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1. Generalized symmetries and region algebras



Region algebras in QFT

Operators in QFT organize themselves in algebras associated to space-
time regions.

Associated to any spacetime region R there is an algebra of
operators A(R) with support in that region.
An algebra is a set of operators closed under linear combinations, prod-
ucts and taking adjoints

1 ∈ A, a,b ∈ A, α, β ∈ C ⇒ αa+ βb ∈ A , ab ∈ A , a† ∈ A

Let A′ denote the algebra of operators which commute with A. Then, the
“von Neumann double-commutant theorem” establishes that A′′ = A.

The algebraic formulation of QFT takes as fundamental objects associations
between regions in Minkowski space and operator algebras (localized in them).
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Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it

The algebra of local operators supported in R:

Aadd(R) [“additive algebra”]

The algebra of operators which commute with the local operators supported in its
causal complement R′:

Amax(R) = (Aadd(R′))′ [“maximal algebra”]

In this context, causality is the statement that operators localized in spatially separated re-
gions commute with each other, so

Aadd(R′) ⊆ (Aadd(R))′ [causality] which implies Aadd(R) ⊆ Amax(R)
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Region algebras in QFT

Under very general conditions, the maximal algebra coincides with the additive
algebra for ball regions:

Aadd(B) = Amax(B) [“Haag duality”] ⇐ holds ∀ QFT

For general regions, the equality fails in general:

Aadd(R) = Amax(R) ∀R [“duality”] ⇐ only holds for some QFTs (“complete”)

If Aadd(R) ⊊ Amax(R) for some R, then

Amax(R) = Aadd(R) ∨ {a}

where {a} are non-locally generated operators in R
From von Neumann’s double commutant theorem it is easy to prove that

Amax(R′) = Aadd(R′) ∨ {b}

where {b} are non-locally generated operators in the causal complement R′.
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Generalized symmetries

A generalized symmetry current J is a p-form which satisfies

d ⋆ J = 0 , ⋆ J ̸= dG where G is a physical field of the theory

Standard global (“0-form”) symmetries ⇔ p = 1
p-form symmetry currents define topological higher-form charges by integrating ⋆ J over
(D− p)-oriented surfaces Σ(D−p)

Φ ≡
∫
Σ(D−p)

⋆ J

One can define the operators implementing the corresponding generalized symmetry in
the usual way, Ug = eigΦ

The charged operators are supported on (p− 1)-dimensional manifolds
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Generalized symmetries, algebras and regions

Assume ∃ p-form J such that d ⋆ J = 0 and ⋆ J ̸= dG with G a physical field.
In that case, the generalized flux operator

Φ ≡
∫
Σ(D−p)

⋆ J only depends on ∂Σ(D−p)

Let R be a region enclosing ∂Σ(D−p) and with the same topology. Then [Φ,O] = 0 ∀
local operator O supported outside R. In other words, Φ commutes with all elements of
Aadd(R′) and therefore

Φ ∈ (Aadd(R′))′ = Amax(R)
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Generalized symmetries, algebras and regions

On the other hand,
Φ ̸=

∫
∂Σ(D−p)

G with G a physical field

and therefore, Φ is not locally generated within R,

Φ ̸∈ Aadd(R)

As a consequence, Amax(R) contains more operators than Aadd(R), namely, eigΦ and all
its products with local operators

Amax(R) = Aadd(R) ∨ {Φ}

As a consequence of von Neumann’s double commutant theorem, A′′ = A, the same
holds in the complementary region, R′,

Amax(R′) = Aadd(R′) ∨ {Ψ}

and ∃ a non-locally generated flux operator Ψ associated to R′
⇒ Generalized symmetries always come in pairs
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Generalized symmetries, algebras and regions

Furthermore, if eigΦ is charged under a continuous non-compact symmetry group, there
exists a (D − p)-form current J̃ such that d ⋆ J̃ = 0 and ⋆ J̃ ̸= dG with G a physical field
such that [Benedetti, Casini, Magan]

Ψ =

∫
Σp

⋆ J̃

The existence of a conserved p-form current predicts the existence of a dual conserved
(D− p)-form current and viceversa

Violations of duality in regions with non-trivial π(p−1) and π(D−p+1) groups ⇔ generalized
(p− 1)-form symmetries

Example with p = 2: free Maxwell in D-dimensions has two generalized symmetries with
currents Jm ≡ ⋆ F and Je ≡ F ⇔ violations of duality in regions with non-trivial π1 and
π(D−3) ⇔ Wilson and ’t Hooft loops
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2. Generalized symmetries of linearized gravity



Motivations

Conserved charges in gravity
[(Iyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]

Quantum gravity, completeness and absence of generalized symmetries
[Polchinski; Banks, Seiberg; Casini, Huerta, Magan, Pontello; Rudelius, Shao; Harlow, Ooguri... ]

Intriguing connections with fracton physics
[Pretko; Benedetti, Casini, Magan]

Explicit realizations of the dual-pairs principle
[Benedetti, Casini, Magan]
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2.1. Einstein gravity in D = 4



Linearized Einstein gravity

Linearized perturbations on Minkowski spacetime

gµν = ηµν + hµν , ||hµν || ≪ 1 , h[µν] = 0 , h ≡ ηµνhµν

We can expand every relevant tensor in powers of hµν : T = T(0) + T(1) + T(2) +O(h3)

The Einstein gravity action reduces to the Fierz-Pauli one

SEH =
1

16πG

∫
dDx

√
|g|R ⇒ SFP =

1
16πG

∫
dDx

[(
1 + h

2

)
R(1) + R(2)

]
.

Theory of a spin-2 symmetric field on Minkowski spacetime. Equations of motion:

R(1)µν = 0

Gauge symmetry-like invariance (⇔ linearized diffeomorphisms)

hµν → hµν + 2∂(µξν)
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Linearized Einstein gravity

We look for p-form conserved currents for this theory

The Riemann tensor is the generator of the gauge-invariant algebra

Our currents should be formed from contractions of {Rµνρσ, ηµν , εµ1...µD}

It is useful and illuminating to use the dual Riemann tensor

R∗µ1...µD−2αβ
≡ 1

2 εµ1...µD−2λσ Rλσ αβ .
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Linearized Einstein gravity

The on-shell curvatures satisfy a series of properties

Rµναβ = −Rνµαβ = −Rµνβα [Skew Symmetry]

Rµναβ = Rαβµν [Interchange Symmetry]

η
µα Rµναβ = 0 [Einstein Equation]

ε
µ1...µD−3αβγ Rαβγν = 0 [1st Bianchi identity]

ε
µ1...µD−3αβγ

∂α Rβγµν = 0 [2nd Bianchi identity]

∂
µ Rµναβ = 0 [Einstein Equation]

R∗µ1µ2...µD−2αβ = −R∗µ2µ1...µD−2αβ = ... [Levi-Civita skew symmetry]

R∗µ1µ2...µD−2αβ = −R∗µ1µ2...µD−2βα [Riemann skew symmetry]

η
γα R∗γµ1...µD−3αβ = 0 [1st Bianchi identity]

ε
µ1µ2...µD−1βR∗µ1µ2...µD−1α

= 0 [Einstein Equation]

ε
µ1µ2...µD−1βR∗αµ1µ2...µD−1

= 0 [Einstein Equation]

∂
γ R∗γµ1...µD−3αβ = 0 [2nd Bianchi identity]

∂
β R∗µ1...µD−2αβ = 0 [Riemman conservation]

ε
µ1µ2...µD−1γ∂µ1R

∗
µ2µ3...µD−1αβ = 0 [Riemman conservation]

ε
ν1ν2...νD−3αβγ

∂γR∗µ1µ2...µD−2αβ = 0 [2nd Bianchi identity]
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Generalized symmetries for D = 4 Einstein gravitons

In D = 4, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

Aµν ≡ Rµναβ aαβ , [6 independent]
Bµν ≡ Rµναβ (xαbβ − xβbα) , [4 independent]
Cµν ≡ Rµναβ cαβγxγ , [4 independent]

Dµν ≡ Rµναβ (xαdβγxγ − xβdαγxγ + 1
2d

αβx2) , [6 independent]

d ⋆ A = d ⋆ B = d ⋆ C = d ⋆ D = 0
where aαβ,bα, cαβγ,dαβ are skey-symmetric arrays of real parameters.

This makes a total of 20 independent conserved two-forms in D = 4.
Integrating these charges on Σ2 ⇔ non-locally generated flux operators
on ring-like regions ⇔ violations of duality for regions with non-trivial π1.
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Generalized symmetries for D = 4 Einstein gravitons

Analogously, we can construct 20 conserved two-forms using the dual Rie-
mann tensor

Ãµν ≡ R∗
µναβ ãαβ , [6 independent]

B̃µν ≡ R∗
µναβ (xαb̃β − xβb̃α) , [4 independent]

C̃µν ≡ R∗
µναβ c̃αβγxγ , [4 independent]

D̃µν ≡ R∗
µναβ (xαd̃βγxγ − xβd̃αγxγ + 1

2 d̃
αβx2) , [6 independent]

d ⋆ Ã = d ⋆ B̃ = d ⋆ C̃ = d ⋆ D̃ = 0
This verifies the dual-pairs principle.
However, in this case it is sort of trivial, since the tilded charges are not
independent from the untilded ones. There is a total of 20 independent
currents.
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⋆ 2.2. Einstein gravity in D ≥ 5



Generalized symmetries for D ≥ 5 Einstein gravitons

Beyond D ≥ 5, Einstein gravity is not self-dual anymore

Charges built using the dual Riemann would violate duality in regions with
non-trivial π1 whereas the ones built using the Riemann would violate
duality in regions with non-trivial π(D−3)

Two possibilities:
▶ All the D-dimensional versions of the tilded and untilded currents exist
▶ Some of the tilded and some of the untilded are no longer conserved
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Generalized symmetries for D ≥ 5 Einstein gravitons

Naively, there is an immediate generalization of the untilded charges:

Aµν ≡ Rµναβ aαβ , [D(D− 1)/2]
Bµν ≡ Rµναβ (xαbβ − xβbα) , [D]
Cµν ≡ Rµναβ cαβγxγ , [D(D− 1)(D− 2)/6]

Dµν ≡ Rµναβ (xαdβγxγ − xβdαγxγ + 1
2d

αβx2) , [D(D− 1)/2]

d ⋆ A = d ⋆ B = d ⋆ C = d ⋆ D = 0

These would yield D(D+1)(D+2)/6 candidates to generalized symmetries
associated to violations of duality on rings.
The dual-pairs principle would suggest thatD(D+1)(D+2)/6 dual currents
should exist...
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The dual-pairs principle would suggest thatD(D+1)(D+2)/6 dual currents
should exist...
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Generalized symmetries in D ≥ 5 Einstein gravity

However, only {Ã, B̃} are conserved: d ⋆ Ã = d ⋆ B̃ = 0,

Ãµ1µ2...µD−2 ≡ R∗
µ1µ2...µD−2αβ

ãαβ , [D(D− 1)/2]

B̃µ1µ2...µD−2 ≡ R∗
µ1µ2...µD−2αβ

(xαb̃β − xβb̃α) , [D]

d ⋆ C̃ ̸= 0, d ⋆ D̃ ̸= 0 because the Bianchi identity of the dual Riemann
with only three indices contracted does not hold. One finds

εµ1...µD−3αβγ R∗
ν1...νD−3αβγ

=
1
2η

βγµ1...µD−3
αδν1...νD−3

Rδα
βγ ,

which does not vanish for D ≥ 5 ...
This would be fine if we did not know about the dual-pairs principle...
Either we are missing tilded currents, or some of the untilded ones in fact
become exact in D ≥ 5
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Generalized symmetries for D ≥ 5 Einstein gravitons

One can try to construct modified versions of C̃, D̃ exploiting the failure of the Bianchi
identity.

However, all such possible conserved currents turn out to be exact and gener-
ate no symmetries.
The only alternative seems to be that we are overcounting the number of independent
untilded currents...
This is precisely the case! It turns out that the {A, C} currents become exact for D ≥ 5

⋆A = d ⋆ A ,

⋆ C = d ⋆ C ,

Aµνρ ∼ −R∗µνρα1...αD−3 ã
α1...αD−3σ xσ ,

Cµνρ ∼ R∗µνρα1...αD−3

 1
2
c̃α1...αD−3 x2 +

η
α1...αD−3
β1...βD−3

(D− 4)!
cβ1...βD−4σ xβD−3 xσ

 .

These relations are not true in D = 4 (A, C are not skew-symmetric differential forms in
that case).
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Generalized symmetries for D ≥ 5 Einstein gravitons

Hence, the dual-pairs principle prevails.

We have D(D+ 1)/2 conserved 2-form currents
and D(D+ 1)/2 conserved (D− 2)-form currents for a total of D(D+ 1) generalized sym-
metries
The right set of conserved currents is {B,D, Ã, B̃},

Bµν ≡ Rµναβ (xαbβ − xβbα) , [D]

Dµν ≡ Rµναβ (xαdβγxγ − xβdαγxγ +
1
2d

αβx2) , [D(D− 1)/2]

Ãµ1µ2...µD−2 ≡ R∗µ1µ2...µD−2αβ
ãαβ , [D(D− 1)/2]

B̃µ1µ2...µD−2 ≡ R∗µ1µ2...µD−2αβ
(xαb̃β − xβb̃α) , [D]

The associated generalized charges read

Φ =

∫
ΣD−2

⋆ (B + D ) , Ψ =

∫
Σ2

⋆
(
Ã + B̃

)
.
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Ãµ1µ2...µD−2 ≡ R∗µ1µ2...µD−2αβ
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3. Conclusions and plans



Conclusions and plans

Guided by the dual-pairs principle, we have constructed new conserved p-
form currents for linearized Einstein gravity in general dimensions. The cor-
responding fluxes are associated to operators which violate duality in regions
with non-trivial π1 and π(D−3) (rings and their complements).

Future:
Physical interpretation of the charges
Consider for most general higher-curvature L(Rµνρσ,gµν ,∇µ) in general D
Add explicit mass term to Fierz-Pauli action
Change background to (A)dS
Move beyond linear order
Break symmetries. Fractons?
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⋆ 2.3. Higher-curvature gravities



Linearized higher-curvature gravities

Generalization ⇒ linearization of higher-curvature gravities L(Rµνρσ,gµν).
For a Minkowski background, the most general theory with non-trivial linearized
equations involves a general quadratic modification of the Einstein-Hilbert term. The
modified FP action reads

SFP +
1

16πG

∫
dDx

[
α1 R2

(1) + α2 R(1)µνR
µν
(1) + α3 R(1)µνλσR

µνλσ
(1)

]
The linearized equations read [PB, Cano, Min, Visser](

1 − ∂2

m2
g

)
Rµν −∆µν R = 0 , where ∆µν ≡

1
2
ηµν

[
1 − ∂2

m2
g

]
+

(D− 2)(m2
g −m2

s)

2(D− 1)m2
sm2

g

[
∂µ∂ν − ηµν∂

2] ,
where we defined

α1 ≡
(D− 2)m2

g + Dm2
s

4(D− 1)m2
s m2

g
+ α3 , α2 ≡ −

1
m2
g
− 4α3 ,

Metric perturbation ⇔ usual transverse graviton + spin-0 massive mode + spin-2
massive mode: ∂2hTµν = 0 , (∂2 −m2

s)ϕ = 0 , (∂2 −m2
g)hMµν = 0.
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Generalized symmetries for higher-curvature gravitons

Let us focus on D = 4.
Some of the tilded currents are identical to the Einstein gravity ones, and they remain
conserved, namely, d ⋆ Ã = d ⋆ B̃ = 0
Ãµ1µ2...µD−2 ≡ R∗µ1µ2...µD−2αβ

ãαβ , [6] B̃µ1µ2...µD−2 ≡ R∗µ1µ2...µD−2αβ
(xαb̃β − xβb̃α) , [4]

Natural to expect 10 additional untilded charges. However, the Riemann tensor is nei-
ther traceless nor divergenceless anymore... Modified Riemann tensor

Jµναβ ≡

[
1 − ∂2

m2
g

]
Rµναβ +∆µβRνα −∆µαRνβ +∆ναRµβ −∆νβRµα ,

shares symmetries of Riemann and divergenceless. With this: d ⋆ A = d ⋆ B = 0,
Aµν = Jµναβ aαβ , [6] Cµν = Jµναβ cαβγxγ , [4]

These makes again a total of 20 conserved currents.

Q =

∫
Σ2

(Ã+ B̃+ A+ C)
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