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MOTIVATION

➤ Symmetries are powerful guiding principle for developing effective 
theories for physical systems without a detailed understanding of 
their microscopic constituents. 

➤ Equilibrium phases of matter can be organised according to their 
symmetries and whether these are spontaneously broken or 
unbroken in the ground state, commonly known as 
the Landau paradigm. 

➤ Symmetries can even be useful when they are only approximately 
respected by the system.
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MOTIVATION

➤ In recent years, the notion of symmetries has been generalised to 
include higher-form symmetries, higher-group symmetries, 
subsystem symmetries, non-invertible symmetries, etc. 

➤ These allow for a generalised Landau paradigm, that also includes 
exotic phases of matter, such as topologically ordered states, spin liquids, 
fractons, topological insulators, etc.  

➤ The focus of this talk is continuous higher-form symmetries, 
which concerns higher-dimensional charged objects, such as strings 
and surfaces.  

➤ These describe topological order in many-body systems, such as 
equipotential planes in a superfluid, lattice planes in a crystal, magnetic 
fields in a plasma, or electric fields in a dielectric gas.
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[Gaiotto et al. 2014]

[Shao’s review talk]

[reviews by McGreevy 2022, Cordova et. al 2022]
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MOTIVATION

➤ Explicit breaking of higher-form symmetries describes 
topological defects, such as superfluid vortices, crystal dislocations, 
magnetic monopoles, or free charges.  

➤ Topological defects mediate topological phase transitions,1 
wherein a spontaneously broken symmetry gets restored. Examples 
include superfluid phase transition, melting, and plasma phase transition.

41Not to be confused with phase transitions between topologically ordered phases.



➤ Continuous 1-form symmetry: 
 
 
 
 
 
 
 
 
 
 

➤ The number of charged “strings” passing a  
cross-section  are conserved in time and  
under spatial deformations of . 

Σd−1
Σd−1

HIGHER-FORM SYMMETRIES
➤ Continuous 0-form symmetry: 

 
 
 
 
 
 
 
 
 
 

➤ The number of charged particles in a volume  is 
conserved in time.

Σd
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∂μJμν = 0

Σd−1

∂μJμ = 0

Σd

Jμν = − Jνμ

[Gaiotto et al. 2014]



➤ Continuous approximate 1-form symmetry: 
 
 
 
 
 
 
 
 
 
 

➤ Charged “strings” passing a cross-section  
can be created/annihilated in time and under 
spatial deformations of . 

➤ Defects furnish a 0-form symmetry:

Σd−1

Σd−1

APPROXIMATE HIGHER-FORM SYMMETRIES
➤ Continuous approximate 0-form symmetry: 

 
 
 
 
 
 
 
 
 
 

➤ Charged particles can be created/annihilated  
in time.
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Σd

∂μJμ = −ℓL ∂μJμν = −ℓLν

Σd−1 Σ′ d−1

∂μLμ = 0



EXAMPLE: ELECTROMAGNETISM
➤ Electromagnetism has an approximate electric 1-form symmetry, broken by free charges. 

(3+1)-dim version also has an exact magnetic 1-form symmetry. 
 
 
 
 
 
 
 
 
 
 
 
 
 

➤ Free charges mediate the phase transition from dielectric gas to polarised plasma.
7

Jμν = − ℱμν + ℳμν
polarised

J̃μν =
1
2

ϵμνρσℱρσ

ℓLμ = gEM𝒥μ
free ∂μJμν = −ℓLν

∂μJ̃μν = 0
⟹

[Gaiotto et al. 2014] 
[Hofman, Iqbal 2018] 

[Armas, AJ 2018]



EXAMPLE: DEFECTED CRYSTALS
➤ (2+1)-dim crystals have approximate 1-form symmetries associated with the lattice planes, 

which are broken by dislocations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

➤ Dislocations mediate the melting phase transition from crystals/solids to fluids/liquids.
8

JIμν = ϵμνρ∂ρϕI ℓLIμ = ϵμνρ∂ν∂ρϕI ∂μJIμν = −ℓLIν⟹

[Grozdanov, Poovuttikul 2018] 
[Armas, AJ 2019]

[Berezinskii, Kosterlitz, Thouless 1972]
[Nelson Halperin 1979]



EXAMPLE: DEFECTED CRYSTALS
➤ (2+1)-dim superfluids have an approximate 1-form symmetry associated with equipotential planes, 

which are broken by vortices. 
 
 
 
 
 
 
 
 
 
 
 
 
 

➤ Vortices mediate the phase transition from superfluids to ordinary fluids.
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Jμν = ϵμνρ∂ρϕ ℓLμ = ϵμνρ∂ν∂ρϕ ∂μJμν = −ℓLν⟹

[Delacrétaz, Hofman, Mathys 2019]

[Berezinskii, Kosterlitz, Thouless 1972]



➤ Approximate 0-form symmetry: 
 
 
 
 
 
 
 
 
 

➤ Lorentz force:

BACKGROUND SOURCES
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δS[A, Φ] = ∫ dd+1x (Jμ δAμ + ℓL δΦ)

➤ Approximate 1-form symmetry: 
 
 
 
 
 
 
 
 
 

➤ Lorentz force:

δS[A, Φ] = ∫ dd+1x ( 1
2

Jμν δAμν + ℓLμ δΦμ)
Aμ → Aμ + ∂μΛ

Φ → Φ − Λ
⟹ ∂μJμ = −ℓL

Aμν → Aμν + 2∂[μΛν]

Φμ → Φμ − Λμ + ∂μΛℓ

⟹
∂μJμν = −ℓLν

∂μLμ = 0

∇μTμν = FνρJρ + ℓΞνL ∇μTμν =
1
2

FνρσJρσ + ℓΞνρLρ

F = dA
Ξ = dΦ + A



© Mildred Thompson “String Theory”

FINITE TEMPERATURE

➤ We are interested in systems at finite temperature with  
approximate higher-form symmetries. 

➤ Carefully thinking about thermal equilibrium, we can classify phases 
of matter using the spontaneous and explicit breaking pattern of  
higher-form symmetries. 

➤ We can leave thermal equilibrium perturbatively by formalising a 
hydrodynamic framework with approximate higher-form 
symmetries. This can be used to study dynamical transitions 
between different phases of higher-form symmetry.
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[review by McGreevy 2022]
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THERMAL EQUILIBRIUM

➤ Many-body systems at thermal equilibrium can be characterised by 
their thermal partition function, defined on a Cauchy slice . 
 
 
 
 
 

➤ Thermal frame:    
 
 
 
 
Can take:   

Σ

Kμ, ΛK, ΛK
μ

Kμ = δμ
t /T0, ΛK = μ0/T0, ΛK

μ = δz
μ μ(1)

0 /T0

12

𝒵[A, …] = tr exp∫ dΣμ[TμνKν + Jμ (ΛK + KλAλ)

+ Jμν (ΛK
ν + KλAλν)]

£Kgμν = £K Aμ + ∂μΛK = £K Aμν + 2∂[μΛK
ν] = 0
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THERMAL EQUILIBRIUM

➤ Many-body systems at thermal equilibrium can be characterised by 
their thermal partition function, defined on a Cauchy slice . 
 
 
 
 
 

➤ Thermal frame:    
 
 
 
 
 
 
Can take:   

Σ

Kμ, ΛK, ΛK
μ , ΛK

ℓ

Kμ = δμ
t /T0, ΛK = μ0/T0, ΛK

μ = δz
μ μ(1)

0 /T0, ΛK
ℓ = μℓ

0 /T0

13

𝒵[A, …] = tr exp∫ dΣμ[TμνKν + Jμ (ΛK + KλAλ)

+ Jμν (ΛK
ν + KλAλν) + ℓLμ (ΛK

ℓ + KμΦμ)]

£KΦ − ΛK = £KΦμ − ΛK
μ + ∂μΛK

ℓ = 0

£Kgμν = £K Aμ + ∂μΛK = £K Aμν + 2∂[μΛK
ν] = 0
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THERMAL EQUILIBRIUM

➤ For systems with spontaneously unbroken symmetries,  
the low-energy thermal partition function is a “local” functional  
of the background fields 
 
 
 

➤ For systems with spontaneously broken symmetries,  
the low-energy thermal partition function is a “non-local” 
functional of the background fields, given by a functional integral 
over time-independent configurations of the Goldstone fields

14

[Banerjee et al. 2012] [Jensen et al. 2012]

𝒵[A, …] = exp∫ ddx ℱ(A, …)

𝒵[A, …] = ∫ 𝒟ϕ exp∫ ddx ℱ(ϕ, …; A, …)

[Bhattacharyya et al. 2012]



HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry:

15

At → At + ∂tΛ

Jt ∼ χ μ0

ℱ ∼ −
χ
2

(μ0 + At)2



HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry:

15

At → At + ∂tΛ

➤ Spontaneously-unbroken 1-form symmetry: 
 
 
 
 
 
Not invariant under time-independent 
background 1-form gauge transformations.

ℱ ∼ −
1
2

χ (μ0δz
i + Ati)2 + …

Ati → Ati + ∂tΛi − ∂iΛt

Jt ∼ χ μ0

ℱ ∼ −
χ
2

(μ0 + At)2



HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry:

15

At → At + ∂tΛ

Jt ∼ χ μ0

ℱ ∼ −
χ
2

(μ0 + At)2



HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry: 

 
 
 
 
 
 
 

➤ Spontaneously-broken 0-form symmetry: 
 
 
 
 
 
 

16

Jt ∼ χ μ0

Ji ∼ − 1/χ̃ ∂iϕ ∂i∂iϕ = 0

ℱ ∼ −
χ
2

(μ0 + At)2

ℱ ∼
1
2χ̃ (Ai + ∂iϕ)2

ϕ → ϕ − Λ



HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry: 

 
 
 
 
 
 
 

➤ Spontaneously-broken 0-form symmetry: 
 
 
 
 
 
 

16

Jt ∼ χ μ0

Ji ∼ − 1/χ̃ ∂iϕ ∂i∂iϕ = 0

ℱ ∼ −
χ
2

(μ0 + At)2

ℱ ∼
1
2χ̃ (Ai + ∂iϕ)2

ϕ → ϕ − Λ

➤ Partially spontaneously-broken 1-form symmetry: 
 
 
 
 
 

ℱ ∼ −
χ
2

(Ati − ∂iφ)2

Jti ∼ − χ ∂iφ ∂i∂iφ = 0

φ → φ − Λt



 
 
 
 
 
 
 
 

➤ Entirely spontaneously-broken 1-form symmetry:

Jij ∼ − 2/χ̃ ∂[iϕ j] 2∂k∂[kϕi] = 0

ℱ ∼
1
4χ̃ (Aij + 2∂[iϕj])

2

ϕi → ϕi − Λi

HYDROSTATICS
➤ Spontaneously-unbroken 0-form symmetry: 

 
 
 
 
 
 
 

➤ Spontaneously-broken 0-form symmetry: 
 
 
 
 
 
 

16

Jt ∼ χ μ0

Ji ∼ − 1/χ̃ ∂iϕ ∂i∂iϕ = 0

ℱ ∼ −
χ
2

(μ0 + At)2

ℱ ∼
1
2χ̃ (Ai + ∂iϕ)2

ϕ → ϕ − Λ

➤ Partially spontaneously-broken 1-form symmetry: 
 
 
 
 
 

ℱ ∼ −
χ
2

(Ati − ∂iφ)2

Jti ∼ − χ ∂iφ ∂i∂iφ = 0

φ → φ − Λt



➤ Partially spontaneously-broken approximate  
1-form symmetry: 
 
 
 
 
 
 
 
 
 
 

➤ String charges have finite correlation length.

HYDROSTATICS WITH APPROXIMATE SYMMETRIES
➤ Spontaneously-unbroken approximate  

0-form symmetry: 
 
 
 
 
 
 
 
 
 
 

➤ Nothing particularly interesting happens in 
hydrostatics when the symmetry is approximate.

17

Jt ∼ χ μ0
ℱ ∼ −

χ
2

(Ati − ∂iφ)2

ℱ ∼ −
χ
2

(μ0 + At)2 φ → φ − Λt

−
ℓ2χℓ

2 (φ − Φt)2

Jti ∼ − χ ∂iφ

Lt ∼ − ℓχℓ φ
∂i∂iφ =

ℓ2χℓ

χ
φ



➤ Entirely spontaneously-broken approximate  
1-form symmetry: Coulomb phase 
 
 
 
 
 
 
 
 
 
 
 
 

➤ Preserves  defect symmetry. 

➤  is screened but  is unscreened.

Φμ → Φμ + ∂μΛℓ

φ ϕi

HYDROSTATICS WITH APPROXIMATE SYMMETRIES
➤ Spontaneously-broken approximate  

0-form symmetry: Relaxed phase 
 
 
 
 
 
 
 
 
 
 
 
 

➤ Preserves  constant background shifts. 

➤  is unscreened.

Φ → Φ + a

ϕ
18

Jt ∼ χ μ0

Ji ∼ − 1/χ̃ ∂iϕ

ℱ ∼ −
χ
2

(μ0 + At)2 +
1
2χ̃

(Ai + ∂iϕ)2

ϕ → ϕ − Λ φ → φ − Λt ϕi → ϕi − Λi

ℱ ∼ −
χ
2

(Ati − ∂iφ)2 +
1
4χ̃ (Aij + 2∂[iϕj])

2

−
ℓ2χℓ

2 (φ − Φt)2

∂i∂iϕ = 0

Jti ∼ − χ ∂iφ

Lt ∼ − ℓχℓ φ

∂i∂iφ =
ℓ2χℓ

χ
φ

Jij ∼ − 2/χ̃ ∂[iϕ j]

2∂k∂[kϕi] = 0



➤ Entirely spontaneously-broken approximate  
1-form symmetry: Higgs phase 
 
 
 
 
 
 
 
 
 
 
 
 

➤  defect symmetry is spon. broken. 

➤  is screened but  is unscreened.

Φμ → Φμ + ∂μΛℓ

φ ϕi

HYDROSTATICS WITH APPROXIMATE SYMMETRIES
➤ Spontaneously-broken approximate  

0-form symmetry: Pinned phase 
 
 
 
 
 
 
 
 
 
 
 
 

➤  constant background shifts are broken. 

➤  is screened.

Φ → Φ + a

ϕ
19

Jt ∼ χ μ0

Ji ∼ − 1/χ̃ ∂iϕ

ℱ ∼ −
χ
2

(μ0 + At)2 +
1
2χ̃

(Ai + ∂iϕ)2

ϕ → ϕ − Λ φ → φ − Λt ϕi → ϕi − Λi

−
ℓ2χℓ

2 (φ − Φt)2 +
ℓ2m2

2
(ϕi − Φi − ∂iϕℓ)2

∂i∂iϕ = 0
Jti ∼ − χ ∂iφ

Lt ∼ − ℓχℓ φ

∂i∂iφ =
ℓ2χℓ

χ
φJij ∼ − 2/χ̃ ∂[iϕ j]

+
ℓ2m2

2
(ϕ − Φ)2

L ∼ ℓ2m2ϕ
∂i∂iϕ = ℓ2m2χ̃ ϕ

Li ∼ ℓ2m2ϕi
2∂k∂[kϕi] = ℓ2m2χ̃ ϕi

ϕℓ → ϕℓ − Λℓ

ℱ ∼ −
χ
2

(Ati − ∂iφ)2 +
1
4χ̃ (Aij + 2∂[iϕj])

2



© Mildred Thompson “String Theory”

HYDRODYNAMICS

➤ Hydrodynamics is a framework to capture perturbative departures 
of a many-body system from thermal equilibrium. 

➤ The relevant hydrodynamic degrees of freedom are a set of  
symmetry parameters corresponding to each global symmetry 
(conserved charge) of the system. 

➤ Additionally, we need to add massless Goldstone fields for each 
spontaneously broken global symmetry.

20



HYDRODYNAMICS WITH APPROXIMATE SYMMETRIES
➤ Approximate energy-momentum and charge conservation equations: 

 
 
 
 

➤ Thermal frame fields are promoted to slowly varying dynamical fields 
 
 
 
 
and we need the Goldstone for partially spontaneously-broken 1-form symmetry: 
 
 
 

➤ Josephson equation for :φ
21

+
1
2

FνρσJρσ + ℓΞνρLρ

∇μTμν = FνρJρ + ℓΞνL
∇μJμ = −ℓL

δΛβ = £χΛβ − £βΛδβμ = £χβμ
δΛβ

μ = £χΛβ
μ − £βΛμ

δφ = £χϕ − βμΛμ

uμ

T
= βμ

μμ

T
= Λβ

μ + βλAλμ − ∂μφ

μℓ

T
= − ℓ (φ − βμΦμ − Λβ

ℓ)

μ
T

= Λβ + βμAμ

∂μJμν = −ℓLν

∂μLμ = 0

δΛβ
ℓ = £χΛβ

ℓ − £βΛℓ

uμμμ = 0



HYDRODYNAMICS WITH APPROXIMATE SYMMETRIES
➤ Constitutive relations: 

 
 
 
 
 
 
 
 
 
 

➤ Relaxation:

22

Tμν = (ϵ + p)uμuν + p gμν − χ μμμν − 2η PμρPνσ ∇⟨ρuσ⟩ − ζ Pμν ∇λuλ

Jμ = n uμ − σ Pμν (T∂ν
μ
T

+ uλFλν)
L = − ℓσℓ (uμΞμ − μ)

Jμν = 2u[μnν] − σ PμρPνσ (2T∂[ρ
μσ]

T
+ uλFλρσ)

Lμ = nℓuμ − σℓ Pμν (T∂ν
μℓ

T
+ ℓuλΞλν − ℓμν)

uμ∂μn + … = −
ℓ2σℓ

χ
n + …

uμ∂μnν + … = −
ℓ2σℓ

χ
nν +

ℓσℓ

χℓ
Pνρ∂ρnℓ + …

∂μnμ = ℓnℓ

Pμν = gμν + uμuν

δp = sδT + nδμ + nμδμμ + nℓδμℓ ϵ = Ts + μn + μμnμ + μℓnℓ − p σ, σℓ, η, ζ ≥ 0



LINEARISED FLUCTUATIONS

➤ Let us assume that we are fluctuating around  state. 
In this limit, energy and momentum fluctuations decouple from charge fluctuations,  
and propagate via the fluid sound and shear modes. 

➤ The 0-form charge gives rise to a damped diffusive mode 
 
 

➤ The 1-form charge gives rise to two damped diffusive modes 
 
 
 
 
 
The  mode obeys a damping-attenuation relation: 
Such relations are generic features of fluids with 
spontaneous+explicit symmetry breaking.

μ = μμ = 0

μ∥

23

[Amoretti et al. 2018] [Ammon et al. 2019] [Donos et al. 2019]

μ : ω = − iDn k2 − iΓ

μ⊥ : ω = − iDnk2 − iΓ

μ∥ : ω = − iDℓk2 − iΓ

Dn =
σ
χ

, Γ =
ℓ2σℓ

χ
, χ =

∂n
∂μ

Dℓ =
σℓ

χℓ

Γ = Dℓ k2
0

1
k0

=
χ

ℓ2χℓ

[Delacrétaz et al. 2021] [Armas, AJ, Lier 2021]



DEFECT PROLIFERATION

➤ If we increase the strength of defects, i.e. increase , the charge fluctuations gap out and we are left with a 
fluid without 1-form symmetry. 
 
 
 
 

➤ Optical conductivity: 
 
 
 
 
 
 
 

➤ This qualitative behaviour applies to crystal melting and superfluid-fluid phase transitions.

ℓ

24

σℓ(ω) = Re
i
ω

GR
LxLx(ω) = σℓ

ω2/Γ2

1 + ω2/Γ2

σℓ

Γ
ω

σℓ(ω)

1-form fluids 1-form pseudo-fluids

U(1)1 U(1)1

-ESBU(1)1 fluids without 
1-form symmetry

ℓ → 1
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HIGHER-FORM SUPERFLUIDS

➤ The hydrodynamic construction can be generalised to  
entirely spontaneously broken approximate 1-form symmetries. 

➤ In Coulomb phase, the defect 0-form symmetry remains 
spontaneously unbroken: string charge fluctuations are relaxed, 
while superfluid component fluctuations are long-lived. 

➤ After a proliferation of defects, we arrive at a -form fluid.  
In the context of electromagnetism, this describes 
magnetohydrodynamics with conserved magnetic field lines. 

➤ In Higgs phase, the defect 0-form symmetry becomes 
spontaneously broken: all charged fluctuations are relaxed. 
➤ After a proliferation of defects, we arrive at a neutral fluid. 

In the context of electromagnetism, this describes the  
Meissner effect, i.e. expulsion of all electromagnetic fields  
inside a superconductor.

(d − 2)

25



DEFECT PROLIFERATION

➤ Optical conductivities:                            Coulomb phase                                            Higgs phase

26

σ̃(ω) = Re
i
ω

GR
ξtxξtx(ω)

σℓ(ω) = Re
i
ω

GR
LxLx(ω)

σℓ

Γ
ω

σℓ(ω)

σ̃

σ̃+λ2/σℓ

Γ
ω

σ̃(ω)

σℓ

ω0 ω

σℓ(ω)

σ̃

ω0
ω

σ̃(ω)



HIGHER-FORM SUPERFLUIDS

➤  
 
 
 
 

➤ In the longitudinal sector, the theory admits a partially screened “photon” mode 
 
 
 
 
 
 

➤ The speed of photon in a dissipative medium is different from the thermodynamic value.  
Similar results were found for pinned superfluids and crystals.

27

uλ (∂λϕμ − ∂μϕλ) = λ μμ + …

μ⊥, ϕ⊥ : (iω − Dn k2 − Γ) (iω − D̃n k2) + v2
⊥k2 = 0

v2
⊥ =

λ2

χ χ̃
ℱ ∼ −

χ
2

(∂iφ)2 +
1
2χ̃ (2∂[iϕj])

2

[Armas, AJ, Lier 2021]

➤ Josephson equation for : 
 
 
 
 
In the absence of explicit symmetry breaking, the coefficient  is 1. 

ϕμ

λ
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OVERVIEW

➤ Higher-form symmetries can be used to classify phases of matter 
with topological order. 

➤ Explicit breaking of these symmetries is associated with topological 
defects, which mediate topological phase transitions. 

➤ Hydrodynamics with approximate higher-form symmetries provides 
a model for dynamical phase transitions based on symmetries.

28[2301.09628] Armas, AJ



© Mildred Thompson “String Theory”

OUTLOOK

➤ Further applications include emergent magnetic monopoles in spin 
ice, plasma phase transitions, melting phase transition in higher-
dimensions, superfluid and superconductor phase transitions. 

➤ Approximate higher-form symmetries in weakly-coupled QCD: 
 
 
 
 
 
Connections to QCD phase transitions? 
Also have an analogous story in gravity. 

➤ There are also expected to be interesting interplays with fractons in 
the context of fracton/elasticity duality.

29

[Bueno’s talk]

J̃μν =
1
2

ϵμνρσℱρσ ℓ̃L̃ν = − igYM [𝒜μ, J̃μν]

Jμν = − ℱμν + ℳμν
hadron ℓLν = − igYM [𝒜μ, Jμν] + gYM𝒥ν

quark

[Pretko, Radzihovsky 2017]


