfrak{v} \mathfrak{p}(n \mid 2)$ superconformal algebra, for $n=5,6$, with a view towards holography

The strategy:

- We seek solutions AdS_{3} solutions of type II supergravity with a superconformal algebra

$$
\mathfrak{s l}(2) \oplus \mathfrak{s v}(n) \quad \text { for } \quad n=5,6
$$

We want supersymmetric solutions,

$(6,0):$	$S O(6)$ R-symmetry
$(5,0):$	$S O(5)$ R-symmetry

The strategy:

- We seek solutions AdS_{3} solutions of type II supergravity with a superconformal algebra

$$
\mathfrak{s l}(2) \oplus \mathfrak{s p}(n) \quad \text { for } \quad n=5,6
$$

We want supersymmetric solutions,
$(6,0): S O(6)$ R-symmetry $\Rightarrow \mathbb{C P}^{3}$
(5,0): \quad SO(5) R-symmetry $\quad \Rightarrow \quad S^{2} \rightarrow \mathbb{C P}^{3} \rightarrow S^{4}$

Geometrically,

$$
d s^{2}=e^{2 A} d s_{\mathrm{AdS}_{3}}^{2}+\frac{1}{4} \overbrace{\left(e^{2 C} d s_{\mathrm{S}^{4}}^{2}+e^{2 D}\left(D y_{i}\right)^{2}\right.}^{\widehat{\mathbb{P P}}^{3}}+e^{2 k} d r^{2}
$$

The rest of NSNS and RR fields are turned on.
fibered S^{2}

The strategy:

- We seek solutions AdS_{3} solutions of type II supergravity with a superconformal algebra

$$
\mathfrak{B l}(2) \oplus \mathfrak{s o}(n) \quad \text { for } \quad n=5,6
$$

We want supersymmetric solutions,
$(6,0): \quad \operatorname{SO}(6)$ R-symmetry $\Rightarrow \mathbb{C P}^{3}$
$(5,0): \quad S O(5)$ R-symmetry $\quad \Rightarrow \quad S^{2} \rightarrow \mathbb{C P}^{3} \rightarrow S^{4}$

Geometrically,

$$
d s^{2}=e^{2 A} d s_{\mathrm{AdS}_{3}}^{2}+\frac{1}{4} \overbrace{\left(e^{2 C} d s_{\mathrm{S}^{4}}^{2}+e^{2 D}\left(D y_{i}\right)^{2}\right.}^{\widehat{\mathrm{CP}}^{3}}+e^{2 k} d r^{2}
$$

The rest of NSNS and RR fields are turned on.
fibered S^{2}

- We set up our work in terms of pure spinor formalism, which implies the construction of spinors that ensure consistency with the superconformal algebra $\mathfrak{\mathfrak { l } (2)} \oplus \mathfrak{\mathfrak { g } (n)}$
- Exploit an existing $\mathcal{N}=1 \mathrm{AdS}_{3}$ classification to obtain sufficient conditions on the geometry and fluxes for a solution with $\mathcal{N}=(5,0)$ in IIA to exist.

Results:

The local $\mathcal{N}=(5,0)$ are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{A d S_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}[\frac{2}{\left|h^{\prime \prime}\right|} \overbrace{\left(d s_{\mathrm{S}^{4}}^{2}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)}^{{\widehat{\mathbb{C P}^{3}}}^{3}}+\frac{1}{|h|} d r^{2}], \quad e^{-\Phi}=\frac{\sqrt{|u|}\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{\Delta_{1}}}{2 \sqrt{\pi} \Delta_{2}^{\frac{1}{4}}}, \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}}, \quad B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] .
\end{gathered}
$$

the RR sector: $F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \quad F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ magnetic terms.

Results:

The local $\mathcal{N}=(5,0)$ are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{A d S_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}[\frac{2}{\left|h^{\prime \prime}\right|} \overbrace{\left(d s_{\mathrm{S}^{4}}^{2}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)}^{{\widehat{\mathbb{C P}^{3}}}^{3}}+\frac{1}{|h|} d r^{2}], \quad e^{-\Phi}=\frac{\sqrt{|u|}\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{\Delta_{1}}}{2 \sqrt{\pi} \Delta_{2}^{\frac{1}{4}}}, \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}}, \quad B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] .
\end{gathered}
$$

the RR sector: $F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \quad F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ magnetic terms.

* Very reminiscent of AdS_{7} solutions (Cremonesi, Tomasiello' 15)

Results:

The local $\mathcal{N}=(5,0)$ are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{\mathrm{AdS}_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}[\frac{2}{\left|h^{\prime \prime}\right|} \overbrace{\left(d s_{\mathrm{S}^{4}}^{2}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)}^{\widehat{\mathbb{C P}}^{3}}+\frac{1}{|h|} d r^{2}], \quad e^{-\Phi}=\frac{\sqrt{|u|}\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{\Delta_{1}}}{2 \sqrt{\pi} \Delta_{2}^{\frac{1}{4}}}, \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}}, \quad B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] .
\end{gathered}
$$

the RR sector: $F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \quad F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ magnetic terms.

* Very reminiscent of AdS_{7} solutions (Cremonesi, Tomasiello' 15)
* Supersymmetry implies $u^{\prime \prime}=0$ globally $\left\{\begin{array}{c}u^{\prime}=0 \text { we have a round } \mathbb{C P}^{3} \\ u^{\prime} \neq 0\end{array}\right.$

Results:

The local $\mathcal{N}=(5,0)$ are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{\mathrm{AdS}_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}[\frac{2}{\left|h^{\prime \prime}\right|} \overbrace{\left(d s_{\mathrm{S}^{4}}^{2}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}\right)}^{{\widehat{\widehat{C P}^{3}}}^{3}}+\frac{1}{|h|} d r^{2}], \quad e^{-\Phi}=\frac{\sqrt{|u|}\left|h^{\prime \prime}\right|^{\frac{3}{2}} \sqrt{\Delta_{1}}}{2 \sqrt{\pi} \Delta_{2}^{\frac{1}{4}}}, \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}}, \quad B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] .
\end{gathered}
$$

the RR sector: $F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}, \quad \quad F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}, \quad F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ magnetic terms.

* Very reminiscent of AdS_{7} solutions (Cremonesi, Tomasiello' 15)
* Supersymmetry implies $u^{\prime \prime}=0$ globally $\left\{\begin{array}{c}u^{\prime}=0 \text { we have a round } \mathbb{C P}^{3} \\ u^{\prime} \neq 0\end{array} \begin{array}{c}\mathfrak{o} \mathfrak{p}(6 \mid 2) \mathrm{AdS}_{3} \text { solutions }\end{array}\right.$
* Bianchi identities imply $h^{\prime \prime \prime \prime}=0\left\{\begin{array}{l}\text { Locally } \quad h=c_{0}+c_{1} r+\frac{1}{2} c_{2} r^{2}+\frac{1}{3!} c_{3} r^{2} \\ \text { Globally } h^{\prime \prime \prime} \text { can be discontinuities which imply D8 sources }\end{array}\right.$

Conclusions \& Open problems

- We present two new AdS_{3} solutions to massive type IIA, for the case of an $\mathfrak{o} \mathfrak{p}(n \mid 2)$ superconformal algebra with $n=5,6$
- These solutions suggest new $(6,0)$ and $(5,0)$ quiver SCFTs
- CFT side appears undeveloped but AdS/CFT suggests such constructions exist
- In the massless $\mathcal{N}=(6,0)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

Can construct duals to CFT_{3}
but also duals to $\frac{1}{2}$ BPS defects in $\mathcal{N}=6 \mathrm{CSm}$ theories

- We also show that $A d S_{3}$ vacua for $n=7,8$ only exist in $d=11$ supergravity

Conclusions \& Open problems

- We present two new AdS_{3} solutions to massive type IIA, for the case of an $\mathfrak{o} \mathfrak{p}(n \mid 2)$ superconformal algebra with $n=5,6$
- These solutions suggest new $(6,0)$ and $(5,0)$ quiver SCFTs
- CFT side appears undeveloped but AdS/CFT suggests such constructions exist
- In the massless $\mathcal{N}=(6,0)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

Can construct duals to CFT_{3}
but also duals to $\frac{1}{2}$ BPS defects in $\mathcal{N}=6 \mathrm{CSm}$ theories

- We also show that AdS_{3} vacua for $n=7,8$ only exist in $d=11$ supergravity

Thank you!

Cosmic Strings and Celestial Entanglement

Ronnie Rodgers, with Federico Capone, A. O'Bannon, S. Thakur, E. Parisini

NORDITA

Asymptotically flat space:

$$
\mathrm{d} s^{2}=-\mathrm{d} u^{2}-2 \mathrm{~d} u \mathrm{~d} r+\frac{4 r^{2}}{\left(1+|z|^{2}\right)^{2}} \mathrm{~d} z \mathrm{~d} \bar{z}+\ldots
$$

Superrotations:

$$
z \rightarrow w(z)+\ldots \quad u \rightarrow \frac{1+|z|^{2}}{1+|w|^{2}}\left|w^{\prime}\right| u+\ldots \quad r \rightarrow \frac{1+|w|^{2}}{1+|z|^{2}} \frac{1}{\left|w^{\prime}\right|} r+\ldots
$$

= Lorentz transformations
when $w(z)=\frac{a z+b}{c z+d}$

Celestial holography: 4D flat space scattering amplitudes =2D CFT correlators

$$
w(z)=\left(\frac{z-z_{1}}{z-z_{2}}\right)^{1 / n}
$$

Uniformisation map

Entanglement entropy via replica trick
[Calabrese-Cardy]

Cosmic string
Bulk conical singularity
[Penrose, Strominger-Zhiboedov]

c.f. AdS/CFT [Ryu-Takayanagi, Lewkowycz-Maldacena, Dong]

Partition function with cosmic string:

$$
\begin{aligned}
& S_{n}=\frac{c}{6}\left(1+\frac{1}{n}\right) \log \left[\frac{2}{\epsilon} \sin \left(\frac{\ell}{2}\right)\right] \\
& c=\frac{3 i L^{2}}{4 G_{N}}
\end{aligned}
$$

Outlook:

Multiple intervals?
Higher dimensions?

T-linear resistivity and optical conductivity for a holographic local quantum critical metal in a periodic potential

F.Balm, N. Chagnet, S. Arend, J. Aretz, K. Grosvenor, M. Janse, O. Moors, J. Post, V. Ohanesjan, D.R.F., K. Schalm, J. Zaanen

Based on arXiv:[2211.05492]

Instituto de Física Teórica
April 25, 2023

Motivation

- High T_{c} superconductors have been widely explored, both theoretically and experimentally
- Cuprates display a phase whose properties elude Fermi liquid theory $(\rho \sim T)$

The ions that conform the crystal lattice interact with the flowing electrons (Umklapp effect). The lattice breaks translational invariance.

In our work, we examine the gauge dual to the Gubser-Rocher (GR) geometry with 2-Dim/1-Dim lattice potential (ESB).

$$
\begin{gathered}
S=\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{-g}\left[R-\frac{Z(\phi)}{4} F^{2}-\frac{1}{2} \partial(\phi)^{2}+V\right] \\
Z(\phi)=\exp (\phi / \sqrt{3}), V(\phi)=\frac{6}{L^{2}} \cosh (\phi / \sqrt{3})
\end{gathered}
$$

This model is a consistent truncation of $\mathrm{d}=11$ supergravity compactified on $A d S_{4} \times S_{7}$

ESB given by

$$
\mu(x, y)=\mu\{1+A[\cos (G x)+\cos (G y)]\}
$$

Comment

At large lattice potentials, momentum is strongly broken. The system approaches the incoherent metal regime [Hartnoll]. Hydrodynamics relies then only on energy and charge conservation.

Results

Figure: DC resistivity at small ($A=0.15$, left panel) and intermediate ($A=1.1$, right panel) lattice potential of the GR metal.

$$
\rho_{D C} \sim T \text { reasonably good at } T / \mu \ll 1
$$

We define
$\operatorname{FSum}(\Delta) \int_{0}^{\Delta} \sigma(\omega) \mathrm{d} \omega, \Gamma_{\text {corrected }}^{-1}=\sigma_{\mathrm{DC}} / \operatorname{FSum}(\Delta), \Gamma_{\text {bare }}=\sigma_{\mathrm{DC}} / \omega_{\mathrm{p}}^{2}$

Figure: Left figure: FSum as a function of ω / μ. Right figure: "Bare" and "corrected" relaxation rates. Data for 1D GR model with $T=0.06, G=0.12$

At large A, the saturation of $\Gamma_{\text {bare }}^{-1}$ is not exact, whilst the saturation of $\Gamma_{\text {corrected }}^{-1}$ it is

$$
\Gamma_{\text {corrected }}^{-1} \sim 2 \pi T,\left(\tau_{\mathrm{GR}} \sim \hbar /\left(2 \pi k_{B} T\right)\right) .
$$

Gravitational Waves from First Order Phase Transitions

Mikel Sanchez Garitaonandia

First Order Phase Transitions

First-order phase transitions are common in nature

Presumably also in Neutron Star mergers and the Early Universe

Naturally induce out-of-equilibrium physics \longrightarrow Gravitational Waves

No FOPT in the SM and QCD phase diagram is unknown

Detecting GW means potential observation of new/unknown physics

Bubble dynamics and GW

FOPT get realized through nucleation of bubbles on the metastable phase

Bubbles expand and their collision drives the system out of equilibrium

Crucial parameter is the wall speed: out-of-equilibrium \longrightarrow Holography
Direct signal from FOPT in NS mergers not considered in the past

$\mathcal{E} / \Lambda^{4}$
$\mathcal{E} / \Lambda^{4}$

Bea, Casalderrey-Solana, Giannakopoulos, Mateos, MSG, Zilhão ‘21

Bea, Casalderrey-Solana, Giannakopoulos, Jansen, Mateos, MSG, Zilhão ‘22

-2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0

-2.75
-2.50
-2.25
-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0
$\mathcal{E} / \Lambda^{4}$
2.75

GW from FOPT in NS mergers

Simple arguments suggest that the signal is peaked in $\mathrm{MHz} \gg \mathrm{kHz}$
Casalderrey-Solana, Mateos, MSG '22
Potentially observable by future superconducting radio-frequency detectors
D'Agnolo '21
Holography can help understanding the dynamics of bubbles at finite density and at strong coupling

Thank youl

5d theories, defects and F-theorems

with Christoph Uhlemann (out very soon!)

Leonardo Santilli

Yau Mathematical Sciences Center
Tsinghua University, Beijing

Superconformal field theories in 5 d

Goal: To study codimension 2 defects in 5d CFT with 8 supercharges.

Superconformal field theories in 5 d

Goal: To study codimension 2 defects in 5d CFT with 8 supercharges.
Problem: 5d SCFTs are strongly coupled.

5d SCFT

\Longrightarrow Need better tools.

5d SCFTs, string and M-theory

3d defects in 5d SCFTs

Defect F-maximization

Massive deformations of the defect \Longrightarrow Defect \mathbf{F}-theorem $F_{U V}>F_{I R}$.

Defect F-maximization

Massive deformations of the defect \Longrightarrow Defect \mathbf{F}-theorem $F_{U V}>F_{I R}$.

F-maximization along the quiver gives conformal defect.
Defect RG flows \Longrightarrow defects attached to other nodes.

Summary

Study 3d defects inside 5d linear quiver SCFTs, via:

- D3-brane defects in Type IIB 5-brane webs;
- M5-brane on Lagrangian inside toric CY3;
- AdS_{4} defect inside AdS_{6};
- 3d chiral multiplets inside 5d gauge theory.

Many 3d defects in 5d gauge theory $\xrightarrow{?}$ one 3d defect in 5d SCFT:
F-maximization of position of defect along quiver

2 deformations: mass \& position \Longrightarrow Defect F-theorem.

Summary

Study 3d defects inside 5d linear quiver SCFTs, via:

- D3-brane defects in Type IIB 5-brane webs;
- M5-brane on Lagrangian inside toric CY3;
- AdS_{4} defect inside AdS_{6};
- 3d chiral multiplets inside 5d gauge theory.

Many 3d defects in 5d gauge theory $\xrightarrow{?}$ one 3d defect in 5d SCFT:
F-maximization of position of defect along quiver

2 deformations: mass \& position \Longrightarrow Defect F-theorem.

Thank you for your attention.

Integrable deformations of AdS_{3} superstrings

Fiona Seibold

Imperial College London

Mainly based on [1] JHEP 09 (2022) 018 arXiv:2206.12347 with B. Hoare and A. Tseytlin [2] JHEP 04 (2023) 024 arXiv:2212.08625 with B. Hoare and N. Levine

Strings on $\mathbf{A d S}_{3} \times \mathbf{S}^{3} \times \mathbf{T}^{4}$

- Can be supported by a mixture of NSNS and RR fluxes

$$
H_{3}=x \hat{G}, \quad F_{3}=\sqrt{1-x^{2}} \hat{G}, \quad \hat{G}=\operatorname{Vol}\left(A d S_{3}\right)+\operatorname{Vol}\left(S^{3}\right) .
$$

Strings on $\mathbf{A d S}_{3} \times \mathbf{S}^{3} \times \mathbf{T}^{4}$

- Can be supported by a mixture of NSNS and RR fluxes

$$
H_{3}=x \hat{G}, \quad F_{3}=\sqrt{1-x^{2}} \hat{G}, \quad \hat{G}=\operatorname{Vol}\left(A d S_{3}\right)+\operatorname{Vol}\left(S^{3}\right) .
$$

- Preserves 16 supersymmetries
- Symmetries $\supset \underbrace{\mathfrak{s u}(1,1)_{L} \oplus \mathfrak{s u}(1,1)_{R}}_{A d S_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{L} \oplus \mathfrak{s u}(2)_{R}}_{S^{3}} \subset \underbrace{\mathfrak{p s u}(1,1 \mid 2)_{L} \oplus \mathfrak{p s u}(1,1 \mid 2)_{R}}_{16 \text { SUSY }}$

Strings on $\mathrm{AdS}_{3} \times \mathbf{S}^{3} \times \mathbf{T}^{4}$

- Can be supported by a mixture of NSNS and RR fluxes

$$
H_{3}=x \hat{G}, \quad F_{3}=\sqrt{1-x^{2}} \hat{G}, \quad \hat{G}=\operatorname{Vol}\left(A d S_{3}\right)+\operatorname{Vol}\left(S^{3}\right) .
$$

- Preserves 16 supersymmetries
- Symmetries $\supset \underbrace{\mathfrak{s u}(1,1)_{L} \oplus \mathfrak{s u}(1,1)_{R}}_{A d S_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{L} \oplus \mathfrak{s u}(2)_{R}}_{S^{3}} \subset \underbrace{\mathfrak{p s u}(1,1 \mid 2)_{L} \oplus \mathfrak{p s u}(1,1 \mid 2)_{R}}_{16 \text { SUSY }}$
- Free strings described by a classically integrable σ-model \rightarrow physical observables

Strings on $\mathrm{AdS}_{3} \times \mathbf{S}^{3} \times \mathbf{T}^{4}$

- Can be supported by a mixture of NSNS and RR fluxes

$$
H_{3}=x \hat{G}, \quad F_{3}=\sqrt{1-x^{2}} \hat{G}, \quad \hat{G}=\operatorname{Vol}\left(A d S_{3}\right)+\operatorname{Vol}\left(S^{3}\right) .
$$

- Preserves 16 supersymmetries
- Symmetries $\supset \underbrace{\mathfrak{s u}(1,1)_{L} \oplus \mathfrak{s u}(1,1)_{R}}_{A d S_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{L} \oplus \mathfrak{s u}(2)_{R}}_{S^{3}} \subset \underbrace{\mathfrak{p s u}(1,1 \mid 2)_{L} \oplus \mathfrak{p s u}(1,1 \mid 2)_{R}}_{16 \text { SUSY }}$
- Free strings described by a classically integrable σ-model \rightarrow physical observables
- Example where "S-duality rotation" preserves integrability

Strings on $\mathrm{AdS}_{3} \times \mathbf{S}^{3} \times \mathbf{T}^{4}$

- Can be supported by a mixture of NSNS and RR fluxes

$$
H_{3}=x \hat{G}, \quad F_{3}=\sqrt{1-x^{2}} \hat{G}, \quad \hat{G}=\operatorname{Vol}\left(A d S_{3}\right)+\operatorname{Vol}\left(S^{3}\right) .
$$

- Preserves 16 supersymmetries
- Symmetries $\supset \underbrace{\mathfrak{s u}(1,1)_{L} \oplus \mathfrak{s u}(1,1)_{R}}_{A d S_{3}} \oplus \underbrace{\mathfrak{s u}(2)_{L} \oplus \mathfrak{s u}(2)_{R}}_{S^{3}} \subset \underbrace{\mathfrak{p s u}(1,1 \mid 2)_{L} \oplus \mathfrak{p s u}(1,1 \mid 2)_{R}}_{16 \text { SUSY }}$
- Free strings described by a classically integrable σ-model \rightarrow physical observables
- Example where "S-duality rotation" preserves integrability
- Deform target space geometry while preserving exact solvability?

Strings on squashed $\left(\mathbf{A d S}_{3} \times \mathbf{S}^{3}\right)_{\Delta} \times \mathbf{T}^{4}$

$$
d s^{2}\left(S_{\Delta}^{3}\right)=\frac{1}{4}(\underbrace{d \theta^{2}+\sin ^{2} \theta d \phi^{2}}_{d s^{2}\left(S^{2}\right)}+(1-\Delta)(\underbrace{d \varphi-\cos \theta d \phi}_{A\left(S^{2}\right)})^{2})
$$

Strings on squashed $\left(\mathrm{AdS}_{3} \times \mathbf{S}^{3}\right)_{\Delta} \times \mathbf{T}^{4}$

$$
d s^{2}\left(S_{\Delta}^{3}\right)=\frac{1}{4}(\underbrace{d \theta^{2}+\sin ^{2} \theta d \phi^{2}}_{d s^{2}\left(S^{2}\right)}+(1-\Delta)(\underbrace{d \varphi-\cos \theta d \phi}_{A\left(S^{2}\right)})^{2})
$$

- Can also be supported by a mixture of NSNS and RR fluxes

$$
\begin{gathered}
H_{3}=x_{1} \hat{G}+y_{1} \check{G}, \quad F_{3}=x_{2} \hat{G}+y_{2} \check{G}, \quad F_{5}=\hat{G} \wedge J_{x}+\check{G} \wedge J_{y}, \\
\|\mathbf{x}\|^{2}=1-\Delta, \quad\|\mathbf{y}\|^{2}=\Delta(1-\Delta), \quad \mathbf{x} \cdot \mathbf{y}=0 .
\end{gathered}
$$

- New 3-form $\check{G}=d\left(\mathrm{~A}\left(A d S_{2}\right) \wedge \mathrm{A}\left(S^{2}\right)\right)$

$$
\begin{aligned}
& J_{x}=x_{3} J_{2}^{(1)}+x_{4} J_{2}^{(2)}+x_{5} J_{2}^{(3)} \\
& J_{y}=y_{3} J_{2}^{(1)}+y_{4} J_{2}^{(2)}+y_{5} J_{2}^{(3)}
\end{aligned}
$$

Strings on squashed $\left(\mathrm{AdS}_{3} \times \mathbf{S}^{3}\right)_{\Delta} \times \mathbf{T}^{4}$

$$
d s^{2}\left(S_{\Delta}^{3}\right)=\frac{1}{4}(\underbrace{d \theta^{2}+\sin ^{2} \theta d \phi^{2}}_{d s^{2}\left(S^{2}\right)}+(1-\Delta)(\underbrace{d \varphi-\cos \theta d \phi}_{A\left(S^{2}\right)})^{2})
$$

- Can also be supported by a mixture of NSNS and RR fluxes

$$
\begin{gathered}
H_{3}=x_{1} \hat{G}+y_{1} \check{G}, \quad F_{3}=x_{2} \hat{G}+y_{2} \check{G}, \quad F_{5}=\hat{G} \wedge J_{x}+\check{G} \wedge J_{y}, \\
\|\mathbf{x}\|^{2}=1-\Delta, \quad\|\mathbf{y}\|^{2}=\Delta(1-\Delta), \quad \mathbf{x} \cdot \mathbf{y}=0 .
\end{gathered}
$$

- New 3-form $\check{G}=d\left(\mathrm{~A}\left(A d S_{2}\right) \wedge \mathrm{A}\left(S^{2}\right)\right)$

$$
\begin{aligned}
& J_{x}=x_{3} J_{2}^{(1)}+x_{4} J_{2}^{(2)}+x_{5} J_{2}^{(3)} \\
& J_{y}=y_{3} J_{2}^{(1)}+y_{4} J_{2}^{(2)}+y_{5} J_{2}^{(3)}
\end{aligned}
$$

- Interpolates between $A d S_{3} \times S^{3} \times T^{4}(\Delta=0)$ and $\operatorname{AdS}_{2} \times S^{2} \times T^{6}(\Delta=1)$

Strings on squashed $\left(\operatorname{AdS}_{3} \times \mathbf{S}^{3}\right)_{\Delta} \times \mathbf{T}^{4}$

$$
d s^{2}\left(S_{\Delta}^{3}\right)=\frac{1}{4}(\underbrace{d \theta^{2}+\sin ^{2} \theta d \phi^{2}}_{d s^{2}\left(S^{2}\right)}+(1-\Delta)(\underbrace{d \varphi-\cos \theta d \phi}_{A\left(S^{2}\right)})^{2})
$$

- Can also be supported by a mixture of NSNS and RR fluxes

$$
\begin{gathered}
H_{3}=x_{1} \hat{G}+y_{1} \check{G}, \quad F_{3}=x_{2} \hat{G}+y_{2} \check{G}, \quad F_{5}=\hat{G} \wedge J_{x}+\check{G} \wedge J_{y}, \\
\|\mathbf{x}\|^{2}=1-\Delta, \quad\|\mathbf{y}\|^{2}=\Delta(1-\Delta), \quad \mathbf{x} \cdot \mathbf{y}=0 .
\end{gathered}
$$

- New 3-form $\check{G}=d\left(\mathrm{~A}\left(A d S_{2}\right) \wedge \mathrm{A}\left(S^{2}\right)\right)$

$$
\begin{aligned}
& J_{x}=x_{3} J_{2}^{(1)}+x_{4} J_{2}^{(2)}+x_{5} J_{2}^{(3)} \\
& J_{y}=y_{3} J_{2}^{(1)}+y_{4} J_{2}^{(2)}+y_{5} J_{2}^{(3)}
\end{aligned}
$$

- Interpolates between $A d S_{3} \times S^{3} \times T^{4}(\Delta=0)$ and $\operatorname{AdS}_{2} \times S^{2} \times T^{6}(\Delta=1)$
- Symmetries $\supset \underbrace{\mathfrak{u}(1)_{L} \oplus \mathfrak{s u}(1,1)_{R}}_{A d S_{3}} \oplus \underbrace{\mathfrak{u}(1)_{L} \oplus \mathfrak{s u}(2)_{R}}_{S^{3}} \subset \mathfrak{u}(1)_{L}^{\oplus 2} \oplus \underbrace{\mathfrak{p s u}(1,1 \mid 2)_{R}}_{8 \text { SUSY }}$

What about Integrability?

$$
\begin{gathered}
A d S_{3} \times S^{3} \times T^{4} \\
\left(A d S_{3} \times S^{3}\right)_{\Delta} \times T^{4}
\end{gathered}
$$

What about Integrability?

What about Integrability?

- Classically integrable \rightarrow Another example where S-duality preserves integrability

What about Integrability?

- Classically integrable \rightarrow Another example where S-duality preserves integrability
- Hidden quantum group symmetry $\mathfrak{u}(1)_{L}^{\oplus 2} \subset \mathcal{U}_{q_{L}}(\mathfrak{p s u}(1,1 \mid 2))$

What about Integrability?

- Classically integrable \rightarrow Another example where S-duality preserves integrability
- Hidden quantum group symmetry $\mathfrak{u}(1)_{L}^{\oplus 2} \subset \mathcal{U}_{q_{L}}(\mathfrak{p s u}(1,1 \mid 2))$
- Can bootstrap the worldsheet S-matrix \& compute physical observables

What about Integrability?

- Classically integrable \rightarrow Another example where S-duality preserves integrability
- Hidden quantum group symmetry $\mathfrak{u}(1)_{L}^{\oplus 2} \subset \mathcal{U}_{q_{L}}(\mathfrak{p s u}(1,1 \mid 2))$
- Can bootstrap the worldsheet S-matrix \& compute physical observables
- In some limits \exists brane construction and holographic interpretation has been studied

A whole web of integrable deformations!

Hybrid $\eta-\lambda$

Javier Subils

Gijón, April 25, 2023
Eurostrings 2023

$$
=2
$$

The first realization

- in string theory,
- of a fully-backreacted holographic dual of a confining theory in 3D,
- at finite baryon density,
- (without flavor branes).

Javier Subils

Gijón, April 25, 2023
Eurostrings 2023

Solutions to type IIA supergravity
$F_{4} \propto * \Omega_{\mathbb{C P}^{3}}+$ additional terms

$$
\begin{aligned}
& \boldsymbol{F}_{\mathbf{2}}=\mathbf{d} C_{1} \\
& C_{1}=a_{t}(r) \mathrm{d} t+\mathrm{B}\left(x_{1} \mathrm{~d} x_{2}-x_{2} \mathrm{~d} x_{1}\right)
\end{aligned}
$$

"in string theory, fully - backreacted"

The theory is $\mathrm{N}=1$ SUSY.

Solutions to type IIA supergravity
$F_{4} \propto * \Omega_{\mathbf{C P}^{3}}+$ additional terms

$$
\begin{aligned}
& \boldsymbol{F}_{\mathbf{2}}=\mathrm{d} C_{1} \\
& C_{1}=a_{t}(r) \mathrm{d} t+\mathrm{B}\left(\boldsymbol{x}_{1} \mathrm{~d} x_{2}-x_{2} \mathrm{~d} x_{1}\right)
\end{aligned}
$$

"in string theory, fully - backreacted"

The theory is $\mathrm{N}=1$ SUSY.

"confining theory"

Dirichlet boundary conditions

$$
\mathrm{U}(N) \times \mathrm{U}(N+M)
$$

Dirichlet boundary conditions

$\mathrm{U}(N) \times \mathrm{U}(N+M)$

Monopoles

Dirichlet boundary conditions

$$
\mathrm{U}(N) \times \mathrm{U}(N+M)
$$

Neumann boundary conditions

$\mathrm{SU}(N) \times \mathrm{SU}(N+M)$

Monopoles

Dirichlet boundary conditions

$$
\mathrm{U}(N) \times \mathrm{U}(N+M)
$$

Monopoles

Neumann boundary conditions

$\mathrm{SU}(N) \times \operatorname{SU}(N+M)$

Baryons

Dirichlet boundary conditions

$$
\mathrm{U}(N) \times \mathrm{U}(N+M)
$$

Neumann boundary conditions

$$
\operatorname{SU}(N) \times \operatorname{SU}(N+M)
$$

Monopoles

"at finite baryon density"

The first realization

- in string theory,
- of a fully-backreacted holographic dual of a confining theory in 3D,
- at finite baryon density,

Thanks!

Wilson loops and RG flows in ABJM theory

Marcia Tenser
Università Degli Studi di Milano-Bicocca

April 25, 2023

Motivation

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[i \oint\left(A_{\mu}+\text { matter }\right) d x^{\mu}\right]
$$

- Mapped to fundamental strings via AdS/CFT
- Localization
- probe at weak and strong coupling
- 1 dCFT
- superconformal bootstrap

Features

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[i \oint\left(A_{\mu}+\operatorname{matter}(\circledast, \odot, \oslash, \odot)\right) d x^{\mu}\right]
$$

- Parametric dependence: $\langle W\rangle=f(\circledast, \Theta, \oslash, \odot)$
- Non-trivial β-functions $\left(\beta_{\circledast}, \cdots, \beta_{\odot}\right)$: RG flows connecting WLs

1 Constrain parameters such that WLs are BPS \Rightarrow Enriched flows '22
MT, L. Castiglioni, S. Penati, D. Trancanelli
2 Generic parameters \Rightarrow Defect RG flows '23
MT, L. Castiglioni, S. Penati, D. Trancanelli
(to appear soon)

Results

Enriched flows

Results

Defect RG flows

Open questions

- Holographic description: interpolation and boundary conditions
- Framing and anomaly
- g-theorem and defect entropy
- $1 / 2$ BPS fixed points: (non-)unitary dCFT and its dual distinction

Thank You

[^0]: ${ }^{1}$ with B. Craps, O. Evnin and P. Hacker.

