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Context

Black hole thermodynamics

Hawking temperature and Bekenstein-Hawking entropy

Gibbons-Hawking euclidean quantum gravity

[Bardeen, Carter, Hawking, 1973]

Strominger-Vafa counting and the fuzzball approach

Wheeler’s bags of gold geometries

[Bekenstein, 1973] [Hawking, 1975]

[Gibbons, Hawking, 1977] [Lewkowycz, Maldacena, 2013]

[Wheeler, 1964]

[Strominger, Vafa, 1996] [Bena, Martinec, Mathur, Warner, 2022 Review]

Derivations of the Page curve
[Pennington, Shenker, Stanford, Yang, 2019] [Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini, 2019]



Plan of the talk

Infinite microstates with geometric descriptions

Wormholes, overlaps and universality

Questions Raised

The Hilbert space dimension



Infinite families of microstate geometries

We seek study the entropy of eternal black holes in AdS.

Quantum Gravity with two asymptotic AdS boundaries is dual to a couple of CFT’s

[AdS/CFT, Maldacena]

An insightful set of quantum states in these theories arise by inserting dust shell operators

𝒪 =
N

∏
i

𝒪(θi)The dust shell operator just creates a bunch of particles in particular positions



Infinite families of microstate geometries

Claim:   For specific preparation temperatures, shell states are black hole microstates

This follows because these CFT microstates have effective geometric descriptions as a domain wall

Tμν
𝒲

= σ uμ uν

ds2
± = f±(r) dτ± +

dr2

f±(r)
+ r2 dΩ2

d−1

The shell trajectory can be parametrized by

r = R(T ) τ± = τ±(T )

Birkhoff’s theorem implies

Such equations follow from Israel junction conditions

Δhab = 0 ΔKab − habΔK = − 8πGTab

[Israel, 1966]

The proper mass of the shell, related to number of operator insertions, is unconstrained from above



Infinite families of microstate geometries

These infinite families naively overcount the Bekenstein-Hawking entropy

Wheeler’s ‘bags of gold’

In this AdS/CFT construction it is difficult to argue these states do not 
belong to the black hole Hilbert space

The question is: do they really overcount?

To analyze this question we need to compute the ‘quantum overlaps’



Wormholes, overlaps and universality

To this end we first normalize the states. The norm is , where  is the GR actionZ1 = e−I[X] I[X]

I[X ] = −
1

16πG ∫X
( R − 2Λ) +

1
8πG ∫∂X

K + ∫𝒲
σ + Ict

and  is the following euclidean manifold, solutions of the equations of motionX



Wormholes, overlaps and universality

⟨Ψm |Ψm′ ⟩ , ⟨Ψm |Ψm′ ⟩⟨Ψm′ |Ψm′ ′ ⟩ , ⟨Ψm |Ψm′ ⟩⟨Ψm′ Ψm′ ′ ⟩⟨Ψm′ ′ |Ψm′ ′ ′ ⟩ , ⋯

We then seek to compute the following quantities

The overline notation means that we compute these quantities using the gravitational action

I[X ] = −
1

16πG ∫X
( R − 2Λ) +

1
8πG ∫∂X

K + ∫𝒲
σ + Ict

⟨Ψm |Ψm′ ⟩ = δm,m′ 

We choose a family with parametrically large mass differences so that

The second then has the form

|⟨Ψm |Ψm′ ⟩ |2 = δm,m′ +
Z2

Z1Z′ 1
Z2 = e−I[X2] Z1 = e−I[X] Z′ 1 = e−I[X′ ]

More generally

⟨Ψm |Ψm′ ⟩⟨Ψm′ |Ψm′ ′ ⟩ . . . ⟨Ψm′ ...′ |Ψm⟩ |c =
Zn

Z1 Z′ 
1 ⋯ Z′ ⋯′ 

1



Wormholes, overlaps and universality

The next step is to compute the action of the wormhole , 
where  is a wormhole connecting two different asymptotic boundaries.

Z2 = e−I[X2]

X2

The wormhole arises by cutting 
two euclidean black holes with the 
two shells that prepare the states 

and then identifying each shell.

[Sasieta, 2022]

[Chandra, Hartman, 2022]

The action of the wormhole can be computed in a straightforward manner



Wormholes, overlaps and universality

The shell trajectory pinches the geometry and the inverse temperature of each wormhole black 
hole is twice the original black hole inverse temperature. The inner product squared simplifies to

The wormhole action can be computed for any mass. A simplification occurs in the limit of large mass.

|⟨Ψm |Ψm′ ⟩ |2 |c =
Z2

Z1Z′ 1
≈

Z(2β)2

Z(β)4

This result recontextualizes the Gibbons-Hawking euclidean gravity partition 
function. Here it is (still) NOT interpreted as a partition function counting 

states, but as the size of the quantum overlaps between interior states.

This wormhole provides the ‘plateau’ of the spectral form factor of the black hole.
[Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka, 2017]



Wormholes, overlaps and universality

To compute higher moments we need the generalization of the previous wormhole to n-boundaries

In the limit of large shell masses all trajectories pinch, and the wormhole action becomes

⟨Ψm1
|Ψm2

⟩⟨Ψm2
|Ψm3

⟩ . . . ⟨Ψmn
|Ψm1

⟩ |c =
Zn

Z(m1)
1 . . . Z(mn)

1
≈

Z(nβ)2

Z(β)2n

The same result appears for multi shell states.



The Hilbert space dimension

For  a set of states , the Hilbert space dimension is rank of the Gram matrix .|Ψp⟩ Gpq = ⟨Ψp |Ψq⟩

Gn
pq =

Z(nβ)2

Z(β)2n
δpq ≡

Zn

Zn
1

δpq

From the gravity computation we know that

Choose a set of  shell states with separated masses: , with  and sufficiently large Ω mp = pm p = 1,⋯, Ω m

The goal is to compute the rank of the Gram matrix for such set of states

The rank is the number of non-zero eigenvalues. It follows from the density of states

[Pennington, Shenker, Stanford, Yang, 2019]

Rij(λ) ≡ ( 1
λ1 − G )

ij
=

1
λ

δij +
∞

∑
n=1

1
λn+1

(Gn)ijR(λ) =
Ω

∑
i

Rii

This can be computed by using a trick in matrix theory. We first compute the resolvent of Gpq

And then compute its discontinuity along the real axis

D(λ) =
1

2 π i ( R(λ − iϵ) − R(λ + iϵ) )

Zn

Zn
1

≈
Z(nβ)2

Z(β)2n



The Hilbert space dimension

D(λ) =
eS

2πλ [λ − (1 − Ω1/2 e−S/2)2 ] [ (1 + Ω1/2 e−S/2)2 − λ] + δ(λ)(Ω − eS) θ(Ω − eS)

The final form of the density of states is

The rank of the Gram matrix as a function of the number of states  is thenΩ

where  is twice the Bekenstein-Hawking entropyS ≡ 2
A

4G

Ω

Rank

eS



Questions Raised

Are these microstates or mesostates?

Is this less microscopic than Strominger-Vafa counting?

How microstates can have event horizons and singularities?

Why is this a microscopic explanation?
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