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operators A(R) with support in that region.

m An algebra is a set of operators closed under linear combinations, prod-
ucts and taking adjoints

1¢A, abeA afecC = aa+pfbeA, abe A, ale A

m Let A’ denote the algebra of operators which commute with A. Then, the
“von Neumann double-commutant theorem” establishes that 4" = A.

The algebraic formulation of QFT takes as fundamental objects associations
between regions in Minkowski space and operator algebras (localized in them).
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Given a region R, there are two somewhat canonical choices of algebras associated to it

m The algebra of local operators supported in R:

Asaa(R) [“additive algebra”

m The algebra of operators which commute with the local operators supported in its
causal complement R":

Amax(R) = (Aaqa(R)) [“maximal algebra”]

In this context, causality is the statement that operators localized in spatially separated re-
gions commute with each other, so

Aadd(R") C (Aaaa(R))" [causality] which implies A.qa(R) € Amax(R)
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REGION ALGEBRAS IN QFT

m Under very general conditions, the maximal algebra coincides with the additive
algebra for ball regions:

Asad(B) = Anax(B)  [“Haag duality”] <« holds VvV QFT

m For general regions, the equality fails in general:
Aadd(R) = Anax(R) VR [“duality”] <« only holds for some QFTs (“complete”)
If Auada(R) € Amax(R) for some R, then
Amax(R) = Aaqa(R) V {a}
where {a} are non-locally generated operators in R
m From von Neumann’s double commutant theorem it is easy to prove that
Amax(R') = Aada(R') V {b}

where {b} are non-locally generated operators in the causal complement R'.
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m A generalized symmetry current J is a p-form which satisfies
dx /=0, xJ#dG where Gisa physical field of the theory

m Standard global (“o-form”) symmetries < p =1
m p-form symmetry currents define topological higher-form charges by integrating x J over
(D — p)-oriented surfaces ¥ p_p)
b = / *J
Z(0-p)

m One can define the operators implementing the corresponding generalized symmetry in
the usual way, Ug = €'9°®

m The charged operators are supported on (p — 1)-dimensional manifolds
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Assume 3 p-form J such that d x / = 0 and «xJ # dG with G a physical field.
m In that case, the generalized flux operator

b = / xJ only depends on 9% p_p)
Y2 (0—p)

Let R be a region enclosing 9% p_p) and with the same topology. Then [¢,0] = 0V
local operator O supported outside R. In other words, & commutes with all elements of
A.aqa(R’) and therefore

ONS (Aadd(R/))/ = Amax(R)

¢- L *] - ‘[E,*J. (oudy degeuds & 02, )

(@ G

w [3,61=02 $e A, (R)
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m On the other hand,

b £ G with G a physical field
0% (p—p)

and therefore, ® is not locally generated within R,
& & Aaaa(R)

As a consequence, Ay..(R) contains more operators than A,q44(R), namely, e9® and all
its products with local operators

Amax(R) — »Aadd(R) V {d)}

m As a consequence of von Neumann’s double commutant theorem, A” = A, the same
holds in the complementary region, R,

Amax(Rl) — Aadd(R/) \ {\U}

and 3 a non-locally generated flux operator W associated to R’
= Generalized symmetries always come in pairs
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m Furthermore, if €'9® is charged under a continuous non-compact symmetry group, there
exists a (D — p)-form current J such that d x /] = 0 and xJ # dG with G a physical field

such that [Benedetti, Casini, Magan]
V= / *J
2p

m The existence of a conserved p-form current predicts the existence of a dual conserved
(D — p)-form current and viceversa

m Violations of duality in regions with non-trivial 7(,_4) and 7(p_p4) groups < generalized
(p —1)-form symmetries

m Example with p = 2: free Maxwell in D-dimensions has two generalized symmetries with
currents J,, = «F and Jo = F < violations of duality in regions with non-trivial =, and
T(p—3) < Wilson and 't Hooft loops

9
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m Conserved charges in gravity

[(lyer, Lee), Wald; Komar; Bondi, Metzner, Sachs; Arnowitt, Deser, Misner; Regge, Teitelboim...]

m Quantum gravity, completeness and absence of generalized symmetries

[Polchinski; Banks, Seiberg; Casini, Huerta, Magan, Pontello; Rudelius, Shao; Harlow, Ooguri... ]

m Intriguing connections with fracton physics

[Pretko; Benedetti, Casini, Magan]

m Explicit realizations of the dual-pairs principle

[Benedetti, Casini, Magan]
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Linearized perturbations on Minkowski spacetime
g/u/ :nlz,u+h;1,V7 Hh,uVH <1, h[uu] =0, h Enw}h/tu

We can expand every relevant tensor in powers of h,,,: T = T(©) + T() 4 TG)  O(h3)

m The Einstein gravity action reduces to the Fierz-Pauli one

_ D _ Dy (1) ()
Sen 16G/dx\/|gR = S 16G/d K )R +R}

m Theory of a spin-2 symmetric field on Minkowski spacetime. Equations of motion:
R() =0
m Gauge symmetry-like invariance (< linearized diffeomorphisms)

huw = hyw +20(.80)
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We look for p-form conserved currents for this theory
m The Riemann tensor is the generator of the gauge-invariant algebra
m Our currents should be formed from contractions of {R,...pc, Muvs €pur... i |

m It is useful and illuminating to use the dual Riemann tensor

1

* — Ao
RM1-~-MD_za/3 = 5 En...pp—2 Ao R af -




LINEARIZED EINSTEIN GRAVITY

The on-shell curvatures satisfy a series of properties

R i oip B = ~Rigpr..up_pap = - [Levi-Civita skew symmetry]
Ruvap = —Rupap = —R [Skew Symmetry] Rtz up—z08 = ~Riiaua. . .up_3B0 [Riemann skew symmetry]
e e rne n? R =0 [1st Bianchi identity]
Ruvag = Rapuv [Interchange Symmetry] YH-e 3B
¥ Rupap =0 [Einstein Equation] EH”Q'"HDHBR;HQ_,_“DHQ =0 [Einstein Equation]
gk Hp—3aBy Ragyy =0 [1st Bianchi identity] cHik2--hp 1B px —o it Eapeidon

QAR Ap_q

eh1HD=3%P7 9, Rgyp, =0 [2nd Bianchi identity] 37 R* =0 [2nd Bianchi identity]
VB pp 3B

o* R =0 [Einstein Equation X X

e . ! aP Ry oip_pcuf = O [Riemman conservation]

HAM2 D 1Y * _ . )
e paRy s up_ g8 = O [Riemman conservation]

Vv vp_3aBY 5 ok B . S
€ 3 Oy Rt pia. . pp_paff = O [2nd Bianchi identity]
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In D = 4, one finds the following conserved two-forms

[Benedetti, Casini, Magan; Hinterbichler, Hofman, Joyce, Mathys]

A;w = R,uzza,@ aa,ﬁ’ [6 independent]
B,., = Ruvas (x*b° — x°b*) [4 independent]
Cov = Ruvap X, [4 independent]

1 .
D, = Ruvas (X*dPIX7 — XPdx7 + 5do“ﬁxz) , [6independent]

dxA=d+xB=d+xC=dx D=0
where a®?, b, ¢, d*# are skey-symmetric arrays of real parameters.
m This makes a total of 20 independent conserved two-forms in D = 4.
m Integrating these charges on ¥, < non-locally generated flux operators
on ring-like regions < violations of duality for regions with non-trivial 7.
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Analogously, we can construct 20 conserved two-forms using the dual Rie-
mann tensor

A, =R,.567, [6 independent]
B = RY,0s (x*b? — x°b°), [4 independent]
Cov = R,0s €%, [4 independent]
Do = R%, 05 (x¥dPIXT — xBd®TXY + %ao‘ﬁxz) , [6 independent]

dxA=dxB=d+xC=dxD=0
m This verifies the dual-pairs principle.

m However, in this case it is sort of trivial, since the tilded charges are not
independent from the untilded ones. There is a total of 20 independent
currents.




* 2.2. EINSTEIN GRAVITYIND > §5
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m Beyond D > 5, Einstein gravity is not self-dual anymore

m Charges built using the dual Riemann would violate duality in regions with
non-trivial m, whereas the ones built using the Riemann would violate
duality in regions with non-trivial 7(p_j

m Two possibilities:

» All the D-dimensional versions of the tilded and untilded currents exist
» Some of the tilded and some of the untilded are no longer conserved
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Naively, there is an immediate generalization of the untilded charges:

A = Ruvas a7, [D(D —1)/2]
By = Ruvas (x*b” — x°b%), [D]
Cuu = Ruua,@ COL[BFYXV ) [D(D - 1)(D _ 2)/6]

1
D,y = Ryyap (X*dP'X7 — XPd*7XY + Eda5x2) , [D(D —1)/2]
dxA=d+xB=d+xC=dx D=0

m These would yield D(D+1)(D+2)/6 candidates to generalized symmetries
associated to violations of duality on rings.

m The dual-pairs principle would suggest that D(D+1)(D+2)/6 dual currents
should exist...
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m However, only {A, B} are conserved: d« A =d x B =0,

AM1M2-~-MD72 = R;1u24..uD72o¢5 aaﬁ ) [D(D - 1)/2]
Bisiz.iin—s = R sip_s08 (x*b? — x°b%), [D]

dx C # 0,d+ D # 0 because the Bianchi identity of the dual Riemann
with only three indices contracted does not hold. One finds

1. UD—3C * 1 Byp---pp—3 pdar
gh-Hp=3 By Ru1...uD_3a5'y = Enagzl:...zigli: By’
which does not vanish for D > 5 ...
m This would be fine if we did not know about the dual-pairs principle...

m Either we are missing tilded currents, or some of the untilded ones in fact
become exactinD > 5
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m One can try to construct modified versions of C, D exploiting the failure of the Bianchi
identity. However, all such possible conserved currents turn out to be exact and gener-
ate no symmetries.

m The only alternative seems to be that we are overcounting the number of independent
untilded currents...

m This is precisely the case! It turns out that the {A, C} currents become exact for D > 5
*A=dx A,
*C=d *C,

_ p* FQq...Qap_30
A#Vﬁ ~ Rp,upa1A.AaD_3 a 3% Xo s

na1,..o¢[),3

1. B1...8p_

~ R* CRaq...op_3 42 1--PD—=3 B1...Bp_4,0 yOBp—

CHVP I'?,u,l/poq...om,3 > (4 3XT+ 7(D —4)' © 47 X 3 Xo .
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m One can try to construct modified versions of C, D exploiting the failure of the Bianchi
identity. However, all such possible conserved currents turn out to be exact and gener-
ate no symmetries.

m The only alternative seems to be that we are overcounting the number of independent
untilded currents...

m This is precisely the case! It turns out that the {A, C} currents become exact for D > 5
*A=dx A,
*C=d *C,

.Ap.up ~ —R

* pQq...ap_30
HYpQq...Qp_3 a S XG‘:

na1,..ag,3
Vo ap g2 Br-Bo3 @i Bp_yo Bp_
pr ~ R:{l«l/pa1...aD73 <2C<¥1 AD—3 x —+ WC 1 D—49 x0Op 3 Xy .
These relations are not true in D = 4 (A, C are not skew-symmetric differential forms in
that case).
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m Hence, the dual-pairs principle prevails. We have D(D + 1)/2 conserved 2-form currents
and D(D + 1)/2 conserved (D — 2)-form currents for a total of D(D + 1) generalized sym-

metries
m The right set of conserved currents is {B, D, A, B},
B, = Ruvas (x*b? — xPb*), [D]
Dy = Ruas (x*dP7x7 — xPdoTx7 + %d“ﬂxz) . [D(D —1)/2]
Apsirios = R o e @7 [D(D —1)/2]
B =R’ o iosap (XOD7 = XPb%), [D]
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m Hence, the dual-pairs principle prevails. We have D(D + 1)/2 conserved 2-form currents
and D(D + 1)/2 conserved (D — 2)-form currents for a total of D(D + 1) generalized sym-
metries

m The right set of conserved currents is {B, D, A, B},

B, = Ruvas (x*b? — xPb*), [D]

1
Dy = Ruvap (x*dP7XY — xBd® X7 + 5d“ﬂxz) , [D(D—1)/2]

AMNz- -HD— Rmuz up—2af3 aaﬁ [D(D - 1)/2]
B/lq/lq...,u,[;,z = R;kj,“/j,z,ull,D,2(J/B ( abﬁ - Xﬁba) ) [D]

m The associated generalized charges read

<1>:/ZD2*(B+D), w:/&*(l\ﬂé).
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CONCLUSIONS AND PLANS

Guided by the dual-pairs principle, we have constructed new conserved p-
form currents for linearized Einstein gravity in general dimensions. The cor-
responding fluxes are associated to operators which violate duality in regions
with non-trivial m, and mp_3) (rings and their complements).

Future:

m Physical interpretation of the charges

m Consider for most general higher-curvature £(R,.,., 9", V,) in general D
m Add explicit mass term to Fierz-Pauli action

m Change background to (A)dS

m Move beyond linear order

m Break symmetries. Fractons?
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LINEARIZED HIGHER-CURVATURE GRAVITIES

Generalization = linearization of higher-curvature gravities £(R,.. o, g"").

m For a Minkowski background, the most general theory with non-trivial linearized
equations involves a general quadratic modification of the Einstein-Hilbert term. The
modified FP action reads

1 D 2 (1) R () RurAc
Ser + 15 | 47 [0n REy + 02 RODRES + a3 RO, RES

m The linearized equations read (es, cano, uin, visser]

! [1_02] (D= 2)(m3 — m3)
> g

mj 2(D — 1)mZmg

82
<1 — ) Ruv — Ay R=0, where A, = [0,.00 — N 0?] |

2
(it

where we defined

(D — 2)m2 + Dm? 1
o = d S+a3, o = —— — Loz,

2 2 2
4(D — 1)mg mg mg

m Metric perturbation < usual transverse graviton + spin-0 massive mode + spin-2
massive mode: §*h],, =0, (8> -mi)p=o0, (9>—m)hll, =o.



GENERALIZED SYMMETRIES FOR HIGHER-CURVATURE GRAVITONS

Let us focus on D = 4.
m Some of the tilded currents are identical to the Einstein gravity ones, and they remain
conserved, namely,dx A=dx B=0

A =R, a*? [6] Bllrwllrzmler—z = R;1;1,24..;1,D,2(yﬂ (Xabﬁ - Xﬁba)’ [4]

Hafha--- D —2 Mo fip—af3 )

m Natural to expect 10 additional untilded charges. However, the Riemann tensor is nei-
ther traceless nor divergenceless anymore... Modified Riemann tensor

82
]p,uozﬁ = |:| - rnz] R;J,Vaﬁ + AU,BRVQ - AuaRuB + AUQRNB - AuﬁRuay
g

shares symmetries of Riemann and divergenceless. With this: dx A=dx B= 0,
A}LV - j;waﬂ 0(1[3 ’ [6] Cp,u = ],ul/aﬂ C(Xﬂ’yx'y ) [4]

m These makes again a total of 20 conserved currents.

Q= [ A+B+A+0)
=
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