Non-Hermitian Holography

Non-Hermitian Holography, Outlook

- Non-Hermitian PT-symmetric QM

applications in optics many bodysystems (coldatoms) quantum simulation,
- non-Hermitian PT symmetric holography
- Modulated (non-Hermitian) configurations

PT-symmetric QM. 2 state Hamiltonian

$$
H=\left(\begin{array}{ll}
E & 0 \\
O & E
\end{array}\right)
$$

B

PT-symmetric QM. 2 state Hamiltonian

PT-symmetric QM. 2 state Hamiltonian

Eigenvalues

PT-symmetric QM

$$
H=\left(\begin{array}{l}
\text { C }
\end{array}\right.
$$

PT-symmetric phase: $1 \delta 1>\Gamma$
PT-broken phase: $\quad \mid \delta 1<\Gamma$
Exceptional point:. $\quad,=\Gamma$

PT-symmetric QM

$$
P T(H) P=H
$$

PT-symmetric phase: $|\delta|>\Gamma$

PT-symmetric QM. Pseudo-hermitian H

[Mostafazadeh'02; 03,20; Fring '22]

$$
\begin{aligned}
& {[H, P T]=0, \quad P T|\psi\rangle=e^{i \phi}|\psi\rangle, . \quad P T \cdot \lambda|\psi\rangle=\lambda|\psi\rangle} \\
& {\left[-(P T)^{2}=1\right]}
\end{aligned}
$$

His pseudo-Hemitian (t has real eigenvalues)
Dyson map: $\eta: H \approx=h=\eta H^{-1}$, $h=h$
s metric $\rho=\eta{ }^{\top} \Omega \rho H^{\prime}=H$

$$
\langle\psi \mid \tilde{\psi}\rangle_{\rho}=\langle\psi \mid \rho \tilde{\psi}\rangle \Rightarrow\langle\psi \mid H \tilde{\psi}\rangle_{\rho}=\langle H \psi \mid \tilde{\psi}\rangle_{\rho}
$$

PT-symmetric QM. Pseudo-hermitian H

$$
H_{2}(\vec{g})=E 1+\vec{g} \cdot \vec{\sigma} \leftrightharpoons H_{2}(\vec{g})=D(\vec{\alpha}) H_{2}(\vec{g}) D(\vec{\alpha})
$$

$\operatorname{SU}(2)$ rotation $B(\vec{\alpha})=e^{i \vec{a} \vec{a} h} \subset$ Dyson map: $\eta(\vec{\beta})=D(-i \vec{\beta})$
$E q . \hat{g}-(\delta, 0,0), \vec{\alpha}=(0, \beta, 0) \Longrightarrow H_{\mathrm{nil}}=E+g\left(\cosh \beta \sigma_{1}+i \sinh \beta \sigma_{3}\right)$
Eigenvalues $\quad=~ U \pm \& \sqrt{\cosh ^{2} \beta-\sinh ^{2} \beta}$
Exceptional point $\left\{\begin{array}{l}\beta \rightarrow \infty \\ s^{\prime} \rightarrow e^{-\beta} \delta\end{array}\right.$

PT-symmetric QM. Dirac fermions

Mass term: $\mathscr{S}_{\text {mass }}=M\left[\psi^{r} r^{0}\left(1-r^{3}\right) w \mid+M\left[v r^{0}\left(1+r^{5}\right) w\right]\right.$
$\mathscr{L}_{\text {mis }}=\mathcal{S}_{\text {miss }}-M-M^{2}$. Deine $M-\frac{1}{2}(m+1 m)$
Non-Hermitan rotation: $M \rightarrow e^{\text {c }} M, \bar{M} \rightarrow e=\pi \bar{M} / \alpha=i \beta$

Holography. complex operator $Q \sim \Psi(r)$ where $\left.\Psi\right|_{\text {boundary }}=M$

Non-Hermitian Holography

$$
\sim \cdot G=<\cdot+M(O\rangle+M\left\langle O^{\prime}\right\rangle
$$

Non-Hermitian Holography

Complex scalar field Y in AcIS
Dyson map:U(1) w/ imaginary phase

特
[Gubser\&Rocha'08]

Holography w/ non-Hermitian boundary conditions

$\mathrm{UV}(r \sim 0)$ boundary conditions $\left(m^{2}=\mathrm{Z}=2\right)$
ب

Holographic Dyson map: $\alpha=i \beta$

Holography w/ non-Hermitian boundary conditions

UV $(r \sim 0)$ non-Hermitian boundary conditions ($\left.m^{2}=-2\right)$

(

Pseudo-Hermitian regimen: $\xi<1$

$$
\begin{aligned}
& e^{2 \beta}=\frac{1+\xi}{1-\xi} \\
& M=\sqrt{1-\xi^{2}}
\end{aligned}
$$

Exceptional point $\xi=1$ non-Hermitian regime: $\xi>1$

Non-Hermitian Holography rive oco47)

Pseudo-Hermitian domain wallst: $\%$ \&

Non-Hermitian Holography (rip 2 oce47)

Holographic dyson map ($\xi<1$)

$$
\text { Bulk action invariant Lndcr } \quad(r) \quad \text { C } \quad \text { C } \quad(r)
$$

Pseudo Hermitian
Hermitian

$$
\bar{\Psi} \sim s \sqrt{1-\xi^{2} r}
$$

$$
\begin{aligned}
& \bar{\Psi} \sim(1+\xi) r
\end{aligned}
$$

Non-Hermitian Holography 11912 oco 47

$$
\begin{aligned}
& \Psi \sim s(1-\xi) r \\
& \bar{\Psi} \sim s(1+\xi) r
\end{aligned}
$$

Pseudo Hermitian for 5 K 1

PT-broken phase: $\xi>1=$ complex backgrounds

Non-Hermitian Holography 119200647

Finite Temperature

Real geometries up to $x_{c}>1$ (unstable solutions)

Non-Hermitian Holography riop oco47)

Finite Temperature

Real geometries up to $x_{c}>1$

$$
5<1
$$

Pseudo-Hermitian phase

$$
5=1
$$

Exceptional point: AdS_{4}

$$
1<\xi<\xi_{c}
$$

Two new (unstable) solutions

Non-Hermitian Holography rio200647

Finite Temperature

Real geometries up to $x_{c}>1$

$$
1<\xi<\xi<=-\ln \left(\omega_{Q N M}\right)>0
$$

Non-Hermitian inhomogeneous holography

Space dependent non-Hermitian deformation

[tinetaljiv]

PIEsymmetricinoluced invisibility
\rightarrow Non-Hermitian modulated BCs

$$
\bar{\Psi} \sim s(1+\xi(x)) r
$$

Non-Hermitian inhomogeneous holography

Space dependent non-Hermitian deformation

$$
\begin{aligned}
& \Psi \sim s(1-\xi(x)) \\
& \Psi \sim r(1+\xi(x))
\end{aligned}
$$

in asymptotically AdS black brane geometry ($T / s \approx 0.30$)

Non-Hermitian inhomogeneous holography

$$
\begin{aligned}
& \Psi \sim s(1-\xi(x)), \bar{\Psi} \approx s(1+\xi(x)) \\
& (\operatorname{lm}(U))\rangle 0
\end{aligned}
$$

$T / s \approx 0.30$
Real geometries dual to non-Hermitian states

Non-Hermitian inhomogeneous holography

PT-symmetric (pseudo-Hermitian) phase gauging the Dyson map
[seeialso Chernodub\&Milington'97]

PT-symmetric
$\Psi \approx \operatorname{si}(1-\operatorname{Ge}(x)) z$
$\bar{\Psi} \times 5(1+\xi(x)) z$
$4 \tan 2 \cot \log \left(\frac{1-2(x)}{1+\xi(x)}\right)$

Hermitian

$$
\begin{aligned}
& 4 \sqrt{2} \sqrt{\operatorname{lab}(x)^{2}} \\
& 4 \sqrt{1} \sqrt{6(x)^{2}}
\end{aligned}
$$

Non－Hermitian inhomogeneous holography

PT－symmetric（pseudo－Hermitian）phase gauging the Dyson map
イット

$$
\left\langle J_{\lambda}\right\rangle=0
$$

Non-Hermitian inhomogeneous holography

non-Hermitian $\left\langle\operatorname{Im}\left(J_{x}\right)\right\rangle \neq 0$ vs PT-symmetric geometry

$T / s \approx 0.30$

Non-hermitian holography Overview \& To do

- (Minimal) Holographic model of 1 H PT Symmetric theories
- Exhibits PT-symmetric and PJ broken phases
- Modulated pseudo Hermitian and non Hermitian solutions
- QNMs (stability) and transport
- Finite charge density and spontaneous symmetry breaking 85:.

