Scattering in strong backgrounds and why you should care

Tim Adamo
University of Edinburgh

EuroStrings

28 April 2023

work with Bogna, Casali, Cristofoli, Ilderton, Klisch, MacLeod, Mason, Nekovar, Sharma \& Tourkine

Scattering amplitudes 101

How do we usually compute scattering amplitudes?
Perturbation theory (few exceptions)

- QFT: turn Feynman diagram crank
- String theory: worldsheet correlators of vertex operators

Additional (almost implicit) assumption:

- expanding around a trivial field configuration

Strong-field scattering

Suppose we consider scattering in a non-trivial (asymp. flat) field configuration:

- Background a fixed solution to classical (non-linear) equations of motion
- Treated non-perturbatively \leftrightarrow 'strong' background field
- \Rightarrow use background field theory ${ }_{\text {FFurry, Denitt, }}$ ' Hooft, abbott, ...]
- Scattering quantum perturbations on strong background encodes back-reaction/depletion effects

Strong-field QFT describes many interesting scenarios:

- Non-linear regime of QED; high-energy, heavy ion collisions; black holes/gravitational waves

Strong-field QFT describes many interesting scenarios:

- Non-linear regime of QED; high-energy, heavy ion collisions; black holes/gravitational waves

However, strong-field scattering is a hard problem

- Background-coupled Feynman rules a nightmare, String worldsheet CFT no longer free
- Functional d.o.f. in background \rightarrow no rational functions
- Non-pert. effects: memory, tails
- S-matrix may not exist (e.g., black hole backgrounds)

...but still interesting

Non-pert. backgrounds induce new physics!
E.g., single photon emission or photon helicity flip in strong-field QED

- underpin detection targets at current/upcoming experiments (ELI, FACET-II, LUXE)

State-of-the-art

Despite study for ~ 100 years, precision frontiers of strong-field QFT are low:

- QED in plane wave background $\rightarrow 4$-point tree [Baier-Katkov-Strakhovenko, Ritus,...], 2-point 1-loop [Tooll, Ritus]
- QCD in plane wave background $\rightarrow 4$-point tree [ta-Casali-Mason-Nekovar], 2-point 1-loop [ta-Ilderton]
- GR in plane wave background $\rightarrow 3$-point tree
[TA-Casali-Mason-Nekovar]
Roughly LO/NLO precision around background

Stark contrast

... with $\mathrm{N}^{\infty} \mathrm{LO}$ information in a trivial background:
all-multiplicity tree- and loop-level formulae for gluon/graviton scattering

```
[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,
    TA-Casali-Skinner, Geyer-Mason-Monteiro-Tourkine,...]
```


Stark contrast

... with $\mathrm{N}^{\infty} \mathrm{LO}$ information in a trivial background:
all-multiplicity tree- and loop-level formulae for gluon/graviton scattering

```
[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,
    TA-Casali-Skinner, Geyer-Mason-Monteiro-Tourkine,...]
```

A countably infinite precision gap in even the simplest strong backgrounds!

So, is strong-field QFT just a messy pheno subject?

So, is strong-field QFT just a messy pheno subject?

Of course not!

Today

Try to convince you that:

- strong-field scattering encodes wealth of physical information
\triangleright all-order data for classical physical observables

Today

Try to convince you that:

- strong-field scattering encodes wealth of physical information
\triangleright all-order data for classical physical observables
- in some (non-constant!) backgrounds, can be computed to arbitrary multiplicity
\triangleright using string-theoretic methods

Basics

What exactly do we mean by a strong-field amplitudes?
Denote fields by \mathcal{F}, classical action $S[\mathcal{F}]$

- let Φ be exact solution to classical e.o.m.s - the background.
- evaluate action on $S[\Phi+\phi]$, discard all terms less than $O\left(\phi^{2}\right)$
\rightarrow obtain background field action $S[\Phi ; \phi]$
governs fluctuations ϕ on background Φ

Tree-level strong-field amplitudes: $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ solutions to free, background-coupled eqs with appropriate bndry conds. Define:

$$
\varphi_{0}^{[n]}:=\sum_{i=1}^{n} \varepsilon_{i} \phi_{i}
$$

$\varphi_{k}^{[n]}$ non-linear recursive solution at $O\left(\mathrm{~g}^{k}\right)$

Tree-level strong-field amplitudes: $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ solutions to free, background-coupled eqs with appropriate bndry conds. Define:

$$
\varphi_{0}^{[n]}:=\sum_{i=1}^{n} \varepsilon_{i} \phi_{i}
$$

$\varphi_{k}^{[n]}$ non-linear recursive solution at $O\left(\mathrm{~g}^{k}\right)$
Strong-field, n-point tree amplitude:

$$
\mathcal{M}_{n}^{(0)}:=\left.\frac{\delta^{n} S\left[\Phi ; \varphi_{\max \{0, n-3\}}^{[n]}\right]}{\delta \varepsilon_{1} \cdots \delta \varepsilon_{n}}\right|_{\varepsilon_{1}=\cdots=\varepsilon_{n}=0}
$$

Upshot

Strong-field amps $=$ multi-linear piece of background field action
[Schwinger, Boulware-Brown, Arafeva-Faddeev-Slavnov, Abbott-Grisaru-Schaefer, Jevicki-Lee,

```
Rosly-Selivanov, Costello]
```

- 'perturbiner' definition extremely robust
- coincides w/ S-matrix when it exists
- when it doesn't, still encodes expected dynamical content of scattering
- higher loops: use ℓ-loop effective action

What does it mean to compute a strong-field amp?

In general, amplitudes look like:

$$
\mathcal{M}_{n}^{(0)}=\int \underbrace{\mathrm{d} \mu_{n}}_{\text {measure }} \overbrace{\mathcal{I}_{n}^{(0)}}^{\text {integrand }} \underbrace{\mathcal{V}_{n}}_{\text {wavefunctions }}
$$

- in trivial background, integral gives momentum conservation
- in general strong fields, cannot perform integrals analytically
- 'compute strong-field amp' \rightsquigarrow determine $\mathrm{d} \mu_{n}, \mathcal{I}_{n}^{(0)}, \mathcal{V}_{n}$ analytically

Example:

Photon emission in plane wave ('non-linear Compton scattering')

$$
\begin{array}{r}
A^{\mathrm{bac}}=-a_{\perp}\left(x^{-}\right) x^{\perp} \mathrm{d} x^{-}, \quad a_{\infty}:=\int_{-\infty}^{+\infty} \mathrm{d} x^{-} a_{\perp}\left(x^{-}\right) \\
\mathcal{M}_{3}^{(0)}\left(p \rightarrow p^{\prime}+k\right)=e \delta_{+, \perp}^{3}\left(p^{\prime}+k-p+e a_{\infty}\right) \int_{-\infty}^{+\infty} \mathrm{d} x^{-} \\
\times \epsilon(k) \cdot P\left(x^{-}\right) \exp \left[\mathrm{i} \int^{x^{-}} \mathrm{d} s \frac{k \cdot P(s)}{(p-k)_{+}}\right]
\end{array}
$$

for $P_{\mu}:=p_{\mu}-e \delta_{\mu}^{\perp} a_{\perp}+\frac{\delta_{\mu}^{-}}{2 p_{+}}\left(2 e p \cdot a-e^{2} a^{2}\right)$

All-order physics

Non-perturbative background \rightarrow infinite order in coupling when expanded

Even at low precision/multiplicity!

Example

Eikonal approximation: resummation of small angle $2 \rightarrow 2$ scattering
$\mathcal{M}_{\text {eik }} \leftrightarrow \mathcal{M}_{2}^{(0)}$ in strong background sourced by the other particle at large impact parameter

- Old idea: formulated for special cases long ago ${ }^{[t} t$ hooft, Amati-Ciafaloni-Veneziano, Jackiw-Kabat-Ortiz, Kabat-Ortiz]
- Now fully covariant, for all stationary backgrounds [TA-Cristofoli-Tourkine]
\triangleright reproduces known eik. amps, detects cases which fail, computes new $\mathcal{M}_{\text {eik }}$
\triangleright holomorphic/stringy factorization needed to evaluate integrals

Surprising application

What is the massless (ultraboosted) limit of the Kerr metric?

Lack of clarity in literature, many contradictory claims
[Ferrari-Pendenza, Balasin-Nachbagauer, Griffiths-Podolsky, Barrabes-Hogan,
Frolov-Israel-Zelnikov, . .]

More precisely...

Is there an interesting (i.e., long-range spin effects) massless limit of Kerr in the class

$$
\mathrm{d} s^{2}=\mathrm{d} s_{\mathbb{M}}^{2}+G \delta\left(x^{-}\right) f\left(x^{\perp}\right)\left(\mathrm{d} x^{-}\right)^{2} ?
$$

More precisely...

Is there an interesting (i.e., long-range spin effects) massless limit of Kerr in the class

$$
\mathrm{d} s^{2}=\mathrm{d} s_{\mathbb{M}}^{2}+G \delta\left(x^{-}\right) f\left(x^{\perp}\right)\left(\mathrm{d} x^{-}\right)^{2} ?
$$

Spoiler alert: No...but there is one with interesting finite-size effects at short distances

Relation between $\mathcal{M}_{2}^{(0)}$ and $\mathcal{M}_{\text {eik }}$ implies

$$
f\left(x^{\perp}\right) \sim \int \mathrm{d}^{2} q_{\perp} \mathrm{e}^{\mathrm{i} q_{\perp} x^{\perp}} M_{4}^{(0)}
$$

$M_{4}^{(0)}$ Born scattering between scalar probe and metric source
This gives a two way street:
(1) Pick a metric, read off 4-point amplitude, see if it makes sense
(2) Pick a 4-point amplitude, look at associated metric

Result

Ultraboosting Kerr metric directly \rightarrow spin effects vanish

Result

Ultraboosting Kerr metric directly \rightarrow spin effects vanish Ultraboost source of Kerr [Israe1, Balas in-Nachbagauer]

$$
\begin{aligned}
f\left(x^{\perp}\right) & =8 \log (\mu r) \\
& -4 \Theta(a-r)\left[2 \log \left(\frac{r}{a+\sqrt{a^{2}-r^{2}}}\right)+\frac{\sqrt{a^{2}-r^{2}}}{a}\right]
\end{aligned}
$$

No spin effects at large impact parameter... but incredibly simple Born amplitude:

$$
G \frac{s^{2}}{8 t}\left(\frac{\sin (a \sqrt{-t})}{a \sqrt{-t}}+\cos (a \sqrt{-t})\right)
$$

Classical observables

More generally...
Direct relationship between scattering amps. and classical observables (scattering angle, waveform) in trivial background

```
[Amati-Ciafaloni-Veneziano, Kosower-0'Connell-Maybee,...., Lee-Lee-Mazumdar]
```

Example: LO classical impulse in 2-body scattering

$$
\begin{aligned}
\Delta p^{\mu} \sim \lim _{\hbar \rightarrow 0} \hbar^{2} \int \mathrm{~d}^{4} \bar{q} & \delta(\bar{q} \cdot p) \delta(\bar{q} \cdot P) \\
& \quad \times \mathrm{e}^{-\mathrm{i} b \cdot \bar{q}} \bar{q}^{\mu} \bar{M}_{4}^{(0)}(p, P, p+\hbar \bar{q}, P-\hbar \bar{q})
\end{aligned}
$$

Simple idea

Also true for observables/scattering in strong backgrounds
[TA-Cristofoli-Ilderton]
Classical observables for probe particle \leftrightarrow self-force expansion
[Cutler-Kennefick-Poisson, Barack, Poisson-Pound-Vega, Harte-Taylor-Flanagan,...]

Simple idea

Also true for observables/scattering in strong backgrounds
[TA-Cristofoli-Ilderton]
Classical observables for probe particle \leftrightarrow self-force expansion
[Cutler-Kennefick-Poisson, Barack, Poisson-Pound-Vega, Harte-Taylor-Flanagan,...]
Basic ingredients: massive particle states

$$
|\Psi\rangle=\int \mathrm{d} \Phi(p) \phi(p) \mathrm{e}^{\mathrm{i} p \cdot b / \hbar}|p\rangle
$$

$\mathrm{d} \Phi(p)$ Lorentz-invariant on-shell measure, $\phi(p)$ wavepacket with classical limit
time-evolution through strong-field S-matrix

Waveform

First 'self-force' contribution to classical waveform at \mathscr{I}^{+}:
[TA-Cristofoli-Ilderton-Klisch]

$$
W_{\mu \nu \rho \sigma}(u, z, \bar{z})=-\frac{\kappa}{2 \pi^{2} \sqrt{\hbar}} \operatorname{lm} \int_{0}^{\infty} \mathrm{d} \omega \mathrm{e}^{-\mathrm{i} \omega u} k_{[\mu} \varepsilon_{\nu]} k_{[\sigma} \varepsilon_{\rho]} \alpha(k)
$$

for

$$
\alpha(k):=\int \mathrm{d} \Phi\left(p^{\prime}\right)\langle\Psi| \mathcal{S}^{\dagger}\left|p^{\prime}\right\rangle\left\langle p^{\prime}, k\right| \mathcal{S}|\Psi\rangle
$$

Upshot

1SF waveform controlled by tree-level 2-point and 3-point amps on background

Physically interesting!

- for BH background, leading waveform for 2-body problem in probe limit
- provides access to high-precision post-Minkowskian (PM) results [Danour]

Plane wave background

Computing 3-point amp. in BH hard (not impossible!) Instead use plane wave spacetimes:

$$
\mathrm{d} s^{2}=2 \mathrm{~d} x^{-} \mathrm{d} x^{+}-\mathrm{d} x^{a} \mathrm{~d} x^{a}-H_{a b}\left(x^{-}\right) x^{a} x^{b}\left(\mathrm{~d} x^{-}\right)^{2}
$$

$H_{a b}\left(x^{-}\right)$traceless and compactly supported

Still very interesting

- self-force in radiative grav. field
- classical waveforms not known
- approximates/constrains result in any spacetime via Penrose limits [TA-Cristofoli-IIderton-K1isch, to appear]
- we already know the required amps! [ta-ilderton]

Result

Schematically,
$W_{\mu \nu \rho \sigma}(u, z, \bar{z})=-\frac{\kappa^{2}}{\pi} \hat{x}_{[\mu} \hat{x}_{[\sigma} \int_{-\infty}^{\infty} \mathrm{d} y \delta(u-\hat{x} \cdot X(y)) \mathcal{T}_{\rho] \nu]}(\hat{x}, y)$
$\hat{x}^{\mu}=(1, \hat{\mathbf{x}}), X^{\mu}(y)=$ geodesic orbit, $\mathcal{T}_{\rho \nu}$ determined by $\mathcal{M}_{3}^{(0)}$
All-orders in background (i.e., in κ under $H_{a b} \rightarrow \kappa H_{a b}$)

Result

Schematically,
$W_{\mu \nu \rho \sigma}(u, z, \bar{z})=-\frac{\kappa^{2}}{\pi} \hat{x}_{[\mu} \hat{x}_{[\sigma} \int_{-\infty}^{\infty} \mathrm{d} y \delta(u-\hat{x} \cdot X(y)) \mathcal{T}_{\rho] \nu]}(\hat{x}, y)$
$\hat{x}^{\mu}=(1, \hat{\mathbf{x}}), X^{\mu}(y)=$ geodesic orbit, $\mathcal{T}_{\rho \nu}$ determined by $\mathcal{M}_{3}^{(0)}$
All-orders in background (i.e., in κ under $H_{a b} \rightarrow \kappa H_{a b}$)
Specific example: $H_{a b}=\kappa \delta\left(x^{-}\right) \operatorname{diag}(\lambda,-\lambda)$

$$
W_{+1+1}(u, \theta=\pi)=-\frac{\kappa^{2} p_{+}}{4 \pi^{2} \sqrt{8}} \frac{\partial^{2}}{\partial u^{2}}\left(\frac{\nu \log \left(\nu+\sqrt{\nu^{2}-1}\right)}{\sqrt{\nu^{2}-1}}\right)
$$

for $\nu:=\kappa \lambda \sqrt{2} \frac{p_{+}^{2}}{m^{2}}|u|$

So what?

Could never hope to reproduce this result in a trivial background
\rightarrow an infinite amount of PM information!

- only requires 'classical' part of amplitude
- similar story for other classical observables in PW backgrounds
- possible to attack the BH problem directly...stay tuned [TA-Cristofoli-Ilderton-Klisch, to appear]

So, even low mult. strong-field amps carry lots of classical info...
...but what about full quantum amps and higher multiplicity?

- recall huge precision gap compared to trivial background
- main objects of interest in most applications

Quick aside

Note: high-multiplicity scattering in strong backgrounds a serious problem!

- more external states \Rightarrow more powers of small coupling
- but also more insertions of background-dressed wavefunctions and propagators
- strong background insertions can compensate powers of coupling

Quick aside

Note: high-multiplicity scattering in strong backgrounds a serious problem!

- more external states \Rightarrow more powers of small coupling
- but also more insertions of background-dressed wavefunctions and propagators
- strong background insertions can compensate powers of coupling

High mult. can dominate low mult. in a strong background

Basic question:

Can we compute high-multiplicity scattering amplitudes in (any) strong field QFT?

Basic question:

Can we compute high-multiplicity scattering amplitudes in (any) strong field QFT?

YES!

Chiral strong fields

What we can do: all-multiplicity tree-level scattering of gluons/gravitons in large class of self-dual gauge fields/spacetimes
[TA-Mason-Sharma, TA-Bogna-Mason-Sharma to appear]
Ingredients:

- twistor theory [Penrose, Ward, Atiyah-Hitchin-Singer, ...]
- chiral 2d CFTs/string theories [Berkovits-witten, Skinner,

TA-Mason-Sharma]

Chiral strong fields

What we can do: all-multiplicity tree-level scattering of gluons/gravitons in large class of self-dual gauge fields/spacetimes
[TA-Mason-Sharma, TA-Bogna-Mason-Sharma to appear]
Ingredients:

- twistor theory [Penrose, Ward, Atiyah-Hitchin-Singer, ...]
- chiral 2d CFTs/string theories [Berkovits-Witten, skinner,

TA-Mason-Sharma]
Today: gluon scattering in Cartan-valued SD backgrounds

The backgrounds

Self-dual radiative gauge fields:

- complex, asymp. flat Yang-Mills field in 4d Minkowski spacetime
- determined by characteristic data $\tilde{\mathcal{A}}(u, z, \bar{z})$ on $\mathscr{I} \Leftrightarrow$ field strength is self-dual

$$
\left.F\right|_{\mathscr{I}^{+}}=\partial_{u} \tilde{\mathcal{A}} \mathrm{~d} u \wedge \mathrm{~d} \bar{z}
$$

For simplicity, assume $\tilde{\mathcal{A}}$ valued in Cartan of gauge group

External states

Gluons, characterised by:

- asymptotic null momenta $k_{\alpha \dot{\alpha}}=\kappa_{\alpha} \tilde{\kappa}_{\dot{\alpha}}$
- Colour T^{a} and 'charge' $\left[\tilde{\mathcal{A}}, \mathrm{T}^{\mathrm{a}}\right]=e \tilde{\mathcal{A}} \mathrm{~T}^{\mathrm{a}}$
- helicity ± 1

Gluons move through the SD background, get dressed: $\tilde{\kappa}_{\dot{\alpha}} \rightarrow \tilde{K}_{\dot{\alpha}}(x)$, x-dependence explicitly controlled by $\tilde{\mathcal{A}}$

External states

Gluons, characterised by:

- asymptotic null momenta $k_{\alpha \dot{\alpha}}=\kappa_{\alpha} \tilde{\kappa}_{\dot{\alpha}}$
- Colour T^{a} and 'charge' $\left[\tilde{\mathcal{A}}, \mathrm{T}^{\mathrm{a}}\right]=e \tilde{\mathcal{A}} \mathrm{~T}^{\mathrm{a}}$
- helicity ± 1

Gluons move through the SD background, get dressed: $\tilde{\kappa}_{\dot{\alpha}} \rightarrow \tilde{K}_{\dot{\alpha}}(x)$, x-dependence explicitly controlled by $\tilde{\mathcal{A}}$

Whole setup has an elegant description via twistor string theory

Twistor string theory

Chiral, heterotic 2d CFT governing holomorphic maps $\mathbb{C P}^{1} \hookrightarrow \mathbb{P} \mathbb{T} \subset \mathbb{C P}^{3}{ }_{\text {[witten, Berkovits, ...] }}$

Correlators compute scattering amps of gluons in trivial background
SD rad. gauge field \leftrightarrow holomorphic bundles $E \rightarrow \mathbb{P} \mathbb{T}_{\text {[nard] }}$
\Rightarrow couples to worldsheet current algebra, e.g.,

$$
\left.\frac{1}{2 \pi} \int_{\Sigma} \rho^{m} \bar{\partial} \rho^{m} \rightarrow \frac{1}{2 \pi} \int_{\Sigma} \rho^{m} \bar{D}\right|_{\Sigma} \rho^{m}
$$

for $\left.\bar{D}\right|_{\Sigma}(0,1)$-partial connection on E pulled back to worldsheet, obeys $\bar{D}^{2}=0$

Upshot:

Conjecture: gluon scattering in SD rad. gauge field $=$ correlators in background-coupled twistor string

This is a workable problem!

- Twistor string remains anomaly free (holomorphicity of gauge field) [Mason-Skinner]
- Worldsheet CFT is free - current algebra OPEs dressed by holo. frames of E

Result

Example: MHV scattering, gluons r, s negative helicity Colour-ordered partial amplitude:

$$
\frac{\langle r s\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \int \mathrm{d}^{4} x \exp \left[\sum_{i=1}^{n} \mathrm{i} k_{i} \cdot x+e_{i} g\left(x, \kappa_{i}\right)\right]
$$

where

$$
g(x, z):=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{C P}^{1}} \frac{\mathrm{~d} z^{\prime} \wedge \mathrm{d} \bar{z}^{\prime}}{z-z^{\prime}} \tilde{\mathcal{A}}\left(x, z^{\prime}\right)
$$

Dramatically simpler that expected from background field expansion

More generally...

With these techniques:

- get candidate formulae for all tree-level amps of gauge theory and gravity in all SD rad. backgrounds
- can prove MHV formulae; other configs pass multiple tests
- can identify KLT kernel/double copy for SD rad. backgrounds [ta-Cristofooi-Klisch, to appear]
- extend to scattering in SD charge/black hole backgrounds [TA-Bogna-Mason-Sharma, to appear]

Summary

Strong-field scattering:

- playground where perturbative \& non-perturbative interact
- crying out for new approaches
- encodes all-order information for classical observables (scattering angle, waveform, etc.)
- novel methods provide route to attack higher-precision

Summary

Strong-field scattering:

- playground where perturbative \& non-perturbative interact
- crying out for new approaches
- encodes all-order information for classical observables (scattering angle, waveform, etc.)
- novel methods provide route to attack higher-precision

Thanks!

