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Brief history of the topic

Virasoro (identity) blocks

〈V (1)V (2)W (3)W (4)〉 =
1

(z12)2hV (z34)2hW

∑
O

CV V O CWWO VhO
(u)

I Recursion equations [Zamolodchikov 80s] + series repres. [Perlmutter ’15]

I Effective theory of Virasoro id. blocks (and maximal chaos) for c→∞
[Haehl-Rozali ’18, Cotler-Jensen ’18, Haehl-Reeves-Rozali ’19, Anous-Haehl ’20]

[Action on coadjoint orbits of the Virasoro group [Alekseev-Shatashvili ’89]]

[Boundary action for AdS3 gravity [Verlinde ’90, Cotler-Jensen ’18, KN ’21b]]

I Derivation of this effective theory from first principles [KN ’21a ’22]
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Effective theory of Virasoro identity blocks



The bilocal vertex operator

A basic ingredient is the bilocal vertex operator

V (z1)V (z2) =⇒ BhV
(1, 2) ≡

(
∂f(z1, z̄1) ∂f(z2, z̄2)

(f(z1, z̄1)− f(z2, z̄2))
2

)hV

,

expanded in terms of the ‘reparametrization mode’ ε(z, z̄),

f = eε ∂zz = z + ε+
1

2
ε∂ε+O(ε3) .

[This looks similar to effective bilocal operators in SYK. [Maldacena-Stanford’16]]

Objective

We want to understand the origin and meaning of Bh(1, 2) in CFT2.
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Rules of the game

1. Dynamics of ε is modeled over that of the stress tensor

〈∂3ε(z1) ... ∂3ε(zn)〉 =

(
12

c

)n
〈T (z1) ... T (zn)〉 .

[Hence ∂̄ε is the stress tensor shadow [Haehl-Reeves-Rozali ’19]]

[The two-point function can be obtained from AS action [Cotler-Jensen ’18]]

2. Main conjecture:

V0(u) ' 〈BhV
(1, 2)BhW

(3, 4)〉c .

Large c formalism

expansion in ε ⇔ expansion in 1/c

Objective

Derive these rules!
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Baby example: Virasoro identity block at O(1/c)

According to the above set of rules, we have

V0(u)
∣∣
O(1/c)

= 〈B(1)
hV

(1, 2)B(1)
hW

(3, 4)〉 =
2hV hW

c
u2

2F1 (2, 2, 4;u) ,

where

B(1)
h (1, 2) = h

(
∂ε1 + ∂ε2 − 2

ε1 − ε2
z12

)
.

This is just the global identity block.

Other examples: light-light exponentiation [hV,W = O(
√
c)], heavy-light limit

[hV = O(1), hW = O(c)], six-point blocks in various regimes

[Cotler-Jensen ’18, Haehl-Reeves-Rozali ’19, Anous-Haehl ’20]
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Generating functionals for stress tensor insertions



Generating functionals

Let’s consider a string of m primary operators,

{O} ≡ O1(z1)...Om(zm) .

We are interested in the generating functional for arbitrary number of

additional stress tensor insertions,

Z [µ] =

∞∑
n=0

1

n!

∫
d2w1... d

2wn µ(w1)...µ(wn)〈{O}T (w1)...T (wn)〉 ,

where the source µ is naturally associated with a deformation of the

conformal geometry,

ds2 = dz dz̄ + µ(z, z̄) dz̄2 .



Stress tensor insertions are governed by the conf. Ward identity [BPZ ’84],

which turns into the diff. Ward identity [Verlinde ’90]

(
∂̄ − µ∂ − 2∂µ

) δZ [µ]

δµ(z)
= [−c ∂3µ+

m∑
j=1

(
hj∂δ(z − zj)− δ(z − zj)∂zj

)
]Z [µ]

To solve it we introduce a Beltrami param. of the conformal deformations,

µ =
∂̄f

∂f
, (f quasi-conf. mapping)

such that

∂f(z, z̄)
δZ0[µ]

δf(z, z̄)
= c ∂3µ(z, z̄)Z0[µ] ,

∂f(z, z̄)
δZc[µ]

δf(z, z̄)
= −

m∑
i=1

(hi ∂zδ(z − zi)− δ(z − zi)∂zi)Zc[µ] ,

where Z0, Zc generate 〈T...T 〉 and 〈{O}T...T 〉c, respectively.
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Solutions of diff. Ward identity

1. No operator insertion {O} = ∅:

Z0 [µ] = exp

[
− c

24π

∫
d2z

∂̄f

∂f
∂2 ln ∂f

]
≡ e−W0[µ]

This W0 is one form of the AS action.

2. Two identical operators {O} = O(z1)O(z2):

Z2,c[µ] =

(
∂f(z1, z̄1) ∂f(z2, z̄2)

(f(z1, z̄1)− f(z2, z̄2))
2

)h
≡ Bh(1, 2)

3. Three operators {O} = O1(z1)O2(z2)O3(z3):

Z3,c[µ] =
(∂f1)h1(∂f2)h2(∂f3)h3

(f1 − f2)h1+h2−h3(f1 − f3)h1+h3−h2(f2 − f3)h2+h3−h1
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Solution to the Beltrami equation

We need the explicit relation between µ and f!

For a small conformal deformation of the form

µ = ∂̄ε(z, z̄) ,

the solution to the Beltrami equation takes the form [Donaldson’s book]

f(z, z̄) = z + ε+ ∂̄−1
(
∂̄ε ∂ε

)
+O(ε3) .

We have

〈{O} ∂̄T (z1) ... ∂̄T (zn)〉 =
δnZ

δε(z1) ... δε(zn)

∣∣∣
ε=0

.



Derivation of the effective theory



Position-space Feynman diagrams

Claim

The reparametrization formalism is equivalent to an expansion in terms of

Feynman diagrams involving stress tensor exchanges

V (1)

V (2)

W (3)

W (4)

T

V (1)

V (2)

W (3)

W (4)

T
T

T

T

T



Exact vertices

The vertices are partially amputated (2 + n)-point correlation functions

〈V (1)V (2)T̂ (z1) ... T̂ (zn)〉

where T̂ is the shadow of the stress tensor,

T̂ (z) ≡ −12

πc
∂−3∂̄T (z) .

This formula follows from

〈... T (wi) ...〉 =

∫
d2y 〈... T̂ (y) ...〉〈T (y)T (wi)〉

together with

〈T (z)T (w)〉 =
c

2(z − w)4
= − c

12
∂3
w

(
1

z − w

)
= −πc

6
∂3
w (∂w̄)−1δ(z − w) .
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Sketch of the proof

Thus the set of connected Feynman diagrams is given by

V0 =
∑
n,m

1

n!m!

∫
〈V V T̂ (z1)...T̂ (zn)〉c〈T (z1)...T (wm)〉〈T̂ (w1)...WW 〉c

=
∑
n,m

1

n!m!

∫
〈V V ∂̄T (z1) ... 〉c〈ε(z1) ... ε(wm)〉〈 ... ∂̄T (wm)WW 〉c

=
∑
n,m

1

n!m!

∫
δ(n)BhV

(1, 2) 〈ε(z1) ... ε(wm)〉 δ(m)BhW
(3, 4)

= 〈BhV
(1, 2)BhW

(3, 4)〉c ,

with the short-hand notation

δ(n)BhV
(1, 2) ≡ δnBhV

(1, 2)

δε(z1) ... δε(zn)

∣∣∣∣
ε=0

.



Open questions



UV divergences

I In the reparametrization formalism, we get coincident point divergences

from 〈ε(z)ε(z)...〉c correlators

I Maps to UV divergences from loop diagrams

I Feature of EFT approach

V (1)

V (2)

W (3)

W (4)

T

T

V (1)

V (2)

W (3)

W (4)

T

T

T

V

V

T

T

+

V

V

T

T

T ⊂

V

V

T



Generic Virasoro blocks

Exchange diagrams of a primary operator O and its descendants :

O1

O2

O3

O4

O

O1

O2

O3

O4

T

O

T

T

Proposed formula

FO =

∫
d2y 〈Z3,c(1, 2, y) Shy Z3,c(y, 3, 4)〉c



Relation to AdS3 gravity

I Reparametrization formalism motivated by holography and maximal

chaos [Cotler-Jensen ’18, Haehl-Rozali ’18]

I Z0[µ] is the (sourced) vacuum onshell action [KN ’21b]

I What is the gravitational realization of Z2,c[µ] = Bh(1, 2)?

A safe conjecture

Bh(1, 2) is a (sourced) gravitational Wilson line

Indeed, in a state with

〈T 〉 =
c

12
S[f(z); z] ,

the SL(2,C) gravitational Wilson line becomes [D’Hoker-Kraus ’19, ...]

Wh(1, 2)
∣∣
T (f)

=

(
f ′(z1)f ′(z2)

(f(z1)− f(z2))2

)h
Wh(1, 2) ≡ 〈h|P

(
exp

∫ z2

z1

A

)
|h〉
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