GENERALIZED SYMMETRIES FOR GENERALIzED GRAVITONS

Pablo Bueno
EURostrings 2023-GiJón
APRIL $24^{\text {th }} 2023$

Universitatide BARCELONA

Based on:

- [Benedetti, PB, Magán] arXiv:2304.XXXXX

1. Generalized symmetries and region algebras
2. Generalized symmetries of linearized gravity
2.1. Einstein gravity in $D=4$

* 2.2. Einstein gravity in $D \geq 5$ \star 2.3. Higher-curvature gravities

3. Conclusions and plans

1. GENERALIZED SYMMETRIES AND REGION ALGEBRAS

■ Operators in QFT organize themselves in algebras associated to spacetime regions.

■ Operators in QFT organize themselves in algebras associated to spacetime regions. Associated to any spacetime region R there is an algebra of operators $\mathcal{A}(R)$ with support in that region.

■ Operators in QFT organize themselves in algebras associated to spacetime regions. Associated to any spacetime region R there is an algebra of operators $\mathcal{A}(R)$ with support in that region.
■ An algebra is a set of operators closed under linear combinations, products and taking adjoints

$$
1 \in \mathcal{A}, \quad a, b \in \mathcal{A}, \quad \alpha, \beta \in \mathbb{C} \quad \Rightarrow \quad \alpha a+\beta b \in \mathcal{A}, \quad a b \in \mathcal{A}, \quad a^{\dagger} \in \mathcal{A}
$$

■ Operators in QFT organize themselves in algebras associated to spacetime regions. Associated to any spacetime region R there is an algebra of operators $\mathcal{A}(R)$ with support in that region.
$■$ An algebra is a set of operators closed under linear combinations, products and taking adjoints

$$
1 \in \mathcal{A}, \quad a, b \in \mathcal{A}, \quad \alpha, \beta \in \mathbb{C} \quad \Rightarrow \quad \alpha a+\beta b \in \mathcal{A}, \quad a b \in \mathcal{A}, \quad a^{\dagger} \in \mathcal{A}
$$

- Let \mathcal{A}^{\prime} denote the algebra of operators which commute with \mathcal{A}. Then, the "von Neumann double-commutant theorem" establishes that $\mathcal{A}^{\prime \prime}=\mathcal{A}$.
- Operators in QFT organize themselves in algebras associated to spacetime regions. Associated to any spacetime region R there is an algebra of operators $\mathcal{A}(R)$ with support in that region.
- An algebra is a set of operators closed under linear combinations, products and taking adjoints

$$
1 \in \mathcal{A}, \quad a, b \in \mathcal{A}, \quad \alpha, \beta \in \mathbb{C} \Rightarrow \alpha a+\beta b \in \mathcal{A}, \quad a b \in \mathcal{A}, \quad a^{\dagger} \in \mathcal{A}
$$

- Let \mathcal{A}^{\prime} denote the algebra of operators which commute with \mathcal{A}. Then, the "von Neumann double-commutant theorem" establishes that $\mathcal{A}^{\prime \prime}=\mathcal{A}$. The algebraic formulation of QFT takes as fundamental objects associations between regions in Minkowski space and operator algebras (localized in them).

Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it

Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it - The algebra of local operators supported in R :

$$
\mathcal{A}_{\text {add }}(R) \quad \text { ["additive algebra"] }
$$

Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it

- The algebra of local operators supported in R :

$$
\mathcal{A}_{\text {add }}(R) \quad \text { ["additive algebra"] }
$$

- The algebra of operators which commute with the local operators supported in its causal complement R^{\prime} :

$$
\mathcal{A}_{\max }(R)=\left(\mathcal{A}_{\text {add }}\left(R^{\prime}\right)\right)^{\prime} \quad[\text { "maximal algebra"] }
$$

Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it

- The algebra of local operators supported in R :

$$
\mathcal{A}_{\text {add }}(R) \quad \text { ["additive algebra"] }
$$

- The algebra of operators which commute with the local operators supported in its causal complement R^{\prime} :

$$
\mathcal{A}_{\max }(R)=\left(\mathcal{A}_{\text {add }}\left(R^{\prime}\right)\right)^{\prime} \quad[\text { "maximal algebra"] }
$$

In this context, causality is the statement that operators localized in spatially separated regions commute with each other,

Region algebras in QFT

Given a region R, there are two somewhat canonical choices of algebras associated to it

- The algebra of local operators supported in R :

$$
\mathcal{A}_{\text {add }}(R) \quad \text { ["additive algebra"] }
$$

- The algebra of operators which commute with the local operators supported in its causal complement R^{\prime} :

$$
\mathcal{A}_{\max }(R)=\left(\mathcal{A}_{\text {add }}\left(R^{\prime}\right)\right)^{\prime} \quad[\text { "maximal algebra"] }
$$

In this context, causality is the statement that operators localized in spatially separated regions commute with each other, so

$$
\mathcal{A}_{\text {add }}\left(R^{\prime}\right) \subseteq\left(\mathcal{A}_{\text {add }}(R)\right)^{\prime} \quad[\text { causality }] \quad \text { which implies } \quad \mathcal{A}_{\text {add }}(R) \subseteq \mathcal{A}_{\max }(R)
$$

■ Under very general conditions, the maximal algebra coincides with the additive algebra for ball regions:

$$
\mathcal{A}_{\text {add }}(\mathcal{B})=\mathcal{A}_{\max }(\mathcal{B}) \quad \text { ["Haag duality"] } \Leftarrow \text { holds } \forall \text { QFT }
$$

- Under very general conditions, the maximal algebra coincides with the additive algebra for ball regions:

$$
\mathcal{A}_{\text {add }}(\mathcal{B})=\mathcal{A}_{\max }(\mathcal{B}) \quad \text { ["Haag duality"] } \Leftarrow \text { holds } \forall \text { QFT }
$$

- For general regions, the equality fails in general:

$$
\mathcal{A}_{\text {add }}(R)=\mathcal{A}_{\max }(R) \quad \forall R \quad \text { ["duality"] } \Leftarrow \quad \text { only holds for some QFTs ("complete") }
$$

- Under very general conditions, the maximal algebra coincides with the additive algebra for ball regions:

$$
\mathcal{A}_{\text {add }}(\mathcal{B})=\mathcal{A}_{\max }(\mathcal{B}) \quad \text { ["Haag duality"] } \Leftarrow \text { holds } \forall \text { QFT }
$$

- For general regions, the equality fails in general:

$$
\begin{aligned}
& \mathcal{A}_{\text {add }}(R)=\mathcal{A}_{\max }(R) \quad \forall R \quad \text { ["duality"] } \quad \Leftarrow \text { only holds for some QFTs ("complete") } \\
& \text { If } \mathcal{A}_{\text {add }}(R) \subsetneq \mathcal{A}_{\max }(R) \text { for some } R,
\end{aligned}
$$

- Under very general conditions, the maximal algebra coincides with the additive algebra for ball regions:

$$
\mathcal{A}_{\text {add }}(\mathcal{B})=\mathcal{A}_{\max }(\mathcal{B}) \quad \text { ["Haag duality"] } \Leftarrow \text { holds } \forall \text { QFT }
$$

- For general regions, the equality fails in general:

$$
\mathcal{A}_{\text {add }}(R)=\mathcal{A}_{\max }(R) \quad \forall R \quad \text { ["duality"] } \Leftarrow \quad \text { only holds for some QFTs ("complete") }
$$

If $\mathcal{A}_{\text {add }}(R) \subsetneq \mathcal{A}_{\text {max }}(R)$ for some R, then

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{a\}
$$

where $\{a\}$ are non-locally generated operators in R

Region algebras in QFT

- Under very general conditions, the maximal algebra coincides with the additive algebra for ball regions:

$$
\mathcal{A}_{\text {add }}(\mathcal{B})=\mathcal{A}_{\max }(\mathcal{B}) \quad \text { ["Haag duality"] } \Leftarrow \text { holds } \forall \text { QFT }
$$

- For general regions, the equality fails in general:

$$
\mathcal{A}_{\text {add }}(R)=\mathcal{A}_{\max }(R) \quad \forall R \quad \text { ["duality"] } \Leftarrow \quad \text { only holds for some QFTs ("complete") }
$$

If $\mathcal{A}_{\text {add }}(R) \subsetneq \mathcal{A}_{\text {max }}(R)$ for some R, then

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{a\}
$$

where $\{a\}$ are non-locally generated operators in R
■ From von Neumann's double commutant theorem it is easy to prove that

$$
\mathcal{A}_{\max }\left(R^{\prime}\right)=\mathcal{A}_{\text {add }}\left(R^{\prime}\right) \vee\{\boldsymbol{b}\}
$$

where $\{b\}$ are non-locally generated operators in the causal complement R^{\prime}.

- A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- Standard global ("o-form") symmetries $\Leftrightarrow p=1$

■ A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- Standard global ("o-form") symmetries $\Leftrightarrow p=1$
- p-form symmetry currents define topological higher-form charges by integrating \star J over ($D-p$)-oriented surfaces $\Sigma_{(D-p)}$

■ A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- Standard global ("o-form") symmetries $\Leftrightarrow p=1$
- p-form symmetry currents define topological higher-form charges by integrating \star J over ($D-p$)-oriented surfaces $\Sigma_{(D-p)}$

$$
\Phi \equiv \int_{\Sigma_{(0-p)}} \star J
$$

■ A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- Standard global ("o-form") symmetries $\Leftrightarrow p=1$
- p-form symmetry currents define topological higher-form charges by integrating \star J over ($D-p$)-oriented surfaces $\Sigma_{(D-p)}$

$$
\Phi \equiv \int_{\Sigma_{(0-p)}} \star J
$$

- One can define the operators implementing the corresponding generalized symmetry in the usual way, $U_{g}=\mathrm{e}^{\mathrm{i} g \phi}$

Generalized symmetries

■ A generalized symmetry current J is a p-form which satisfies

$$
\mathrm{d} \star J=0, \quad \star J \neq \mathrm{d} G \quad \text { where } G \text { is a physical field of the theory }
$$

- Standard global ("o-form") symmetries $\Leftrightarrow p=1$
- p-form symmetry currents define topological higher-form charges by integrating \star J over ($D-p$)-oriented surfaces $\Sigma_{(D-p)}$

$$
\Phi \equiv \int_{\Sigma_{(0-p)}} \star J
$$

- One can define the operators implementing the corresponding generalized symmetry in the usual way, $U_{g}=\mathrm{e}^{\mathrm{i} g \phi}$
■ The charged operators are supported on ($p-1$)-dimensional manifolds

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(D-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(0-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Let R be a region enclosing $\partial \Sigma_{(D-p)}$ and with the same topology.

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $\mathrm{d} \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(D-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Let R be a region enclosing $\partial \Sigma_{(D-p)}$ and with the same topology. Then $[\Phi, \mathcal{O}]=0 \forall$ local operator \mathcal{O} supported outside R.

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(0-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Let R be a region enclosing $\partial \Sigma_{(D-p)}$ and with the same topology. Then $[\Phi, \mathcal{O}]=0 \forall$ local operator \mathcal{O} supported outside R. In other words, Φ commutes with all elements of $\mathcal{A}_{\text {add }}\left(R^{\prime}\right)$ and therefore

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(D-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Let R be a region enclosing $\partial \Sigma_{(D-p)}$ and with the same topology. Then $[\Phi, \mathcal{O}]=0 \forall$ local operator \mathcal{O} supported outside R. In other words, Φ commutes with all elements of $\mathcal{A}_{\text {add }}\left(R^{\prime}\right)$ and therefore

$$
\Phi \in\left(\mathcal{A}_{\text {add }}\left(R^{\prime}\right)\right)^{\prime}=\mathcal{A}_{\max }(R)
$$

Generalized symmetries, algebras and regions

Assume $\exists p$-form J such that $d \star J=0$ and $\star J \neq \mathrm{d} G$ with G a physical field.
■ In that case, the generalized flux operator

$$
\Phi \equiv \int_{\Sigma_{(D-p)}} \star J \quad \text { only depends on } \partial \Sigma_{(D-p)}
$$

Let R be a region enclosing $\partial \Sigma_{(D-p)}$ and with the same topology. Then $[\Phi, \mathcal{O}]=0 \forall$ local operator \mathcal{O} supported outside R. In other words, Φ commutes with all elements of $\mathcal{A}_{\text {add }}\left(R^{\prime}\right)$ and therefore

$$
\Phi \in\left(\mathcal{A}_{\text {add }}\left(R^{\prime}\right)\right)^{\prime}=\mathcal{A}_{\max }(R)
$$

$$
\Phi=\int_{\Sigma_{2}} \star J=\int_{\widetilde{\Sigma}_{2}} \star J \text { (only depends on } \partial \Sigma_{2} \text {) }
$$

$$
[\Phi, \theta]=0 \Rightarrow \Phi \in A_{\text {max }}(R)
$$

Generalized symmetries, algebras and regions

- On the other hand,

$$
\Phi \neq \int_{\partial \Sigma_{(D-p)}} G \text { with } G \text { a physical field }
$$

Generalized symmetries, algebras and regions

- On the other hand,

$$
\Phi \neq \int_{\partial \sum_{(D-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

- On the other hand,

$$
\Phi \neq \int_{\partial \sum_{(0-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

As a consequence, $\mathcal{A}_{\max }(R)$ contains more operators than $\mathcal{A}_{\text {add }}(R)$, namely, $\mathrm{e}^{\mathrm{i} g \Phi}$ and all its products with local operators

- On the other hand,

$$
\Phi \neq \int_{\partial \sum_{(0-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

As a consequence, $\mathcal{A}_{\max }(R)$ contains more operators than $\mathcal{A}_{\text {add }}(R)$, namely, $\mathrm{e}^{\mathrm{i} g \Phi}$ and all its products with local operators

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{\Phi\}
$$

■ On the other hand,

$$
\Phi \neq \int_{\partial \Sigma_{(D-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

As a consequence, $\mathcal{A}_{\max }(R)$ contains more operators than $\mathcal{A}_{\text {add }}(R)$, namely, $\mathrm{e}^{\mathrm{i} g \Phi}$ and all its products with local operators

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{\Phi\}
$$

- As a consequence of von Neumann's double commutant theorem, $\mathcal{A}^{\prime \prime}=\mathcal{A}$, the same holds in the complementary region, R^{\prime},
- On the other hand,

$$
\Phi \neq \int_{\partial \sum_{(0-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

As a consequence, $\mathcal{A}_{\max }(R)$ contains more operators than $\mathcal{A}_{\text {add }}(R)$, namely, $\mathrm{e}^{\mathrm{i} g \Phi}$ and all its products with local operators

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{\Phi\}
$$

■ As a consequence of von Neumann's double commutant theorem, $\mathcal{A}^{\prime \prime}=\mathcal{A}$, the same holds in the complementary region, R^{\prime},

$$
\mathcal{A}_{\max }\left(R^{\prime}\right)=\mathcal{A}_{\text {add }}\left(R^{\prime}\right) \vee\{\Psi\}
$$

and \exists a non-locally generated flux operator Ψ associated to R^{\prime}

- On the other hand,

$$
\Phi \neq \int_{\partial \sum_{(0-p)}} G \text { with } G \text { a physical field }
$$

and therefore, Φ is not locally generated within R,

$$
\Phi \notin \mathcal{A}_{\text {add }}(R)
$$

As a consequence, $\mathcal{A}_{\max }(R)$ contains more operators than $\mathcal{A}_{\text {add }}(R)$, namely, $\mathrm{e}^{\mathrm{i} g \Phi}$ and all its products with local operators

$$
\mathcal{A}_{\max }(R)=\mathcal{A}_{\text {add }}(R) \vee\{\Phi\}
$$

■ As a consequence of von Neumann's double commutant theorem, $\mathcal{A}^{\prime \prime}=\mathcal{A}$, the same holds in the complementary region, R^{\prime},

$$
\mathcal{A}_{\max }\left(R^{\prime}\right)=\mathcal{A}_{\text {add }}\left(R^{\prime}\right) \vee\{\Psi\}
$$

and \exists a non-locally generated flux operator Ψ associated to R^{\prime} \Rightarrow Generalized symmetries always come in pairs

- Furthermore, if $\mathrm{e}^{\mathrm{ig} \Phi}$ is charged under a continuous non-compact symmetry group, there exists a ($D-p$)-form current \tilde{J} such that $d \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{\jmath}
$$

- Furthermore, if $\mathrm{e}^{\mathrm{ig} \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $\mathrm{d} \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{\jmath}
$$

- The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa

Generalized symmetries, algebras and regions

- Furthermore, if $\mathrm{e}^{\mathrm{i} \phi \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $d \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{\jmath}
$$

■ The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa

- Violations of duality in regions with non-trivial $\pi_{(p-1)}$ and $\pi_{(D-p+1)}$ groups \Leftrightarrow generalized ($p-1$)-form symmetries

Generalized symmetries, algebras and regions

- Furthermore, if $\mathrm{e}^{\mathrm{i} \phi \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $d \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{\jmath}
$$

- The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa
- Violations of duality in regions with non-trivial $\pi_{(p-1)}$ and $\pi_{(D-p+1)}$ groups \Leftrightarrow generalized ($p-1$)-form symmetries
- Example with $p=2$:
- Furthermore, if $\mathrm{e}^{\mathrm{ig} \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $\mathrm{d} \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{J}
$$

■ The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa
■ Violations of duality in regions with non-trivial $\pi_{(p-1)}$ and $\pi_{(D-p+1)}$ groups \Leftrightarrow generalized ($p-1$)-form symmetries
■ Example with $p=2$: free Maxwell in D-dimensions has two generalized symmetries with currents $J_{m} \equiv \star F$ and $J_{e} \equiv F$

- Furthermore, if $\mathrm{e}^{\mathrm{ig} \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $\mathrm{d} \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{J}
$$

■ The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa
■ Violations of duality in regions with non-trivial $\pi_{(p-1)}$ and $\pi_{(D-p+1)}$ groups \Leftrightarrow generalized ($p-1$)-form symmetries
■ Example with $p=2$: free Maxwell in D-dimensions has two generalized symmetries with currents $J_{m} \equiv \star F$ and $J_{e} \equiv F \Leftrightarrow$ violations of duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$

- Furthermore, if $\mathrm{e}^{\mathrm{ig} \Phi}$ is charged under a continuous non-compact symmetry group, there exists a $(D-p)$-form current \tilde{J} such that $\mathrm{d} \star \tilde{J}=0$ and $\star \tilde{J} \neq \mathrm{d} G$ with G a physical field such that [Benedetti, Casini, Magan]

$$
\psi=\int_{\Sigma_{p}} \star \tilde{\jmath}
$$

- The existence of a conserved p-form current predicts the existence of a dual conserved ($D-p$)-form current and viceversa
■ Violations of duality in regions with non-trivial $\pi_{(p-1)}$ and $\pi_{(D-p+1)}$ groups \Leftrightarrow generalized ($p-1$)-form symmetries
■ Example with $p=2$: free Maxwell in D-dimensions has two generalized symmetries with currents $J_{m} \equiv \star F$ and $J_{e} \equiv F \Leftrightarrow$ violations of duality in regions with non-trivial π_{1} and $\pi_{(D-3)} \Leftrightarrow$ Wilson and 't Hooft loops

2. GENERALIZED SYMMETRIES OF LINEARIZED GRAVITY

- Conserved charges in gravity
[(Iyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]
- Conserved charges in gravity
[(Iyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]
■ Quantum gravity, completeness and absence of generalized symmetries [Polchinski; Banks, Seiberg; Casini, Huerta, Magan, Pontello; Rudelius, Shao; Harlow, Ooguri...]
- Conserved charges in gravity
[(Iyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]
■ Quantum gravity, completeness and absence of generalized symmetries [Polchinski; Banks, Seiberg; Casini, Huerta, Magan, Pontello; Rudelius, Shao; Harlow, Ooguri...]
■ Intriguing connections with fracton physics
[Pretko; Benedetti, Casini, Magan]
- Conserved charges in gravity
[(Iyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]
■ Quantum gravity, completeness and absence of generalized symmetries [Polchinski; Banks, Seiberg; Casini, Huerta, Magan, Pontello; Rudelius, Shao; Harlow, Ooguri...]
■ Intriguing connections with fracton physics
[Pretko; Benedetti, Casini, Magan]
■ Explicit realizations of the dual-pairs principle
[Benedetti, Casini, Magan]

2.1. EINSTEIN GRAVITY IN $D=4$

Linearized perturbations on Minkowski spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left\|h_{\mu \nu}\right\| \ll 1, \quad h_{[\mu \nu]}=0, \quad h \equiv \eta^{\mu \nu} h_{\mu \nu}
$$

Linearized perturbations on Minkowski spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left\|h_{\mu \nu}\right\| \ll 1, \quad h_{[\mu \nu]}=0, \quad h \equiv \eta^{\mu \nu} h_{\mu \nu}
$$

We can expand every relevant tensor in powers of $h_{\mu \nu}: T=T^{(0)}+T^{(1)}+T^{(2)}+\mathcal{O}\left(h^{3}\right)$

Linearized perturbations on Minkowski spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left\|h_{\mu \nu}\right\| \ll 1, \quad h_{[\mu \nu]}=0, \quad h \equiv \eta^{\mu \nu} h_{\mu \nu}
$$

We can expand every relevant tensor in powers of $h_{\mu \nu}: T=T^{(0)}+T^{(1)}+T^{(2)}+\mathcal{O}\left(h^{3}\right)$
■ The Einstein gravity action reduces to the Fierz-Pauli one

$$
S_{E H}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x \sqrt{|g|} R \Rightarrow S_{\mathrm{FP}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x\left[\left(1+\frac{h}{2}\right) R^{(1)}+R^{(2)}\right] .
$$

Linearized Einstein gravity

Linearized perturbations on Minkowski spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left\|h_{\mu \nu}\right\| \ll 1, \quad h_{[\mu \nu]}=0, \quad h \equiv \eta^{\mu \nu} h_{\mu \nu}
$$

We can expand every relevant tensor in powers of $h_{\mu \nu}: T=T^{(0)}+T^{(1)}+T^{(2)}+\mathcal{O}\left(h^{3}\right)$
■ The Einstein gravity action reduces to the Fierz-Pauli one

$$
S_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x \sqrt{|g|} R \Rightarrow S_{\mathrm{FP}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x\left[\left(1+\frac{h}{2}\right) R^{(1)}+R^{(2)}\right] .
$$

- Theory of a spin-2 symmetric field on Minkowski spacetime. Equations of motion:

$$
R_{\mu \nu}^{(1)}=0
$$

Linearized Einstein gravity

Linearized perturbations on Minkowski spacetime

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left\|h_{\mu \nu}\right\| \ll 1, \quad h_{[\mu \nu]}=0, \quad h \equiv \eta^{\mu \nu} h_{\mu \nu}
$$

We can expand every relevant tensor in powers of $h_{\mu \nu}: T=T^{(0)}+T^{(1)}+T^{(2)}+\mathcal{O}\left(h^{3}\right)$
■ The Einstein gravity action reduces to the Fierz-Pauli one

$$
S_{E H}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x \sqrt{|g|} R \Rightarrow S_{\mathrm{FP}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{D} x\left[\left(1+\frac{h}{2}\right) R^{(1)}+R^{(2)}\right] .
$$

- Theory of a spin-2 symmetric field on Minkowski spacetime. Equations of motion:

$$
R_{\mu \nu}^{(1)}=0
$$

■ Gauge symmetry-like invariance (\Leftrightarrow linearized diffeomorphisms)

$$
h_{\mu \nu} \rightarrow h_{\mu \nu}+2 \partial_{(\mu} \xi_{\nu)}
$$

We look for p-form conserved currents for this theory

We look for p-form conserved currents for this theory

- The Riemann tensor is the generator of the gauge-invariant algebra

We look for p-form conserved currents for this theory

- The Riemann tensor is the generator of the gauge-invariant algebra

■ Our currents should be formed from contractions of $\left\{R_{\mu \nu \rho \sigma}, \eta_{\mu \nu}, \varepsilon_{\mu_{1} \ldots \mu_{0}}\right\}$

We look for p-form conserved currents for this theory
■ The Riemann tensor is the generator of the gauge-invariant algebra
■ Our currents should be formed from contractions of $\left\{R_{\mu \nu \rho \sigma}, \eta_{\mu \nu}, \varepsilon_{\mu_{1} \ldots \mu_{0}}\right\}$
■ It is useful and illuminating to use the dual Riemann tensor

$$
R_{\mu_{1} \ldots \mu_{D-2} \alpha \beta}^{*} \equiv \frac{1}{2} \varepsilon_{\mu_{1} \ldots \mu_{D-2} \lambda \sigma} R^{\lambda \sigma}{ }_{\alpha \beta} .
$$

Linearized Einstein gravity

The on-shell curvatures satisfy a series of properties

$$
\begin{array}{ll}
R_{\mu \nu \alpha \beta}=-R_{\nu \mu \alpha \beta}=-R_{\mu \nu \beta \alpha} & \text { [Skew Symmetry] } \\
R_{\mu \nu \alpha \beta}=R_{\alpha \beta \mu \nu} & \text { [Interchange Symmetry] } \\
\eta^{\mu \alpha} R_{\mu \nu \alpha \beta}=0 & \text { [Einstein Equation] } \\
\varepsilon^{\mu_{1} \ldots \mu_{D-3}{ }^{\alpha \beta \gamma} R_{\alpha \beta \gamma \nu}=0} & \text { [1st Bianchi identity] } \\
\varepsilon^{\mu_{1} \ldots \mu_{D-3}{ }^{\alpha \beta \gamma} \partial_{\alpha} R_{\beta \gamma \mu \nu}=0} & \text { [2nd Bianchi identity] } \\
\partial^{\mu} R_{\mu \nu \alpha \beta}=0 & \text { [Einstein Equation] }
\end{array}
$$

In $D=4$, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

Generalized symmetries for $D=4$ EInstein gravitons

In $D=4$, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

\[

\]

In $D=4$, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

\[

\]

where $\boldsymbol{a}^{\alpha \beta}, \boldsymbol{b}^{\alpha}, \boldsymbol{c}^{\alpha \beta \gamma}, \boldsymbol{d}^{\alpha \beta}$ are skey-symmetric arrays of real parameters.

Generalized symmetries for $D=4$ EInstein gravitons

In $D=4$, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

\[

\]

where $\boldsymbol{a}^{\alpha \beta}, \boldsymbol{b}^{\alpha}, \boldsymbol{c}^{\alpha \beta \gamma}, \boldsymbol{d}^{\alpha \beta}$ are skey-symmetric arrays of real parameters.
■ This makes a total of 20 independent conserved two-forms in $D=4$.

In $D=4$, one finds the following conserved two-forms
[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

\[

\]

where $a^{\alpha \beta}, b^{\alpha}, c^{\alpha \beta \gamma}, d^{\alpha \beta}$ are skey-symmetric arrays of real parameters.
■ This makes a total of 20 independent conserved two-forms in $D=4$.
■ Integrating these charges on $\Sigma_{2} \Leftrightarrow$ non-locally generated flux operators on ring-like regions \Leftrightarrow violations of duality for regions with non-trivial π_{1}.

Analogously, we can construct 20 conserved two-forms using the dual Riemann tensor

Generalized symmetries for $D=4$ EInstein gravitons

Analogously, we can construct 20 conserved two-forms using the dual Riemann tensor

\[

\]

Generalized symmetries for $D=4$ EInstein gravitons

Analogously, we can construct 20 conserved two-forms using the dual Riemann tensor

\[

\]

- This verifies the dual-pairs principle.

Analogously, we can construct 20 conserved two-forms using the dual Riemann tensor

\[

\]

■ This verifies the dual-pairs principle.

- However, in this case it is sort of trivial, since the tilded charges are not independent from the untilded ones.

Analogously, we can construct 20 conserved two-forms using the dual Riemann tensor

\[

\]

- This verifies the dual-pairs principle.
- However, in this case it is sort of trivial, since the tilded charges are not independent from the untilded ones. There is a total of 20 independent currents.
* 2.2. EINSTEIN GRAVITY IN $D \geq 5$
- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore
- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore

■ Charges built using the dual Riemann would violate duality in regions with non-trivial π_{1}

- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore

■ Charges built using the dual Riemann would violate duality in regions with non-trivial π_{1} whereas the ones built using the Riemann would violate duality in regions with non-trivial $\pi_{(D-3)}$

- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore

■ Charges built using the dual Riemann would violate duality in regions with non-trivial π_{1} whereas the ones built using the Riemann would violate duality in regions with non-trivial $\pi_{(D-3)}$

- Two possibilities:
- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore

■ Charges built using the dual Riemann would violate duality in regions with non-trivial π_{1} whereas the ones built using the Riemann would violate duality in regions with non-trivial $\pi_{(D-3)}$

- Two possibilities:
- All the D-dimensional versions of the tilded and untilded currents exist
- Beyond $D \geq 5$, Einstein gravity is not self-dual anymore

■ Charges built using the dual Riemann would violate duality in regions with non-trivial π_{1} whereas the ones built using the Riemann would violate duality in regions with non-trivial $\pi_{(D-3)}$

- Two possibilities:
- All the D-dimensional versions of the tilded and untilded currents exist
- Some of the tilded and some of the untilded are no longer conserved

Generalized symmetries for $D \geq 5$ Einstein gravitons

Naively, there is an immediate generalization of the untilded charges:

Generalized symmetries for $D \geq 5$ EInstein gravitons

Naively, there is an immediate generalization of the untilded charges:

$$
\begin{array}{ll}
A_{\mu \nu} \equiv R_{\mu \nu \alpha \beta} a^{\alpha \beta}, & {[D(D-1) / 2]} \\
B_{\mu \nu} \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} b^{\beta}-x^{\beta} b^{\alpha}\right), & {[D]} \\
C_{\mu \nu} \equiv R_{\mu \nu \alpha \beta} c^{\alpha \beta \gamma} x_{\gamma}, & {[D(D-1)(D-} \\
D_{\mu \nu} \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} d^{\beta \gamma} x^{\gamma}-x^{\beta} d^{\alpha \gamma} x^{\gamma}+\frac{1}{2} d^{\alpha \beta} x^{2}\right), & {[D(D-1) / 2]} \\
& \mathrm{d} \star A=\mathrm{d} \star B=\mathrm{d} \star C=\mathrm{d} \star D=0
\end{array}
$$

Generalized symmetries for $D \geq 5$ EInstein gravitons

Naively, there is an immediate generalization of the untilded charges:

\[

\]

■ These would yield $D(D+1)(D+2) / 6$ candidates to generalized symmetries associated to violations of duality on rings.

Generalized symmetries for $D \geq 5$ Einstein gravitons

Naively, there is an immediate generalization of the untilded charges:

\[

\]

■ These would yield $D(D+1)(D+2) / 6$ candidates to generalized symmetries associated to violations of duality on rings.
■ The dual-pairs principle would suggest that $D(D+1)(D+2) / 6$ dual currents should exist...

Generalized symmetries in $D \geq 5$ EINSTEIN gravity

■ However, only $\{\tilde{A}, \tilde{B}\}$ are conserved: $\mathrm{d} \star \tilde{A}=\mathrm{d} \star \tilde{B}=0$,

$$
\begin{array}{ll}
\tilde{A}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{0-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & {[D(D-1) / 2]} \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{0-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & {[D]}
\end{array}
$$

Generalized symmetries in $D \geq 5$ EINSTEIN gravity

■ However, only $\{\tilde{A}, \tilde{B}\}$ are conserved: $d \star \tilde{A}=d \star \tilde{B}=0$,

$$
\begin{array}{ll}
\tilde{A}_{\mu \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & {[D(D-1) / 2]} \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & {[D]}
\end{array}
$$

$\mathrm{d} \star \tilde{C} \neq \mathrm{o}, \mathrm{d} \star \tilde{D} \neq \mathrm{o}$ because the Bianchi identity of the dual Riemann with only three indices contracted does not hold.

■ However, only $\{\tilde{A}, \tilde{B}\}$ are conserved: $\mathrm{d} \star \tilde{A}=\mathrm{d} \star \tilde{B}=0$,

$$
\begin{array}{ll}
\tilde{A}_{\mu \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & {[D(D-1) / 2]} \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & {[D]}
\end{array}
$$

$\mathrm{d} \star \tilde{C} \neq \mathrm{o}, \mathrm{d} \star \tilde{D} \neq \mathrm{o}$ because the Bianchi identity of the dual Riemann with only three indices contracted does not hold. One finds

$$
\varepsilon^{\mu_{1} \ldots \mu_{D-3} \alpha \beta \gamma} R_{\nu_{1} \ldots \nu_{D-3} \alpha \beta \gamma}^{*}=\frac{1}{2} \eta_{\alpha \delta \nu_{1} \ldots \nu_{D-3}}^{\beta \gamma \mu_{1} \ldots \mu_{D-3}} R_{\beta \gamma}^{\delta \alpha},
$$

which does not vanish for $D \geq 5$...

■ However, only $\{\tilde{A}, \tilde{B}\}$ are conserved: $\mathrm{d} \star \tilde{A}=\mathrm{d} \star \tilde{B}=0$,

$$
\begin{array}{ll}
\tilde{A}_{\mu \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & {[D(D-1) / 2]} \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & {[D]}
\end{array}
$$

$\mathrm{d} \star \tilde{C} \neq \mathrm{o}, \mathrm{d} \star \tilde{D} \neq \mathrm{o}$ because the Bianchi identity of the dual Riemann with only three indices contracted does not hold. One finds

$$
\varepsilon^{\mu_{1} \ldots \mu_{D-3} \alpha \beta \gamma} R_{\nu_{1} \ldots \nu_{D-3} \alpha \beta \gamma}^{*}=\frac{1}{2} \eta_{\alpha \delta \nu_{1} \ldots \nu_{D-3}}^{\beta \gamma \mu_{1} \ldots \mu_{D-3}} R_{\beta \gamma}^{\delta \alpha},
$$

which does not vanish for $D \geq 5$...
■ This would be fine if we did not know about the dual-pairs principle...

■ However, only $\{\tilde{A}, \tilde{B}\}$ are conserved: $\mathrm{d} \star \tilde{A}=\mathrm{d} \star \tilde{B}=0$,

$$
\begin{array}{ll}
\tilde{A}_{\mu \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & {[D(D-1) / 2]} \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & {[D]}
\end{array}
$$

$\mathrm{d} \star \tilde{C} \neq \mathrm{o}, \mathrm{d} \star \tilde{D} \neq \mathrm{o}$ because the Bianchi identity of the dual Riemann with only three indices contracted does not hold. One finds

$$
\varepsilon^{\mu_{1} \ldots \mu_{D-3} \alpha \beta \gamma} R_{\nu_{1} \ldots \nu_{D-3} \alpha \beta \gamma}^{*}=\frac{1}{2} \eta_{\alpha \delta \nu_{1} \ldots \nu_{D-3}}^{\beta \gamma \mu_{1} . . \mu_{D-3}} R^{\delta \alpha}{ }_{\beta \gamma},
$$

which does not vanish for $D \geq 5$...
■ This would be fine if we did not know about the dual-pairs principle...
■ Either we are missing tilded currents, or some of the untilded ones in fact become exact in $D \geq 5$

Generalized symmetries for $D \geq 5$ Einstein gravitons

- One can try to construct modified versions of \tilde{C}, \tilde{D} exploiting the failure of the Bianchi identity.

■ One can try to construct modified versions of \tilde{C}, \tilde{D} exploiting the failure of the Bianchi identity. However, all such possible conserved currents turn out to be exact and generate no symmetries.

■ One can try to construct modified versions of \tilde{C}, \tilde{D} exploiting the failure of the Bianchi identity. However, all such possible conserved currents turn out to be exact and generate no symmetries.

- The only alternative seems to be that we are overcounting the number of independent untilded currents...

Generalized symmetries for $D \geq 5$ EInstein gravitons

■ One can try to construct modified versions of \tilde{C}, \tilde{D} exploiting the failure of the Bianchi identity. However, all such possible conserved currents turn out to be exact and generate no symmetries.

- The only alternative seems to be that we are overcounting the number of independent untilded currents...

■ This is precisely the case! It turns out that the $\{A, C\}$ currents become exact for $D \geq 5$

$$
\begin{gathered}
\star A=\mathrm{d} \star \mathcal{A}, \\
\star \mathrm{C}=\mathrm{d} \star \mathcal{C}, \\
\mathcal{A}_{\mu \nu \rho} \sim-R_{\mu \nu \rho \alpha_{1} \ldots \alpha_{D-3}}^{*} \tilde{a}^{\alpha_{1} \ldots \alpha_{D-3} \sigma} x_{\sigma}, \\
\mathcal{C}_{\mu \nu \rho} \sim R_{\mu \nu \rho \alpha_{1} \ldots \alpha_{D-3}}^{*}\left(\frac{1}{2} \tilde{c}^{\alpha_{1} \ldots \alpha_{D-3}} x^{2}+\frac{\eta_{\beta_{1} \ldots \beta_{D-3}}^{\alpha_{1} \ldots \alpha_{D-3}}}{(D-4)!} c^{\beta_{1} \ldots \beta_{D-4} \sigma} x^{\beta_{D-3}} x_{\sigma}\right) .
\end{gathered}
$$

Generalized symmetries for $D \geq 5$ EInstein gravitons

■ One can try to construct modified versions of \tilde{C}, \tilde{D} exploiting the failure of the Bianchi identity. However, all such possible conserved currents turn out to be exact and generate no symmetries.

- The only alternative seems to be that we are overcounting the number of independent untilded currents...
- This is precisely the case! It turns out that the $\{A, C\}$ currents become exact for $D \geq 5$

$$
\begin{gathered}
\star A=\mathrm{d} \star \mathcal{A}, \\
\star \mathrm{C}=\mathrm{d} \star \mathcal{C}, \\
\mathcal{A}_{\mu \nu \rho} \sim-R_{\mu \nu \rho \alpha_{1} \ldots \alpha_{D-3}}^{*} \tilde{a}^{\alpha_{1} \ldots \alpha_{D-3} \sigma} x_{\sigma}, \\
\mathcal{C}_{\mu \nu \rho} \sim R_{\mu \nu \rho \alpha_{1} \ldots \alpha_{D-3}}^{*}\left(\frac{1}{2} \tilde{c}^{\alpha_{1} \ldots \alpha_{D-3}} x^{2}+\frac{\eta_{\beta_{1} \ldots \beta_{D-3}}^{\alpha_{1} \ldots \alpha_{D-3}}}{(D-4)!} c^{\beta_{1} \ldots \beta_{D-4} \sigma} x^{\beta_{D-3}} x_{\sigma}\right) .
\end{gathered}
$$

These relations are not true in $D=4(\mathcal{A}, \mathcal{C}$ are not skew-symmetric differential forms in that case).

Generalized symmetries for $D \geq 5$ Einstein gravitons

- Hence, the dual-pairs principle prevails.
- Hence, the dual-pairs principle prevails. We have $D(D+1) / 2$ conserved 2 -form currents and $D(D+1) / 2$ conserved ($D-2$)-form currents
- Hence, the dual-pairs principle prevails. We have $D(D+1) / 2$ conserved 2 -form currents and $D(D+1) / 2$ conserved ($D-2$)-form currents for a total of $D(D+1)$ generalized symmetries

Generalized symmetries for $D \geq 5$ EInstein gravitons

- Hence, the dual-pairs principle prevails. We have $D(D+1) / 2$ conserved 2 -form currents and $D(D+1) / 2$ conserved $(D-2)$-form currents for a total of $D(D+1)$ generalized symmetries
- The right set of conserved currents is $\{B, D, \tilde{A}, \tilde{B}\}$,

$$
\begin{aligned}
B_{\mu \nu} & \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} b^{\beta}-x^{\beta} b^{\alpha}\right), & & {[D] } \\
D_{\mu \nu} & \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} d^{\beta \gamma} x^{\gamma}-x^{\beta} d^{\alpha \gamma} x^{\gamma}+\frac{1}{2} d^{\alpha \beta} x^{2}\right), & & {[D(D-1) / 2] } \\
\tilde{A}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} & \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & & {[D(D-1) / 2] } \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} & \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & & {[D] }
\end{aligned}
$$

Generalized symmetries for $D \geq 5$ EINSTEIN GRAvitons

- Hence, the dual-pairs principle prevails. We have $D(D+1) / 2$ conserved 2 -form currents and $D(D+1) / 2$ conserved $(D-2)$-form currents for a total of $D(D+1)$ generalized symmetries
- The right set of conserved currents is $\{B, D, \tilde{A}, \tilde{B}\}$,

$$
\begin{aligned}
B_{\mu \nu} & \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} b^{\beta}-x^{\beta} b^{\alpha}\right), & & {[D] } \\
D_{\mu \nu} & \equiv R_{\mu \nu \alpha \beta}\left(x^{\alpha} d^{\beta \gamma} x^{\gamma}-x^{\beta} d^{\alpha \gamma} x^{\gamma}+\frac{1}{2} d^{\alpha \beta} x^{2}\right), & & {[D(D-1) / 2] } \\
\tilde{A}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} & \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, & & {[D(D-1) / 2] } \\
\tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} & \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), & & {[D] }
\end{aligned}
$$

- The associated generalized charges read

$$
\Phi=\int_{\Sigma_{D-2}} \star(B+D), \quad \Psi=\int_{\Sigma_{2}} \star(\tilde{A}+\tilde{B}) .
$$

3. CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements).

CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges

CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges
■ Consider for most general higher-curvature $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}, \nabla_{\mu}\right)$ in general D

CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges
■ Consider for most general higher-curvature $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}, \nabla_{\mu}\right)$ in general D
■ Add explicit mass term to Fierz-Pauli action

CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges
■ Consider for most general higher-curvature $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}, \nabla_{\mu}\right)$ in general D
■ Add explicit mass term to Fierz-Pauli action

- Change background to (A)dS

CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges
■ Consider for most general higher-curvature $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}, \nabla_{\mu}\right)$ in general D

- Add explicit mass term to Fierz-Pauli action
- Change background to (A)dS
- Move beyond linear order

Guided by the dual-pairs principle, we have constructed new conserved pform currents for linearized Einstein gravity in general dimensions. The corresponding fluxes are associated to operators which violate duality in regions with non-trivial π_{1} and $\pi_{(D-3)}$ (rings and their complements). Future:
■ Physical interpretation of the charges
■ Consider for most general higher-curvature $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}, \nabla_{\mu}\right)$ in general D
■ Add explicit mass term to Fierz-Pauli action

- Change background to (A)dS
- Move beyond linear order

■ Break symmetries. Fractons?

WHAT?

SCHOOL ON ENTANGLEMENT IN QFT

WHERE?

ICC UNIVERSITY OF BARCELONA

WHEN?

JUNE 19 - JUNE 23

WHO ARE THE LECTURERS?

HORACIO CASINI
STEFAN HOLLANDS
VERONIKA HUBENY
SERGEY SOLODUKHIN

* 2.3. HIGHER-CURVATURE GRAVITIES

Linearized higher-Curvature gravities

Generalization \Rightarrow linearization of higher-curvature gravities $\mathcal{L}\left(R_{\mu \nu \rho \sigma}, g^{\mu \nu}\right)$.
■ For a Minkowski background, the most general theory with non-trivial linearized equations involves a general quadratic modification of the Einstein-Hilbert term. The modified FP action reads

$$
S_{\mathrm{FP}}+\frac{1}{16 \pi G} \int \mathrm{~d}^{\mathrm{D}} x\left[\alpha_{1} R_{(1)}^{2}+\alpha_{2} R_{\mu \nu}^{(1)} R_{(1)}^{\mu \nu}+\alpha_{3} R_{\mu \nu \lambda \sigma}^{(1)} R_{(1)}^{\mu \nu \lambda \sigma}\right]
$$

- The linearized equations read [PB, Cano, Min, Visser]

$$
\left(1-\frac{\partial^{2}}{m_{g}^{2}}\right) R_{\mu \nu}-\Delta_{\mu \nu} R=0, \quad \text { where } \quad \Delta_{\mu \nu} \equiv \frac{1}{2} \eta_{\mu \nu}\left[1-\frac{\partial^{2}}{m_{g}^{2}}\right]+\frac{(D-2)\left(m_{g}^{2}-m_{s}^{2}\right)}{2(D-1) m_{s}^{2} m_{g}^{2}}\left[\partial_{\mu} \partial_{\nu}-\eta_{\mu \nu} \partial^{2}\right]
$$

where we defined

$$
\alpha_{1} \equiv \frac{(D-2) m_{g}^{2}+D m_{s}^{2}}{4(D-1) m_{s}^{2} m_{g}^{2}}+\alpha_{3}, \quad \alpha_{2} \equiv-\frac{1}{m_{g}^{2}}-4 \alpha_{3},
$$

■ Metric perturbation \Leftrightarrow usual transverse graviton + spin-o massive mode + spin-2 massive mode: $\partial^{2} h_{\mu \nu}^{\top}=0, \quad\left(\partial^{2}-m_{s}^{2}\right) \phi=0, \quad\left(\partial^{2}-m_{g}^{2}\right) h_{\mu \nu}^{M}=0$.

Generalized symmetries for higher-curvature gravitons

Let us focus on $D=4$.

- Some of the tilded currents are identical to the Einstein gravity ones, and they remain conserved, namely, $d \star \tilde{A}=d \star \tilde{B}=0$

$$
\tilde{A}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*} \tilde{a}^{\alpha \beta}, \quad[6] \quad \tilde{B}_{\mu_{1} \mu_{2} \ldots \mu_{D-2}} \equiv R_{\mu_{1} \mu_{2} \ldots \mu_{D-2} \alpha \beta}^{*}\left(x^{\alpha} \tilde{b}^{\beta}-x^{\beta} \tilde{b}^{\alpha}\right), \quad \text { [4] }
$$

- Natural to expect 10 additional untilded charges. However, the Riemann tensor is neither traceless nor divergenceless anymore... Modified Riemann tensor

$$
J_{\mu \nu \alpha \beta} \equiv\left[1-\frac{\partial^{2}}{m_{g}^{2}}\right] R_{\mu \nu \alpha \beta}+\Delta_{\mu \beta} R_{\nu \alpha}-\Delta_{\mu \alpha} R_{\nu \beta}+\Delta_{\nu \alpha} R_{\mu \beta}-\Delta_{\nu \beta} R_{\mu \alpha},
$$

shares symmetries of Riemann and divergenceless. With this: $d \star A=d \star B=0$,

$$
A_{\mu \nu}=J_{\mu \nu \alpha \beta} a^{\alpha \beta}, \quad[6] \quad C_{\mu \nu}=J_{\mu \nu \alpha \beta} C^{\alpha \beta \gamma} X_{\gamma}, \quad \text { [4] }
$$

■ These makes again a total of 20 conserved currents.

$$
Q=\int_{\Sigma_{2}}(\tilde{A}+\tilde{B}+A+C)
$$

