Holographic duals of Argyres Douglas'Theories

Based on: 2204.13537 with H. Kim, N. Kim, Y. Lee
To appear with M. Jinwoo-Kang, C. Lawrie, Y. Lee

Eurostrings 2023

Christopher Couzens

Motivation

- Recent interest in spindles and discs.
- Horizons of black objects which are not constant curvature.
- Admit singularities: conical singularities or worse.
- Despite this give sensible observables.
- Solutions should be the holographic duals of SCFTs compactified on these spaces.
- Can we identify these SCFTs?
- For M_{5}-branes on a disc we can!

Field theory review

Theories of class S

- $6 \mathrm{~d} \mathscr{N}=(2,0)$ SCFT of type \mathfrak{j} (simple, simply laced Lie Alg).
- Wrap on a Riemann surface Σ of genus g with n punctures, plus outer automorphism o twist lines.
- *Flows to a $4 \mathrm{~d} \mathcal{N}=2$ SCFT.
- Theory labelled by ($\mathfrak{j}, \Sigma, n, o$).
- Punctures correspond to defect M_{5}-branes.
- Known examples: T_{N} theory, Argyres-Douglas theories, Carlos's talk +....

Argyres-Douglas Theories

- Argyres-Douglas theories are special $4 d \mathscr{N}=2$ SCFTs.
- They have Coulomb branch operators of fractional dimension.
- Can be realised, for example, using geometric engineering in type IIB or in class S.
- In class S realised by compactification on a twice punctured sphere: 1 irregular (and 1 regular) puncture [Xie].
- Types of punctures classified by poles of a solution of the Hitchin system (Φ, A) :

Regular: $\Phi(z) \sim \frac{T}{z}: \quad$ described by a Young diagram (in this talk)
Irregular: $\Phi(z) \sim \frac{T}{z^{2+r}}, \quad r=\frac{k}{N}>-1$

$D_{p}(A B C D)$ theories

- The $D_{p}(A B C D)$ theories arise from compactifcation on punctured sphere with a maximal puncture.
- ABCD label the algebra \mathfrak{j} and the outer-

$$
\mathrm{SU}(8) \longrightarrow \mathrm{SU}(4) \times \mathrm{SU}(2)
$$ automorphism twist.

- Theory has a flavour symmetry, one of: $\mathrm{SU}(N), \mathrm{SO}(2 N+1), \mathrm{USP}(2 N), \mathrm{SO}(2 N)$.
- Can Higgs the flavour symmetry: breaks the flavour symmetry to smaller subgroups.

- Rules on how this can be broken for BCD.

Gravity

Discs in SUGRA

- Take a spindle and cut it in two, \Rightarrow topological disc.
- There is one end-point which is a $\mathbb{R}^{2} / \mathbb{Z}_{k}$ orbifold.
- The other end-point is topologically a cylinder with a boundary.
- Euler character given by

$$
\chi=\frac{1}{k}=2-\left(1-\frac{1}{k}\right)-1
$$

- First disc in [Bah, Bonetti, Minasian, Nardoni], many more by: [CC, Macpherson, Passias], [Suh], [CC, Stemerdink, Van de Heisteeg], [Karndumri, Nuchino], [Bah, Bonetti, Nardoni, Waddleton]

BBMN

- Solution is $\mathrm{AdS}_{5} \times S^{2} \times T^{2} \rtimes\left(L_{1} \times L_{2}\right)$.
- $\mathbb{R}^{2} / \mathbb{Z}_{k}$ point becomes $\mathbb{R}^{4} / \mathbb{Z}_{k}$, an $\mathcal{N}=2$ puncture.
- Disc boundary becomes a smeared M5-brane.
- Solution has (bad) singularities but they are physical.
- BBMN conjecture dual to $D_{p}(A)$ theory with rectangular regular puncture.
- Can this be extended to arbitrary regular puncture, what about BCD?

$4 d \mathrm{~N}=2$ holographic duals

- $\mathcal{N}=2 \quad$ AdS $_{5}$ solutions of M-theory described by an electrostatic problem.
$\mathrm{d} s^{2}=\left(\frac{\dot{V} \tilde{\Delta}}{2 V^{\prime \prime}}\right)^{1 / 3}\left[4 \mathrm{ds}^{2}\left(\mathrm{AdS}_{5}\right)+\frac{2 \dot{V} V^{\prime \prime}}{\tilde{\Delta}} \mathrm{d} s^{2}\left(S^{2}\right)+\frac{2 V^{\prime \prime}}{\dot{V}}\left(\mathrm{~d} \eta^{2}+\mathrm{d} \rho^{2}+\frac{2 \dot{V}}{2 \dot{V}-\ddot{V}} \rho^{2} \mathrm{~d} \phi^{2}\right)+\frac{2(2 \dot{V}-\ddot{V})}{\dot{V} \tilde{\Delta}}\left(\mathrm{~d} \chi+\frac{2 \dot{V} \dot{V}}{2 \dot{V}-\ddot{V}} \mathrm{~d} \phi\right)^{2}\right]$
- Depends only on a potential satisfying $\ddot{V}+\rho^{2} V^{\prime \prime}=0$.
- Determined by a line charge $\lambda(\eta)$ and some boundary conditions.
- Gaiotto-Maldacena tell us how a line charge gives rise to a quiver.

Electrostatics

- Can now study the BBMN solution in this frame-work.
- Something odd. GM tell us there is a quiver but AD theory non-Lagrangian.
- Disc solution has $r_{a} \in \mathbb{Q}$. This is allowed by regularity: no quiver description.
(Related to whether the Torus action is regular or quasi regular: cycle M5's wrap.)
- Through the rewriting obtain a building block potential V.
- Laplace equation linear: take linear combinations.
- Use this to generate arbitrary regular puncture.

$D_{p}(A)$ with Higgsed Flavour symmetry

- Location of kinks \longrightarrow height of Young diagram box.
- Change in slope \longrightarrow width of Young diagram box~ flavour symmetry.
- Location of 0 -intercept \longrightarrow Irregular puncture data.
- (Flavour) central charges agree for large N.

$D_{p}(B C D)$ with Higgsed flavour symmetry

CC, Jinwoo-Kang, Lawrie, Lee

- Can also consider $B C D$ partitions.
- Need to introduce orientifold 5-planes: SU \rightarrow USp/SO. [Nishinaka]
- 4-types of $O 5$'s. Differentiated by torsion cycles in geometry.
- Additional constraints on line charge from presence of $O 5^{\prime} s$. Leads to the BCD partitions.
- Compute anomalies and find agreement to leading order.

Conclusion and future directions

- Studied holographic duals of Argyres-Douglas theories of class S.
- Explicit duals for (Higgsed) $D_{p}(A B C D)$ theories.
- Requires modifying conditions of GM: extensions to other types of solutions?
- Can we do something similar for M_{5}-branes on spindles? $4 \mathrm{~d} \mathscr{N}=1$ SCFT.
- Disc solutions are more wide-spread. What about $4 d \mathscr{N}=4$ SYM, ABJM on a similarly punctured sphere?
- Prefer M5's. What about compactifying these AD theories further on 2d surfaces?
- Higher form symmetries from SUGRA.

Thank you

