Bootstrapping the AdS Virasoro-Shapiro amplitude

Tobias Hansen, University of Oxford

Eurostrings 2023
April 24, 2023

Based on 2204.07542, 2209.06223, 2303.08834 with Luis F. Alday, João Silva

Strings in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

type llb string theory in $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
$\mathcal{N}=4$ SYM theory with $\operatorname{SU}(N)$ gauge group

What is the (usable) worldsheet theory?

What is the 4 pt tree level string amplitude?

Can we bootstrap it from target space arguments?

Flat space review

STRING AMPLITUDE SHOPPING LIST

- REGGE BOUNDEDNESS
- PARTIAL WAVE EXPANSION
- LOW ENERGY EXPANSION
- SINGLE-VALUEDNESS
(CLOSED STRING)

I will review these first for the Virasoro-Shapiro amplitude (4 gravitons in the type IIb superstring):

$$
\begin{aligned}
& A^{(0)}(S, T)=-\frac{\Gamma(-S) \Gamma(-T) \Gamma(-U)}{\Gamma(S+1) \Gamma(T+1) \Gamma(U+1)} \\
& S=-\frac{\alpha^{\prime}}{4}\left(p_{1}+p_{2}\right)^{2}, \quad T=-\frac{\alpha^{\prime}}{4}\left(p_{1}+p_{3}\right)^{2}
\end{aligned}
$$

$$
S+T+U=0
$$

Regge boundedness (flat space)

String amplitudes have soft UV (Regge) bahaviour

$$
\lim _{|S| \rightarrow \infty} A^{(0)}(S, T) \sim S^{\alpha^{\prime} T+\alpha_{0}}
$$

and higher spin resonances

Regge bahaviour places strong constraints on the coefficients $a_{\delta, \ell}$ in

$$
A^{(0)}(S, T)=\sum_{(\delta, \ell)} \frac{a_{\delta, \ell} P_{\ell}(S)}{T^{2}-\delta}
$$

The spectrum (flat space)

The exchanged massive string spectrum is extracted via the partial wave expansion

$$
A^{(0)}(S, T)=\sum_{(\delta, \ell)} \frac{a_{\delta, \ell} P_{\ell}(S)}{T^{2}-\delta}
$$

It forms linear Regge trajectories.

Single-valuedness (flat space)

The sphere worldsheet integrand is (and has to be) single-valued:

$$
A^{(0)}(S, T)=-\frac{(S+T)^{-2}}{2 \pi i} \int|z|^{-2 S-2}|1-z|^{-2 T-2} d z d \bar{z}
$$

This implies that the Wilson coefficients $\alpha_{a, b}^{(0)}$ in the low energy expansion

$$
A^{(0)}(S, T)=\frac{1}{S T U}+2 \sum_{a, b=0}^{\infty}\left(\frac{1}{2}\left(S^{2}+T^{2}+U^{2}\right)\right)^{a}(S T U)^{b} \alpha_{a, b}^{(0)}
$$

are single-valued multiple zeta values [Stieberger;2013],[Brown,Dupont;2018]

Example:

$$
\alpha_{a, 0}^{(0)}=\zeta(3+2 a), \quad \alpha_{a, 1}^{(0)}=\sum_{\substack{i_{1}, i_{i}=0 \\ i_{1}+i_{2}=a}}^{a} \zeta\left(3+2 i_{1}\right) \zeta\left(3+2 i_{2}\right)
$$

The AdS amplitude

4 graviton amplitude in $\operatorname{AdS} S_{5} \times S^{5} \leftrightarrow\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$ in $\mathcal{N}=4$ SYM theory at

$$
g_{s} \ll \alpha^{\prime} / R_{\text {AdS }}^{2} \ll 1 \quad \Leftrightarrow \quad N \gg \sqrt{\lambda} \gg 1
$$

$\mathcal{O}_{2}=$ superconformal primary of stress-tensor multiplet

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle
$$

superconformal Ward identity

$$
H(u, v)
$$

Mellin transform

$$
M(s, t)
$$

Borel transform (flat space limit [Penedones;2010])

$$
A^{(0)}(S, T)+\frac{1}{\sqrt{\lambda}} A^{(1)}(S, T)+\ldots
$$

Dispersion relation

$M(s, t)$ has only OPE poles:

$$
\text { poles } \sim \frac{C_{\Delta, \ell}^{2} Q_{\Delta, \ell, m}(t)}{s^{\prime}-(\Delta-\ell+2 m)}
$$

[Mack;2009], [Penedones,Silva,Zhiboedov;2019]
Regge bounded due to bound on chaos:

$$
\lim _{|s| \rightarrow \infty}|M(s, t)| \lesssim|s|^{-2}
$$

[Maldacena,Shenker,Stanford;2015]

$$
M(s, t)=\oint_{s} \frac{d s^{\prime}}{2 \pi i} \frac{M\left(s^{\prime},-s^{\prime}-u\right)}{\left(s^{\prime}-s\right)}=\sum_{\text {operators }} f(s, t, \text { OPE data })
$$

The low energy expansion

The low energy (or large λ) expansion is an expansion into tree level Witten diagrams.

The corrections to SUGRA are polynomials in s, t, u.

$$
M(s, t)=\text { SUGRA }+\sum_{a, b=0}^{\infty} \Gamma(2 a+3 b+6)\left(\frac{s^{2}+t^{2}+u^{2}}{8 \lambda}\right)^{a}\left(\frac{s t u}{8 \lambda^{\frac{3}{2}}}\right)^{b}\left(\alpha_{a, b}^{(0)}+\frac{\alpha_{a, b}^{(1)}}{\sqrt{\lambda}}+\cdots\right)
$$

Combining this with the dispersion relation gives:

$$
\alpha_{a, b}^{(k)}=\sum_{\text {operators }} F(\text { OPE data })
$$

Data in the dispersive sum rules

Exchanged operators: short single-trace operators of $\mathcal{N}=4$ SYM theory

Single-valued multiple zeta values

$$
\begin{aligned}
& \underset{\substack{\text { multiple polylogs } \\
\log (1-z), \mathrm{Li}_{n}(z), \ldots}}{ } \quad \begin{array}{l}
\text { MZVs } \\
\zeta\left(n_{1}, n_{2}, \ldots\right)
\end{array}
\end{aligned}
$$

$\zeta(2 n+1)$ are single-valued, $\zeta(2 n)$ are not.
Example at weight 6:

$$
\begin{array}{lll}
\text { MZV basis: } & \zeta(3)^{2}, \zeta(2)^{3} & \zeta(3,2,1)=3 \zeta(3)^{2}-\frac{29}{30} \zeta(2)^{3} \\
\text { sv MZV basis: } & \zeta(3)^{2} & \zeta^{\text {sv }}(3,2,1)=12 \zeta(3)^{2}
\end{array}
$$

Solving the sum rules

The sum rule for $A^{(1)}(S, T)$ has unknown data on both sides

$$
\alpha_{a, b}^{(1)}=\sum_{\delta, \ell} F\left(\Delta_{\delta, \ell}^{(1)}, C_{\delta, \ell}^{2(1)}\right)
$$

We find a unique solution by imposing

$$
\alpha_{a, b}^{(1)}=\sum_{\delta=1}^{\infty} \text { nested sums }=\mathrm{sv} \mathrm{MZVs}
$$

Solution reproduces all known data from localisation and integrability!

Degeneracies in the spectrum

The amplitude encodes OPE data of multiple degenerate superprimaries.
We determined the degeneracies in the spectrum starting from type Ilb strings in flat 10d:

$$
S O(9) \rightarrow S O(4) \times S O(5) \xrightarrow{K K} S O(4) \times S O(6)
$$

OPE data

We computed analytically for many Regge trajectories:

$$
\left\langle C_{\delta, \ell}^{2(0)} \Delta_{\delta, \ell}^{(1)}\right\rangle \quad \text { and } \quad\left\langle C_{\delta, \ell}^{2(1)}\right\rangle
$$

Leading Regge trajectory:

$$
\Delta_{\frac{\ell+2}{2}, \ell}^{(1)}=\frac{3 \ell^{2}+10 \ell+16}{4 \sqrt{2(\ell+2)}}, \quad C_{\frac{\ell+2}{2}, \ell}^{2(1)}=\ldots
$$

$\Delta_{\frac{\ell \ell+\ell}{2}, \ell}^{(1)}$ agrees with integrability result!
[Gromov,Serban,Shenderovich,Volin;2011]

Expression for $A^{(1)}(S, T)$

Resumming the low energy expansion reveals the poles and residues of $A^{(1)}(S, T)$:

$$
\begin{aligned}
& A^{(0)}(S, T)=\frac{1}{S T U}+\sum_{\delta=1}^{\infty} \frac{1}{\delta^{3}} \frac{y+2}{1-x-y}\binom{z+\delta-1}{\delta-1}^{2} \quad \text { [Zagier,Zerbini;2019] } \\
& A^{(1)}(S, T)=-\frac{S^{2}+T^{2}+U^{2}}{3(S T U)^{2}}+\sum_{\delta=1}^{\infty} \sum_{n=0}^{\delta-1} \frac{1}{\delta^{4}} \mathcal{D}_{n}(\delta) \frac{y+2}{1-x-y}\binom{z+\delta-\frac{n}{2}-1}{\delta-n-1}^{2}
\end{aligned}
$$

$$
\frac{y+2}{1-x-y}=2-\frac{S}{S-\delta}-\frac{T}{T-\delta}-\frac{U}{U-\delta}, \quad z=\frac{\delta}{2}\left(\sqrt{1-4 S T U / \delta^{3}}-1\right)
$$

$\mathcal{D}_{n}(\delta)=$ degree 3 differential operator in x, y, z
$A^{(1)}(S, T)$ has poles up to 4 th order.

Future directions

- Fully determining $A^{(2)}(S, T)$ with the same method seems to require unmixing $\Delta_{\delta, \ell}^{(1)}$. How?
- Studying more general correlators of $1 / 2$-BPS operators is not enough because they have the same flat space limit.
- Correlators of massive string states?
- Could integrability come to the rescue?
- Make contact with worldsheet theory by writing $A^{(1)}(S, T)$ as worldsheet integral.
- Can $A^{(1)}(S, T)$ be computed from the σ-model [Metsaev, Tseytlin;1998] by expanding around flat space?

Thank you!

Questions?

