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CFT AdS

4 dimensional  
Super Yang Mills with 

SU(N) gauge group and 
SU(4) R-symmetry 

𝒩 = 4
type IIB superstring 
theory on AdS5 × S5

• string length  

• string coupling 

α′ 

gs

• rank of the gauge group  

• coupling constant 
N

gYM

N ∼ g−1
s

λ = g2
YMN = (α′ )−2



Parameters

6



Parameters

6

A(0) (α′ , s, t, u) g−2
s A(1) (α′ , s, t, u)



Parameters

6

N ∼ g−1
s

Genus expansion 

A(0) (α′ , s, t, u) g−2
s A(1) (α′ , s, t, u)



Parameters

6

N ∼ g−1
s λ = g2

YMN = (α′ )−2

Genus expansion 
Higher derivative 

expansion 

A(0) (α′ , s, t, u) g−2
s A(1) (α′ , s, t, u)



Parameters

6

N ∼ g−1
s λ = g2

YMN = (α′ )−2

Genus expansion 
Higher derivative 

expansion 

A(0) (α′ , s, t, u) g−2
s A(1) (α′ , s, t, u)



Operators

7

Four point correlators of half-BPS operators 𝒪p



Operators

7

Four point correlators of half-BPS operators 𝒪p



Operators

7

Four point correlators of half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R



Operators

7

Four point correlators of half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Dual to scalar operators  with mass sp m2 = Δp(Δp − 4)



Operators

7

Four point correlators of half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Dual to scalar operators  with mass sp m2 = Δp(Δp − 4)



Operators

7

Four point correlators of half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Dual to scalar operators  with mass sp m2 = Δp(Δp − 4)

the  angular momentum is S5 p



Operators

7

Four point correlators of half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Dual to scalar operators  with mass sp m2 = Δp(Δp − 4)

the  angular momentum is S5 p

             Graviton p = 2

             Kaluza Klein modesp ≥ 3
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Gravitons
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The leading term is given by the disconnected diagram and by doing the OPE 
decomposition it is possible to see that only double trace operators contribute to this 

term. 

Δ(0) = 4 + 2n + ℓ

Double traces: 𝒪2 □n ∂ℓ𝒪2
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correlator by knowing only its singularities as  or v → 0 z̄ → 1

How?

cΔ,ℓ ∼ ∫
1

0
dzdz̄ μ(z, z̄) dDisc[𝒢(z, z̄)]

kernel double 
discontinuity 

cΔ,ℓ
Δ → Δk

aΔk,ℓ

Δ − Δk

has poles at the 
dimension of the 

exchanged operator with 
residue the square of the 

three point function
Caron Huot 2017

Simmons-Duffin Stanford Witten 2017 
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n,ℓ (log u +
∂
∂n )) g4+2n+ℓ,ℓ(u, v)

crossing      symmetry 
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𝒢sh,1(u, v) ⊃
z

1 − z
dDisc[
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Alday, Caron Huot 2018
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completely fixed by the knowledge of the 
protected part of the correlator and the 

leading order data 
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At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

2) the decomposition in blocks contains a term with non-vanishing double 
discontinuity: 

ℋ(2)(u, v) ⊃ ∑
n,ℓ

u2+na(0)
n,ℓ (γ(1)

n,ℓ)
2

log2 u g4+2n+ℓ,ℓ(u, v)

dDisc[log2(1 − z̄)(1 − z)] ≠ 0

completely specified by tree level data!
Aprile, Drummond, Heslop, Paul 2017

Alday, AB 2017
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All Loops 

21

Can we go further? 

There are two obstructions: 

1) At higher orders, there are higher trace operators that start contributing to the 
double discontinuity and we do not have control on them.

2) There are further mixing problems to take into account and it becomes unfeasible. 



However…

22

Drummond, Paul 2022

Huang, Ye Yuan 2021

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces

• All loop structure:

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces

• All loop structure: ℋ(k)(u, v) ⊃ logk u ∑
n,ℓ,I

un+2

2kk!
a(0)

n,ℓ,I (γ(1)
n,ℓ,I)

k
g4+2n+ℓ,ℓ(u, v)

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces

• All loop structure: ℋ(k)(u, v) ⊃ logk u ∑
n,ℓ,I

un+2

2kk!
a(0)

n,ℓ,I (γ(1)
n,ℓ,I)

k
g4+2n+ℓ,ℓ(u, v)

known! 

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018



However…

22

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces

• All loop structure: ℋ(k)(u, v) ⊃ logk u ∑
n,ℓ,I

un+2

2kk!
a(0)

n,ℓ,I (γ(1)
n,ℓ,I)

k
g4+2n+ℓ,ℓ(u, v)

known! 

s-channel consecutive cuts

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018
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How do we take care of the  (or ) expansion?α′ λ

𝒢(u, v) = 𝒢(0)(u, v) +
1

N2
𝒢(1)(u, v) +

1
N4

𝒢(2)(u, v) + …

𝒢(1,1)(u, v) +
𝒢(1,2)(u, v)

λ3/2
+ … 𝒢(2,1)(u, v) +

𝒢(2,2)(u, v)
λ3/2

+ …

The procedure to bootstrap higher loops is similar to the leading terms, but there is a 
disruptive difference!

Alday, AB, Perlmutter 2018Aprile, Drummond, Glew, Santagata 2022Aprile, Drummond, Paul, Santagata 2021

Drummond, Glew, Paul  2020

Drummond, Paul  2019

Drummond, Nandan, Paul, Rigatos  2019

Drummond, Paul, Santagata  2020
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Stringy corrections

24

We can always add crossing symmetric solution to our ℋ(1)(u, v)

Why?

• they do not contribute to the double discontinuity/ divergence 
as v → 0

CAVEAT: Since crossing symmetry and the 
inversion formula do not give any useful 
information, the coefficient in front of such 
solutions is completely arbitrary. 

• they have support only for finitely many spins.
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λ−3/2

λ−3



Fixing coefficients
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• Agreement with the flat space limit

• Supersymmetric localization 

• Bound on chaos + integrability + single valued

see Tobias Hansen’s talk!

Γ[− α′ s
4 ]Γ[− α′ t

4 ]Γ[− α′ u
4 ]

Γ[1 + α′ s
4 ]Γ[1 + α′ t

4 ]Γ[1 + α′ u
4 ]

structure of the Virasoro Shapiro 
amplitude in curved space!

Binder, Chester, Pufu, Yang 
Chester

Alday, Hansen, Silva

Abl, Heslop, Lipstein
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R-symmetry: SO(6) → SO(4) × SO(2) = SU(2)L × SU(2)R × U(1)

To consider gluons, we need to add D-branes

Add  D7 branes wrapping  and M AdS5 S3 ⊂ S5

M ≪ N

The presence of D7 branes breaks SUSY

 SYM  SYM with flavours𝒩 = 4 →𝒩 = 2

4d 𝒩 = 2
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Scalar superconformal primary, half- BPS operator of  Δ = 2

same supermultiplet of the spin 1 flavour conserved current

Use similar techniques as for gravitons but:

1) less supersymmetry

2) proliferation of colour structures

Alday, Behan, Ferrero, Zhou 2021
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Gluon amplitudes

29

One loop  gluon amplitudes: Alday, AB, Zhou 2021

Two loops gluon amplitudes: Huang, Wang, Yuan, Zhou 2023

Double copy: Zhou 2021

AB, Fardelli, Manenti, Zhou 2022

Drummond, Glew, Santagata 2022

how to relate amplitudes of 
gluons with amplitudes of 
graviton in curved  
space.

AdS



Some other results
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• Higher point functions

• Higher trace operators

• Other backgrounds

Goncalves, Pereira, Zhou 2019

Goncalves, Meneghelli, Pereira, Vilas Boas, Zhou 2023

AB, Fardelli, Manenti 2022

Ceplak, Giusto, Huges, Russo 2021

Ma, Zhou 2022

• Kaluza Klein modes Alday, Zhou 2020

Rastelli, Zhou 2016, 2017

Aprile, Drummond, Heslop, Paul 2017 …
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Resum the large N series? 
e.g. eikonal

Single trace 

Double trace 

integrability

Higher point functions 
bootstrap

Basis of functions for 
amplitudes

Vertices in string amplitudes 
for higher genus

Caron-Huot, Coronado, Trinh, Zahraee, 2022
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