A CFT perspective on AdS amplitudes

Agnese Bissi, ICTP \& Uppsala University
Eurostrings 2023
April 28, 2023

Main Goal

Main Goal

Correlators in CFTs

Main Goal

Correlators in CFTs
Amplitudes in AdS

Main Goal

Correlators in CFTs
Amplitudes in AdS

AdS/CFT correspondence

Main Goal

Correlators in CFTs
Amplitudes in AdS

AdS/CFT correspondence

conformal bootstrap

Why?

Why?

Correlators of holographic CFTs

Why?

Correlators of holographic CFTs

Scattering amplitudes on curved spaces

Why?

Correlators of holographic CFTs

Scattering amplitudes on curved spaces

CFT data for unprotected operators

Setup

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

Setup

$$
\mathbb{R}^{d-1,1}=\partial \mathrm{AdS}_{d+1}
$$

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

Setup

$$
\mathbb{R}^{d-1,1}=\partial \mathrm{AdS}_{d+1}
$$

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

AdS/CFT correspondence

CFT

AdS

AdS/CFT correspondence

CFT

AdS
4 dimensional $\mathcal{N}=4$
Super Yang Mills with
SU(N) gauge group and
SU(4) R-symmetry

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with SU(N) gauge group and SU(4) R-symmetry

AdS

type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with SU(N) gauge group and SU(4) R-symmetry

AdS

type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- rank of the gauge group N
- coupling constant $g_{Y M}$

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with SU(N) gauge group and SU(4) R-symmetry

AdS

type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- string length $\sqrt{\alpha^{\prime}}$
- string coupling g_{s}

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with
SU(N) gauge group and
SU(4) R-symmetry

AdS

type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- rank of the gauge group N
- coupling constant $g_{Y M}$
- string length $\sqrt{\alpha^{\prime}}$
- string coupling g_{s}

$$
\begin{gathered}
N \sim g_{s}^{-1} \\
\lambda=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}
\end{gathered}
$$

Parameters

Parameters

Parameters

$$
N \sim g_{s}^{-1}
$$

Genus expansion

Parameters

$$
N \sim g_{s}^{-1}
$$

Genus expansion

$$
\lambda=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}
$$

Higher derivative expansion

Parameters

$$
N \sim g_{s}^{-1}
$$

Genus expansion

$$
\text { (} \lambda=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}
$$

Higher derivative expansion

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

$$
\Delta_{\mathscr{O}_{p}}=p
$$

$$
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathscr{O}_{q}\right\rangle=f(N)
$$

$$
[0, p, 0] \text { of } S U(4)_{R}
$$

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

$$
\begin{gathered}
\Delta_{\mathcal{O}_{p}}=p \\
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

Dual to scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

$$
\begin{gathered}
\Delta_{\mathcal{O}_{p}}=p \\
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

Dual to scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

$$
\begin{gathered}
\Delta_{\mathcal{O}_{p}}=p \\
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

Dual to scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$
the S^{5} angular momentum is p

Operators

Four point correlators of half-BPS operators \mathcal{O}_{p}

$$
\begin{gathered}
\Delta_{\mathcal{O}_{p}}=p \\
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

Dual to scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$
the S^{5} angular momentum is p

$$
\begin{array}{ll}
p=2 & \text { Graviton } \\
p \geq 3 & \text { Kaluza Klein modes }
\end{array}
$$

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Large N expansion:
$\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots$

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Large N expansion:
$\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots$
Large λ expansion:

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Large N expansion:
$\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots$
Large λ expansion:

$$
\mathscr{G}^{(1,1)}(u, v)+\frac{\mathscr{G}^{(1,2)}(u, v)}{\lambda^{3 / 2}}+\ldots
$$

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Large N expansion:
$\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots$
Large λ expansion:

$$
\mathscr{G}^{(1,1)}(u, v)+\frac{\mathscr{G}^{(1,2)}(u, v)}{\lambda^{3 / 2}}+\ldots \quad \mathscr{G}^{(2,1)}(u, v)+\frac{\mathscr{G}^{(2,2)}(u, v)}{\lambda^{3 / 2}}+\ldots
$$

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Aharony, Alday, AB, Perlmutter 2016

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Aharony, Alday, AB, Perlmutter 2016

Plan of the talk

Plan of the talk

Gravitons

Plan of the talk

Gravitons

Large N and leading λ

Plan of the talk

Gravitons

Large N and leading λ
subleading λ

Plan of the talk

Gravitons

Large N and leading λ
subleading λ

Gluons

Plan of the talk

Gravitons

Large N and leading λ
subleading λ

Gluons

Other results and open problems

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau) \\
& u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
& \quad \text { cross-ratios }
\end{aligned}
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\begin{gathered}
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau) \\
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \quad \sigma=\frac{y_{1} \cdot y_{3} y_{2} \cdot y_{4}}{y_{1} \cdot y_{2} y_{3} \cdot y_{4}} \tau=\frac{y_{1} \cdot y_{4} y_{2} \cdot y_{3}}{y_{1} \cdot y_{2} y_{3} \cdot y_{4}} \\
\text { cross-ratios }
\end{gathered}
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the R -symmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the R-symmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

$$
\mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r} c_{\Delta, \ell}^{2(r)} g_{\Delta, \ell}^{(r)}(u, v) Y^{(r)}(\sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the R -symmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

$$
\begin{aligned}
& \mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r} c_{\Delta, \ell}^{2(r)} g_{\Delta, \ell}^{(r)}(u, v) Y^{(r)}(\sigma, \tau) \\
& \mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r_{O_{2}}}^{\sigma_{2}}>_{\sigma_{2}}^{\sigma_{\Delta, \ell}^{(r)}}
\end{aligned}
$$

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected

2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected perform the sum
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected perform the sum
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected perform the sum
2) provide relations among the six different R-symmetry representations

Comments

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions

$$
\begin{gathered}
\mathscr{G}^{\text {short }}(u, v) \text { and } \mathscr{H}(u, v) \text { mix } \\
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
\end{gathered}
$$

Conninnents

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions

$$
\begin{gathered}
\mathscr{G}^{\text {short }}(u, v) \text { and } \mathscr{H}(u, v) \text { mix } \\
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
\end{gathered}
$$

3) the function $\mathscr{H}(u, v)$ is decomposable in terms of superconformal blocks

conn Mn Ants

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions

$$
\begin{gathered}
\mathscr{G}^{\text {short }}(u, v) \text { and } \mathscr{H}(u, v) \text { mix } \\
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
\end{gathered}
$$

3) the function $\mathscr{H}(u, v)$ is decomposable in terms of superconformal blocks

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} g_{\Delta, \ell}^{s}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

$$
\begin{gathered}
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \\
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
\end{gathered}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and $\lambda \quad c \sim N^{2}$

$$
\begin{gathered}
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \\
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{\text {sh,0 }}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
\end{gathered}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and $\lambda \quad c \sim N^{2}$

$$
\begin{aligned}
& \mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
& \Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \quad \begin{array}{c}
\lambda \rightarrow \infty \\
\text { Double trace } \\
\text { operarors }
\end{array} \\
& \mathscr{G}^{s h o r t}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
\end{aligned}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and $\lambda \quad c \sim N^{2}$

$$
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots
$$

$$
\begin{gathered}
\Delta \Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \quad \begin{array}{c}
\lambda \rightarrow \infty \\
\text { Double trace } \\
\text { operarors }
\end{array} \\
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
\end{gathered}
$$

Leading term

The leading term is given by the disconnected diagram and by doing the OPE decomposition it is possible to see that only double trace operators contribute to this term.

Leading term

The leading term is given by the disconnected diagram and by doing the OPE decomposition it is possible to see that only double trace operators contribute to this term.

$$
\Delta^{(0)}=4+2 n+\ell
$$

Double traces: $\mathcal{O}_{2} \square^{n} \partial_{\ell} \mathcal{O}_{2}$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

$$
\mathrm{dDisc}[\mathscr{G}(z, \bar{z})]=\mathscr{G}_{\text {eucl }}(z, \bar{z})-\frac{1}{2} \mathscr{G} \circlearrowleft(z, \bar{z})-\frac{1}{2} \mathscr{G}^{\circlearrowright}(z, \bar{z})
$$

analytic continuation

$$
\text { around } \bar{z} \rightarrow 1
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or $\bar{z} \rightarrow 1$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

has poles at the dimension of the exchanged operator with residue the square of the three point function

Tree Level

We expand at leading order N^{-2} and we get

Tree Level

We expand at leading order N^{-2} and we get

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} y_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing }{ }_{\downarrow} \text { symmetry }
\end{array}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{gathered}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\mathscr{H}^{(1)}(u, v) \supset \log v
\end{gathered}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{array}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{array}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{gathered}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} y_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\\
\mathrm{dDisc}[\log (1-\bar{z})(1-z)]=0
\end{gathered}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{array}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} y_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\\
\mathrm{dDisc}[\log (1-\bar{z})(1-z)]=0
\end{array}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
\mathscr{G}^{s h, 1}(u, v) \supset \frac{z}{1-z}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{gathered}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \downarrow \text { symmetry } \\
\text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{gathered}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
\mathscr{G}^{s h, 1}(u, v) \supset \frac{z}{1-z} \longrightarrow \operatorname{dDisc}\left[\frac{\bar{z}}{1-\bar{z}}\right] \neq 0
$$

D'Hoker, Freedman, Mathur, Matusis, Rastelli 1999

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

Caveat:
$\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)$
the fact that at leading order there are double traces, it avoids producing a dDisc.

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

the fact that at leading order there are double traces, it avoids producing a dDisc.

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

the fact that at leading order there are double traces, it avoids producing a dDisc.

completely fixed by the knowledge of the protected part of the correlator and the leading order data

One Loop

At one loop the situation is different, mainly for two reasons:

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \log ^{2} u g_{4+2 n+\ell, \ell}(u, v)
$$

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\begin{array}{r}
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \underline{\log ^{2} u} g_{4+2 n+\ell, \ell}(u, v) \\
\text { dDisc }\left[\log ^{2}(1-\bar{z})(1-z)\right] \neq 0
\end{array}
$$

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \underline{\log ^{2} u} g_{4+2 n+\ell, \ell}(u, v)
$$

$$
\mathrm{dDisc}\left[\log ^{2}(1-\bar{z})(1-z)\right] \neq 0
$$

completely specified by tree level data!

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

This mixing can be solved by considering all the four point functions of the type

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p} \mathcal{O}_{p}\right\rangle
$$

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

This mixing can be solved by considering all the four point functions of the type

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p} \mathcal{O}_{p}\right\rangle
$$

20

Aprile, Drummond, Heslop, Paul 201720182019

All Loops

Can we go further?

All Loops

Can we go further?

There are two obstructions:

All Loops

Can we go further?

There are two obstructions:

1) At higher orders, there are higher trace operators that start contributing to the double discontinuity and we do not have control on them.

All Loops

Can we go further?

There are two obstructions:

1) At higher orders, there are higher trace operators that start contributing to the double discontinuity and we do not have control on them.
2) There are further mixing problems to take into account and it becomes unfeasible.

However...

Drummond, Paul 2022
Huang, Ye Yuan 2021

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v)$

Drummond, Paul 2022
Huang, Ye Yuan 2021

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v)^{\text {Drummond, Paul } 2022} \begin{aligned} & \text { Huang, Ye Yuan } 2021\end{aligned}$
checked with flat space
unavoidability of for triple traces

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v) \quad \begin{gathered}\text { Drummond, Paul } 2022 \\ \text { Huang, Ye Yuan } 2021\end{gathered}$
checked with flat space
unavoidability of for triple traces
- All loop structure:

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v) \quad \begin{gathered}\text { Drummond, Paul } 2022 \\ \text { Huang, Ye Yuan } 2021\end{gathered}$ checked with flat space unavoidability of for triple traces
- All loop structure: $\quad \mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, \ell, I}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)$

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v) \quad \begin{gathered}\text { Drummond, Paul } 2022 \\ \text { Huang, Ye Yuan } 2021\end{gathered}$ checked with flat space unavoidability of for triple traces
- All loop structure: $\quad \mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, \ell, I}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)$
known!

However...

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v)$

Drummond, Paul 2022

checked with flat space

 unavoidability of for triple traces- All loop structure: $\quad \mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, \ell, I}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)$

known!
s-channel consecutive cuts

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

$$
\begin{gathered}
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots \\
\mathscr{G}^{(1,1)}(u, v)+\frac{\mathscr{G}^{(1,2)}(u, v)}{\lambda^{3 / 2}}+\ldots
\end{gathered}
$$

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

$$
\begin{array}{r}
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots \\
\mathscr{G}^{(1,1)}(u, v)+\frac{\mathscr{G}^{(1,2)}(u, v)}{\lambda^{3 / 2}}+\ldots \quad \mathscr{G}^{(2,1)}(u, v)+\frac{\mathscr{G}^{(2,2)}(u, v)}{\lambda^{3 / 2}}+\ldots
\end{array}
$$

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Stringy corrections

How do we take care of the α^{\prime} (or λ) expansion?

$$
\begin{array}{r}
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots \\
\mathscr{G}^{(1,1)}\left(u, v+\frac{\mathscr{G}^{(1,2)}(u, v)}{\lambda^{3 / 2}}+. . \mathscr{G}^{(2,1)}\left(u, v+\frac{\mathscr{G}^{(2,2)}(u, v)}{\lambda^{3 / 2}}+.\right.\right.
\end{array}
$$

The procedure to bootstrap higher loops is similar to the leading terms, but there is a disruptive difference!

Stringy corrections

We can always add crossing symmetric solution to our $\mathscr{H}^{(1)}(u, v)$

Stringy corrections

We can always add crossing symmetric solution to our $\mathscr{H}^{(1)}(u, v)$

Why?

Stringy corrections

We can always add crossing symmetric solution to our $\mathscr{H}^{(1)}(u, v)$
Why?

- they do not contribute to the double discontinuity/ divergence as $v \rightarrow 0$

Stringy corrections

We can always add crossing symmetric solution to our $\mathscr{H}^{(1)}(u, v)$

> Why?

- they do not contribute to the double discontinuity/ divergence as $v \rightarrow 0$
- they have support only for finitely many spins.

Stringy corrections

We can always add crossing symmetric solution to our $\mathscr{H}^{(1)}(u, v)$
Why?

- they do not contribute to the double discontinuity/ divergence as $v \rightarrow 0$
- they have support only for finitely many spins.

CAVEAT: Since crossing symmetry and the inversion formula do not give any useful information, the coefficient in front of such solutions is completely arbitrary.

Stringy corrections

Fixing coefficients

- Agreement with the flat space limit

$$
\frac{\Gamma\left[-\frac{\alpha^{\prime} s}{4}\right] \Gamma\left[-\frac{\alpha^{\prime} t}{4}\right] \Gamma\left[-\frac{\alpha^{\prime} u}{4}\right]}{\Gamma\left[1+\frac{\alpha^{\prime} s}{4}\right] \Gamma\left[1+\frac{\alpha^{\prime} t}{4}\right] \Gamma\left[1+\frac{\alpha^{\prime} u}{4}\right]}
$$

- Supersymmetric localization
- Bound on chaos + integrability + single valued
structure of the Virasoro Shapiro amplitude in curved space!

Gluon amplitudes

To consider gluons, we need to add D-branes

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$
$M \ll N$

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$

$$
M \ll N
$$

The presence of D7 branes breaks SUSY

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$

$$
M \ll N
$$

The presence of D7 branes breaks SUSY

$$
\mathcal{N}=4 \mathrm{SYM} \rightarrow \mathcal{N}=2 \text { SYM with flavours }
$$

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$

$$
M \ll N
$$

The presence of D7 branes breaks SUSY

$$
\mathcal{N}=4 \mathrm{SYM} \rightarrow \mathcal{N}=2 \text { SYM with flavours }
$$

R-symmetry: $S O(6) \rightarrow S O(4) \times S O(2)=S U(2)_{L} \times S U(2)_{R} \times U(1)$

Gluon amplitudes

To consider gluons, we need to add D-branes

Add M D7 branes wrapping $A d S_{5}$ and $S^{3} \subset S^{5}$

$$
M \ll N
$$

The presence of D7 branes breaks SUSY

$$
\mathcal{N}=4 \text { SYM } \rightarrow \mathscr{N}=2 \text { SYM with flavours }
$$

$$
\text { R-symmetry: } S O(6) \rightarrow S O(4) \times S O(2)=S U(2)_{L} \times \frac{S U(2)_{R} \times U(1)}{4 \mathrm{~d} \mathcal{N}=2}
$$

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$
\downarrow
same supermultiplet of the spin 1 flavour conserved current

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$

same supermultiplet of the spin 1 flavour conserved current

Use similar techniques as for gravitons but:

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$

same supermultiplet of the spin 1 flavour conserved current

Use similar techniques as for gravitons but:

1) less supersymmetry

Gluon amplitudes

Scalar superconformal primary, half- BPS operator of $\Delta=2$

same supermultiplet of the spin 1 flavour conserved current

Use similar techniques as for gravitons but:

1) less supersymmetry
2) proliferation of colour structures

Gluon amplitudes

One loop gluon amplitudes:

Two loops gluon amplitudes:

Double copy:

Huang, Wang, Yuan, Zhou 2023

Zhou 2021
AB, Fardelli, Manenti, Zhou 2022
Drummond, Glew, Santagata 2022

Gluon amplitudes

One loop gluon amplitudes:

Two loops gluon amplitudes:

Double copy:

Huang, Wang, Yuan, Zhou 2023

Zhou 2021
AB, Fardelli, Manenti, Zhou 2022
Drummond, Glew, Santagata 2022

Gluon amplitudes

One loop gluon amplitudes:

Two loops gluon amplitudes:
Huang, Wang, Yuan, Zhou 2023

Double copy:
Zhou 2021

AB, Fardelli, Manenti, Zhou 2022
Drummond, Glew, Santagata 2022
how to relate amplitudes of gluons with amplitudes of graviton in curved $A d S$ space.

Some other results

Aprile, Drummond, Heslop, Paul 2017 ...
Alday, Zhou 2020
Rastelli, Zhou 2016, 2017

- Higher point functions
- Higher trace operators
- Other backgrounds

AB, Fardelli, Manenti 2022
Ma, Zhou 2022

Ceplak, Giusto, Huges, Russo 2021

Open problems

Open problems

Resum the large N series?
 e.g. eikonal

Open problems

Resum the large N series?
e.g. eikonal

Open problems

Resum the large N series?
e.g. eikonal

Single trace

Double trace

Open problems

Caron-Huot, Coronado, Trinh, Zahraee, 2022

Resum the large N series? e.g. eikonal

Single trace	
integability	
Double trace	

Open problems

Caron-Huot, Coronado, Trinh, Zahraee, 2022

Higher point functions bootstrap

Single trace	
integ ability	
Double trace	

Open problems

Caron-Huot, Coronado, Trinh, Zahraee, 2022

Resum the large N series? e.g. eikonal

Higher point functions bootstrap

Single trace
integ \downarrow ability
Double trace

Basis of functions for amplitudes

Open problems

Caron-Huot, Coronado, Trinh, Zahraee, 2022

Resum the large N series? e.g. eikonal

Higher point functions bootstrap

Basis of functions for amplitudes

Vertices in string amplitudes for higher genus

Thank you!

