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» Symmetries are powerful guiding principle for developing effective
theories for physical systems without a detailed understanding of
their microscopic constituents.

» Equilibrium phases of matter can be organised according to their
symmetries and whether these are spontaneously broken or
unbroken in the ground state, commonly known as
the Landau paradigm.

» Symmetries can even be useful when they are only approximately
respected by the system.




MOTIVATION

> In recent years, the notion of symmetries has been generalised to
include higher-form symmetries, higher-group symmetries,
subsystem symmetries, non-invertible symmetries, etc. [Shao's review talk]

» These allow for a generalised Landau paradigm, that also includes
exotic phases of matter, such as topologically ordered states, spin liquids,
fractons, topological insulators, etc. [reviews by McGreevy 2022, Cordova et. al 2022]

» The focus of this talk is continuous higher-form symmetries,
which concerns higher-dimensional charged objects, such as strings
and surfaces. [Gaiotto et al. 2014]

» These describe topological order in many-body systems, such as
equipotential planes in a supertluid, lattice planes in a crystal, magnetic
fields in a plasma, or electric fields in a dielectric gas.




» Explicit breaking of higher-form symmetries describes
topological defects, such as superfluid vortices, crystal dislocations,
magnetic monopoles, or free charges.

» Topological defects mediate topological phase transitions,!
wherein a spontaneously broken symmetry gets restored. Examples
include superfluid phase transition, melting, and plasma phase transition.

'Not to be confused with phase transitions between topologically ordered phases. 4




HIGHER-FORM SYMMETRIES

» Continuous 0-form symmetry: » Continuous 1-form symmetry: [Gaiotto et al. 2014]
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» The number of charged particles in a volume X, is » The number of charged “strings” passing a
conserved in time. cross-section 2, are conserved in time and

under spatial deformations of 2 ,_;.
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APPROXIMATE HIGHER-FORM SYMMETRIES

» Continuous approximate O-form symmetry: » Continuous approximate 1-form symmetry:
0J!'=—7L o JW =—-7CL"
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o
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> Charged particles can be created/annihilated > Charged “strings” passing a cross-section > J-1
- In time. can be created/annihilated in time and under
F spatial deformations of 2, ;.
A

» Defects furnish a O-form symmetry: aﬂL/" =0
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EXAMPLE: ELECTROMAGNETISM

» Electromagnetism has an approximate electric 1-form symmetry, broken by free charges.

(3+1)-dim version also has an exact magnetic 1-form symmetry. [Gaiotto et al. 2014
[Hofman, Igbal 2018]
\ / [Armas, AJ 2018]
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» g > Free charges mediate the phase transition from dielectric gas to polarised plasma.
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EXAMPLE: DEFECTED CRYSTALS

» (2+1)-dim crystals have approximate 1-form symmetries associated with the lattice planes,

which are broken by dislocations. [Grozdanov, Poovuttikul 2018]
[Armas, AJ 2019]
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JH = etPo ' LY = eM70,0 ' = 0" =—CL"

» Dislocations mediate the melting phase transition from crystals/solids to fluids/liquids.

[Berezinskii, Kosterlitz, Thouless 1972]
[Nelson Halperin 1979]
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EXAMPLE: DEFECTED CRYSTALS

» (2+1)-dim superfluids have an approximate 1-form symmetry associated with equipotential planes,
which are broken by vortices. [Delacrétaz, Hofman, Mathys 20191
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» Vortices mediate the phase transition from superfluids to ordinary fluids.
[Berezinskii, Kosterlitz, Thouless 1972}
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BACKGROUND SOURCES

» Approximate O-form symmetry:

5S[A, @] = Jdd“x (]’" SA, + L 5c1>)

Aﬂ —>Aﬂ + 0ﬂA

— 9 V=L

O->D-A

» [.orentz force:

o Q.

V, " = F"], + ¢E'L

» Approximate 1-form symmetry:

d+1 1 U
OSIA, @] = |4 Lx ( I 8A,, + (160,

AW — A/w + 25[//\,,] aﬂjlﬂ/ — _/LV
—>
O, -, -A,+09AN, J,LF =0

» Jorentz force:

vV, T = %FW"JPG + (EVL,
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FINITE TEMPERATURE

» We are interested in systems at finite temperature with
approximate higher-form symmetries.

» (Carefully thinking about thermal equilibrium, we can classify phases
of matter using the spontaneous and explicit breaking pattern of
higher-form symmetries. [review by McGreevy 2022]

» We can leave thermal equilibrium perturbatively by formalising a
hydrodynamic framework with approximate higher-form
symmetries. This can be used to study dynamical transitions
between different phases of higher-form symmetry.

11




THERMAL EQUILIBRIUM

» Many-body systems at thermal equilibrium can be characterised by
their thermal partition function, defined on a Cauchy slice 2.

ZIA,...] =trexp |dZ | T"K, + J* (Ag + K*A))

+ g (AK 4 KA M)]

» Thermal frame: K¥, Ag, Aff

Can take: KV = 8//Ty, Ag = puyl/Ty, Ak =8 ulVIT,
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THERMAL EQUILIBRIUM

» Many-body systems at thermal equilibrium can be characterised by
their thermal partition function, defined on a Cauchy slice 2.

ZIA,...] =trexp |dZ | T"K, + J* (Ag + K*A))

+ I (AKX + K24, ) + L (MK + K”CDﬂ)]

» Thermal frame: K¥, Ag, Aff, AI;

Can take: K" =68/'ITy, Ag=py/Ty, Ay =8 pu'VITy, AL =pul/T,
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THERMAL EQUILIBRIUM

» For systems with spontaneously unbroken symmetries,
the low-energy thermal partition function is a “local” functional
of the background fields [Banerjee et al. 2012] [Jensen et al. 2012]

ZIA,...] =exp dix F(A,...)

» For systems with spontaneously broken symmetries,
the low-energy thermal partition function is a “non-local”
functional of the background fields, given by a functional integral

over time-independent configurations of the Goldstone fields
[Bhattacharyya et al. 2012]

FIA,..1= | Dpexp | F(P,...;A, ...)
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HYDROSTATICS

» Spontaneously-unbroken 0-form symmetry:

X
F o~ = 5(/40 + At)z

J'~ x

A —A + JdA
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HYDROSTATICS

» Spontaneously-unbroken 0-form symmetry: » Spontaneously-unbroken 1-form symmetry:
X . 2
J'~ x g

Not invariant under time-independent
background 1-form gauge transformations.

At — At + 61‘/\ Atl —> Atl + aZAl - alAt
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HYDROSTATICS

» Spontaneously-unbroken 0-form symmetry:

X
F o~ = 5(/40 + At)z

J'~ x

A —A + JdA
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HYDROSTATICS

» Spontaneously-unbroken 0-form symmetry:

X
Fo~ — 5(/40 + At)2

J'~ x

» Spontaneously-broken 0-form symmetry:
¢—¢P—A

F T (A;+ 0,0)

J'~—=1/70'¢ 0.0'¢p = 0
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HYDROSTATICS
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» Spontaneously-unbroken 0-form symmetry: » Partially spontaneously-broken 1-form symmetry:

— A
LO}N_%(IMO_FAt)Z O

Z Y l . 2
Jt ~ ¥ Ho T n (Ati al¢)

v
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Ji~ —ydo 0.0'¢p =0

l

» Spontaneously-broken 0-form symmetry:

O —>P—A
F o~ (A + o)
2)? l l
J'~—=1/70'¢ 0.0'¢p = 0
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HYDROSTATICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Spontaneously-unbroken 0-form symmetry: » Partially spontaneously-broken 1-form symmetry:

— A
LO};N_g(IMO_I_At)z =@ !

X

J' ~ x Ho
J'~ — yd'o 0.0'¢p =0
» Spontaneously-broken 0-form symmetry: » Entirely spontaneously-broken 1-form symmetry:
¢ —>¢d—A ¢ = §i — N\,
Ji~—1/70'¢ 0.0'¢p = 0 JI ~ =2/ 0/ 20,0%p" = 0
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HYDROSTATICS WITH APPROXIMATE SYMMETRIES

» Spontaneously-unbroken approximate » Partially spontaneously-broken approximate
O-form symmetry: l-form symmetry:

— A
LO}N_%(IMO_FAt)Z O

J' ~ x o e
- (-
J'~ =y dg 990 — X ”
L'~=ZCy,¢ £
» Nothing particularly interesting happens in » String charges have finite correlation length.

hydrostatics when the symmetry is approximate.

17
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HYDROSTATICS WITH APPROXIMATE SYMMETRIES
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» Spontaneously-broken approximate

O-form symmetry:

Relaxed phase

¢ —¢—A

o 1
S~ = E(ﬂo + At)2 + ?(Ai + ()i¢)2

J! ~ X Ko
J'~—=1/70'¢

» Preserves @ — O

> () is unscreened.

24

a constant background shifts.

» Entirely spontaneously-broken approximate
l-form symmetry: Coulomb phase

Q= p—A\ b, = ¢; — A,

X : :
. 2
S~ =S A= 0g) + (Az;,- T Za[i%)

4y ,
C Xy 2
— —
) (q” f)
]ti ~y = al’ . fz
e 009 =224

JY ~ = 2/7 ¢! X
L'~ =y, 200%¢" =0

> Preserves @, — @ + 0 A, defect symmetry.

> ( is screened but ¢, is unscreened.
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HYDROSTATICS WITH APPROXIMATE SYMMETRIES
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» Spontaneously-broken approximate
O-form symmetry: Pinned phase

¢ —¢—A

o X 1
F~ = E(ﬂo +A,)” + ?(Ai + 0,p)°

g £°m?
| - @)
> (p — D)
Jl ~ .
| #Ho | 0,09 =0
Jim =117 0'¢ o
0.0¢p = %

» O — ® + g constant background shifts are broken.

> () is screened.

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Entirely spontaneously-broken approximate
1-form symmetry: Higgs phase

Q= p—N ¢ = i — A Dr = Pr— Ny
Z X 2 1 :
F o~ =S40 + (4;+20,4)
2y, s 2m?
5 (éﬂ — (Dt) | 5 (; — D, — azﬂbf)z
J'~ =y 0 . £y,
ij ~ i pJ] 0,0'¢p = @
J] ~y = 2/){6 ¢] ! )(

t . .
L. f)(f? 20,0%p = 727 ¢
I~ f2m2¢’

> D, — O, + 0, A, defect symmetry is spon. broken.

> @ is screened but ¢, is unscreened.
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HYDRODYNAMICS

» Hydrodynamics is a framework to capture perturbative departures
of a many-body system from thermal equilibrium.

» The relevant hydrodynamic degrees of freedom are a set of
symmetry parameters corresponding to each global symmetry
(conserved charge) of the system.

» Additionally, we need to add massless Goldstone fields for each
spontaneously broken global symmetry.
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HYDRODYNAMICS WITH APPROXIMATE SYMMETRIES
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» Approximate energy-momentum and charge conservation equations:

VﬂT”” = F”pJp + FEFL éﬂﬂ‘” — /LY

1 VJt=—-CL
+ EFUPGJPU + CEYL, 0,L' =0
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» Thermal frame fields are promoted to slowly varying dynamical fields
/- P _
oN, = £, N, — £,
op* = £ p* ONg =%, Ng—L£5N\ 5 5
« d oN, = £ N, — LA\,

and we need the Goldstone for partially spontaneously-broken 1-form symmetry: o@ = £, — p¥A,

H
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r ; > Josephson equation for ¢:  u'u, =0
21
-
=



VAllL e 7)) 4 F

'J

HYDRODYNAMICS WITH APPROXIMATE SYMMETRIES

» Constitutive relations:

" = (e + p)utu” + p g""* — yutu®* — 2n P”pP”"V<pu6> — ¢ PH Vllu’1

//td] : ),
JH = nyt — 5 P (Tay% 1 u’iFM> JW = 2ulip¥! — g pPHPpPYO (2T6[p . U Fﬂp(;)
L:—f0f< —Il/t> L”=nfu”—6fPW(Tay’u; | _f//ly)
op = soT + nop + n*op, + n,ou, e =Ts+pun+pun" + pn,—p c,0,,1,6 >0
» Relaxation:
fzgf faf
£%0, u'on” + ... = n" 4 P*o,n, + ...
uwon+... = n+... X Xt
X
an' =7cn,
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LINEARISED FLUCTUATIONS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> Let us assume that we are fluctuating around y = y, = 0 state.

In this limit, energy and momentum fluctuations decouple from charge fluctuations,
and propagate via the fluid sound and shear modes.

» The O-form charge gives rise to a damped diffusive mode

w: w=—iD k*—il’

p=2 o
» The 1-form charge gives rise to two damped diffusive modes no )(’ a Y ’
p: w=—iDk* —il p,=2
A
1 X
The pu; mode obeys a damping-attenuation relation: | = D, k§ Tr B \/ £2y
0 £

Such relations are generic features of fluids with

spontaneous+explicit symmetry breaking. [Amoretti et al. 2018] [Ammon et al. 2019] [Donos et al. 2019]
[Delacrétaz et al. 2021] [Armas, AJ, Lier 2021]
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DEFECT PROLIFERATION

» If we increase the strength of defects, i.e. increase ¢, the charge fluctuations gap out and we are left with a
fluid without 1-form symmetry.

U(1),-ESB fluids without
1-form symmetry

1-form fluids

U(l),

» Optical conductivity: a,(w)

(@) = Re—GF (o) o /L
O \N) = — U7 x — O
’ w Pt "1+ w2/T?

VAllL e 7)) 4 F

-

» This qualitative behaviour applies to crystal melting and superfluid-fluid phase transitions.

y |
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HIGHER-FORM SUPERFLUIDS

» The hydrodynamic construction can be generalised to
entirely spontaneously broken approximate 1-form symmetries.

» In Coulomb phase, the defect O-form symmetry remains
spontaneously unbroken: string charge fluctuations are relaxed,
while superfluid component fluctuations are long-lived.

» After a proliferation of defects, we arrive at a (d — 2)-form fluid.
In the context of electromagnetism, this describes
magnetohydrodynamics with conserved magnetic field lines.

» In Higgs phase, the defect O-form symmetry becomes
spontaneously broken: all charged fluctuations are relaxed.

» After a proliferation of defects, we arrive at a neutral fluid.
In the context of electromagnetism, this describes the
Meissner effect, i.e. expulsion of all electromagnetic fields
inside a superconductor.

25




DEFECT PROLIFERATION

» Optical conductivities: Coulomb phase Higgs phase
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HIGHER-FORM SUPERFLUIDS
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> Josephson equation for ¢,

(0,0, = 1) = Ab, + -

In the absence of explicit symmetry breaking, the coefficient 4 is 1.

> In the longitudinal sector, the theory admits a partially screened “photon” mode

n

Ui, P, : (ico—an2 — F) (ia)—D k2) + vik* =0

A

Z X 2 1 :
V| = > S~ = E(ai(p) T2 (Za[iij])

2

» The speed of photon in a dissipative medium is different from the thermodynamic value.
Similar results were found for pinned superfluids and crystals. [Armas, AJ, Lier 2021]

27



OVERVIEW

» Higher-form symmetries can be used to classify phases of matter
with topological order.

» Explicit breaking of these symmetries is associated with topological
defects, which mediate topological phase transitions.

» Hydrodynamics with approximate higher-form symmetries provides
a model for dynamical phase transitions based on symmetries.

symmetry

. v u), U], * « p-form vortex A
K . proliferation : q-form defect
. . o proliferation
. i : | - | q-form pseudo-superfluids ° q-form pseudo-superfluids
. [ q-form superfluids (relaxed phase) . (pinned phase)
D % v xu, Y et XU, O X ua
. v 490 ! . . g e p+ln
. . e . . L 4 . ® . Y
. S 4 PR q . Y ¢
° P P R o
° . ‘ P . °
q-form superfluids q-form pseudo-superfluids
with vortices (relaxed phase) with vortices
U, x Ued), f % Ukt), x Ukt), p=d-—1—gq
A e ~ e . A 7 v 4P .
= S 4 [2301.09628] Armas, AJ 28
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» Further applications include emergent magnetic monopoles in spin
ice, plasma phase transitions, melting phase transition in higher-

dimensions, superfluid and superconductor phase transitions.

» Approximate higher-form symmetries in weakly-coupled QCD:

JH = — FH 4 Y+ fLyz_igYM[‘Q[Hﬂw]_l_gYMj

hadron

- 1 -
p— —e”yp"f’}; KLU — ngM [gQ[ o J//tI/]

2 pe
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Connections to QCD phase transitions?
Also have an analogous story in gravity. [Bueno’s talk]

v
quark

» There are also expected to be interesting interplays with fractons in

the context of fracton/elasticity duality. [Pretko, Radzihovsky 2017]
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