Exact Large Charge in $\mathcal{N}=4$ SYM and Semi-Classical String Theory

Himanshu Raj, IPhT Saclay

Based on 2303.13207, 2209.06639
with Hynek Paul and Eric Perlmutter

Eurostrings 2023
Gijón

This talk is about large charge limit of four dimensional $\mathcal{N}=4$ super Yang-Mills theory

What is the large charge limit of semiclassical string theory in AdS?

Correlation functions in large charge states

- Large charge perturbation theory, non-perturbative effects, $S L(2, \mathbb{Z})$ duality
- An emergent 't Hooft-like expansion parameter
- A large charge gravity regime

Setup

$\mathcal{N}=4$ Super-Yang Mills theory on \mathbb{R}^{4} with gauge group $\operatorname{SU}(N)$
Exactly marginal gauge coupling $\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}} \equiv x+i y$

The theory enjoys S-duality - is $S L(2, \mathbb{Z})$ invariant $-\tau \in$ fundamental domain \mathscr{F} of $S L(2, \mathbb{Z})$

Setup

$\mathcal{N}=4$ Super-Yang Mills theory on \mathbb{R}^{4} with gauge group $\operatorname{SU}(N)$
Exactly marginal gauge coupling $\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}} \equiv x+i y$

The theory enjoys S-duality - is $S L(2, \mathbb{Z})$ invariant $-\tau \in$ fundamental domain \mathscr{F} of $S L(2, \mathbb{Z})$

1/2-BPS operators $\mathcal{O}_{p}:$ Lorentz scalar , $\Delta=$ R-charge p

$$
\mathcal{O}_{p}=\left[\operatorname{Tr}\left(\phi^{2}\right)\right]^{p / 2}
$$

Multi-trace composite of stress-tensor

We will be interested in four-point correlation functions of such operators

What exactly are we computing?

In particular we look at four-point correlators of the type:

$$
\langle 0| \mathcal{O}_{p} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p}|0\rangle_{c} \sim \mathscr{H}_{p}^{(N)}(U, V ; \tau, \bar{\tau}) \quad U, V \text { conformal cross ratios }
$$

What exactly are we computing?

In particular we look at four-point correlators of the type:

$$
\langle 0| \mathcal{O}_{p} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p}|0\rangle_{c} \sim \mathscr{H}_{p}^{(N)}(U, V ; \tau, \bar{\tau}) \quad U, V \text { conformal cross ratios }
$$

Generically hard to compute!

What exactly are we computing?

In particular we look at four-point correlators of the type:

$$
\langle 0| \mathcal{O}_{p} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p}|0\rangle_{c} \sim \mathscr{H}_{p}^{(N)}(U, V ; \tau, \bar{\tau}) \quad U, V \text { conformal cross ratios }
$$

Generically hard to compute!
Less ambitious : Average out the dependence on the cross-ratios and consider a simpler object

$$
\mathscr{G}_{p}^{(N)}(\tau, \bar{\tau})=\int d U d V \rho(U, V) \mathscr{H}_{p}^{(N)}(U, V ; \tau, \bar{\tau})
$$

"Integrated correlators"
\mathscr{G} is non-trivial function: R-charge p, rank N and non-holomorphic in τ

Localization formula

$$
\mathscr{G}_{p}^{(N)}(\tau) \sim \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r^{3} \sin ^{2} \theta}{U^{2}} \mathscr{H}_{p}^{(N)}(U, V ; \tau) \quad \begin{aligned}
& U=1+r^{2}-2 r \cos \theta \\
& V=r^{2}
\end{aligned}
$$

$\mathscr{G}_{p}^{(N)}(\tau)$ can be computed via supersymmetric localization of the $\mathcal{N}=2^{*}$ theory on S^{4}
[Binder, Chester, Pufu, Wang], [Chester, Green, Pufu, Wang, Wen], [Dorigoni, Green, Wen], [Gerchkovitz, et. al.]

$$
\left.\mathscr{G}_{p}^{(N)}(\tau) \sim \partial_{\tau}^{p} \partial_{\bar{\tau}}^{p} \partial_{m}^{2} \log \mathscr{Z}_{\mathbb{S}_{4}}(N ; \tau, m)\right|_{m=0}
$$

Partition function $\mathscr{Z}_{\mathbb{S}^{4}}$ determined by supersymmetric localization
[Pestun], [Nekrasov], [Fucito, Morales, Poghossian], [Gerchkovitz, et. al.], ...

Localization formula

$$
\mathscr{G}_{p}^{(N)}(\tau) \sim \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \frac{r^{3} \sin ^{2} \theta}{U^{2}} \mathscr{H}_{p}^{(N)}(U, V ; \tau) \quad \begin{aligned}
& U=1+r^{2}-2 r \cos \theta \\
& V=r^{2}
\end{aligned}
$$

$\mathscr{G}_{p}^{(N)}(\tau)$ can be computed via supersymmetric localization of the $\mathcal{N}=2^{*}$ theory on S^{4}
[Binder, Chester, Pufu, Wang], [Chester, Green, Pufu, Wang, Wen], [Dorigoni, Green, Wen], [Gerchkovitz, et. al.]

$$
\left.\mathscr{G}_{p}^{(N)}(\tau) \sim \partial_{\tau}^{p} \partial_{\bar{\tau}}^{p} \partial_{m}^{2} \log \mathscr{Z}_{\mathbb{S}_{4}}(N ; \tau, m)\right|_{m=0}
$$

Partition function $\mathscr{Z}_{\mathbb{S}^{4}}$ determined by supersymmetric localization
[Pestun], [Nekrasov], [Fucito, Morales, Poghossian], [Gerchkovitz, et. al.], ...
In practice, we exploit this connection to compute $\mathscr{G}_{p}^{(N)}(\tau)$ exactly in all parameters !

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Constant piece $=$ average over the $\mathcal{N}=4$ conformal manifold

$$
\left\langle\mathscr{G}_{p}^{(N)}\right\rangle=\operatorname{vol}(\mathscr{F})^{-1} \int_{\mathscr{F}} \frac{d x d y}{y^{2}} \mathscr{G}_{p}^{(N)}(\tau)
$$

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Real analytic completed Eisenstein series
The entire coupling dependence packaged into the Eisenstein series $E_{S}^{*}(\tau)$

Eigen function of the hyperbolic laplacian

$$
\Delta_{\tau} E_{s}^{*}(\tau)=s(1-s) E_{s}^{*}(\tau)
$$

$$
\Delta_{\tau}=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)
$$

$$
E_{s}^{*}(\tau)=E_{1-s}^{*}(\tau)
$$

functional identity

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Real analytic completed Eisenstein series
The entire coupling dependence packaged into the Eisenstein series $E_{s}^{*}(\tau)$
Fourier decomposition

$$
E_{s}^{*}(\tau)=\underbrace{\Lambda(s) y^{s}+\Lambda(1-s) y^{1-s}+\sum_{k=1}^{\infty} 4 \cos (2 \pi k x) \frac{\sigma_{2 s-1}(k)}{k^{s-\frac{1}{2}}} \sqrt{y} K_{s-\frac{1}{2}}(2 \pi k y)}_{\begin{array}{c}
\text { zero modes } \\
\text { perturbative series }
\end{array}} \begin{gathered}
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}} \equiv x+i y \\
\text { non-zero modes } \\
\text { instanton corrections }
\end{gathered} \quad \Lambda(s)=\pi^{-s} \Gamma(s) \zeta(2 s)
$$

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR], [Collier, Perlmutter]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

All remaining info contained in Eisenstein overlap $g_{p}^{(N)}(s)$

1. Completely fixed from perturbation theory data (via the localization formula)
2. At finite N these are polynomials of s symmetric under $s \leftrightarrow 1-s\left(\right.$ from $\left.E_{s}^{*}(\tau)=E_{1-s}^{*}(\tau)\right)$

Exact solution

$\mathscr{G}_{p}^{(N)}(\tau)$ can be written as a spectral integral [Paul, Perlmutter, HR]

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Closed form solution

$$
g_{p}^{(N)}(s)=F_{p}(N, s) g_{2}^{(N)}(s)
$$

$$
\begin{aligned}
g_{2}^{(N)}(s) & =\frac{N}{N+1}{ }_{3} F_{2}(2-N, s, 1-s ; 3,2 ; 1) \\
F_{p}(N, s) & =\frac{N^{2}-1}{2 s(1-s)}\left[1-{ }_{3} F_{2}\left(-\frac{p}{2}, s, 1-s ; 1, \frac{N^{2}-1}{2} ; 1\right)\right]
\end{aligned}
$$

Exact solution: A coupled harmonic system

$$
\Delta_{\tau} \widehat{Q}_{p-2}^{(N)}(\tau)=-\kappa_{p}\left(\widehat{Q}_{p}^{(N)}(\tau)-\widehat{Q}_{p-2}^{(N)}(\tau)\right)+\kappa_{p-2}\left(\widehat{Q}_{p-2}^{(N)}(\tau)-\widehat{Q}_{p-4}^{(N)}(\tau)\right)
$$

$$
\kappa_{p}:=\frac{p}{4}\left(N^{2}+p-3\right)
$$

Shifted correlator: $\quad Q_{p}^{(N)}(\tau):=\mathscr{G}_{p}^{(N)}(\tau)-\frac{1}{2}\left(N^{2}-1\right) \Delta_{\tau}^{-1} \mathscr{G}_{2}^{(N)}(\tau)$

$$
\mathscr{G}_{2}^{(N)}(\tau) \text { satisfies a differential recursion in } N \text { [Dorigoni, Green, Wen] }
$$

Exact solution: A coupled harmonic system

$$
\Delta_{\tau} Q_{p-2}^{(N)}(\tau)=-\kappa_{p}\left(\widehat{Q}_{p}^{(N)}(\tau)-\widehat{Q}_{p-2}^{(N)}(\tau)\right)+\kappa_{p-2}\left(\widehat{Q}_{p-2}^{(N)}(\tau)-\widehat{Q}_{p-4}^{(N)}(\tau)\right)
$$

- Each lattice site = integrated correlator
- Harmonic interactions among lattice sites with a site- and N dependent coupling κ_{p}
- This describes the evolution of a 1D semi-infinite lattice chain over the fundamental domain of $\operatorname{SL}(2, \mathbb{Z})$

Towards large charge

Three parameters in $\mathscr{G}_{p}^{(N)}(\tau)$: coupling τ, R-charge p and rank N

$$
\begin{gathered}
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau) \\
g_{p}^{(N)}(s)=F_{p}(N, s) g_{2}^{(N)}(s) \\
g_{2}^{(N)}(s)=\frac{N}{N+1}{ }_{3} F_{2}(2-N, s, 1-s ; 3,2 ; 1) \quad \text { entire } p \text { dependence } \\
\text { here }
\end{gathered}
$$

Towards large charge

$$
F_{p}(N, s)=\frac{N^{2}-1}{2 s(1-s)}\left[1-{ }_{3} F_{2}\left(-\frac{p}{2}, s, 1-s ; 1, \frac{N^{2}-1}{2} ; 1\right)\right]
$$

Three distinct regimes:

$$
\begin{array}{ll}
p \gg N^{2} & \text { Both } N \text { finite or } N \text { large } \\
p=\alpha N^{2} & \text { Gravity regime: where } p \text { scales with } N^{2} \\
p \ll N^{2} & \text { Both } p \text { finite or } p \text { large }
\end{array}
$$

Towards large charge

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Three distinct regimes:

$$
\begin{array}{ll}
p \gg N^{2} & \text { Both } N \text { finite or } N \text { large } \\
p=\alpha N^{2} & \text { Gravity regime: where } p \text { scales with } N^{2} \\
p \ll N^{2} & \text { Both } p \text { finite or } p \text { large }
\end{array}
$$

These limits are obtained from expanding the overlaps $g_{p}^{(N)}(s)$
A further limit can be taken w.r.t. to the coupling τ by manipulating the spectral integral

Towards large charge

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau)
$$

Three distinct regimes:

$$
\begin{array}{ll}
p \gg N^{2} & \text { Both } N \text { finite or } N \text { large } \\
p=\alpha N^{2} & \text { Gravity regime: where } p \text { scales with } N^{2}
\end{array}
$$

$p \ll N^{2} \quad$ Both p finite or p large

These limits are obtained from expanding the overlaps $g_{p}^{(N)}(s)$
A further limit can be taken w.r.t. to the coupling τ by manipulating the spectral integral

Large Charge at Finite N

$$
p \gg 1, \quad N \text { fixed }
$$

1. Large charge 't Hooft like limit: $p \rightarrow \infty, \quad \lambda_{p}:=g^{2} p$ fixed (non-trivial, previously seen to emerge in $\mathcal{N}=2$ extremal correlators)
[Bourget, Rodriguez-Gomez, Russo], [Beccaria], [Grassi, Komargodski, Tizzano]
2. Large charge at finite coupling $p \rightarrow \infty, \tau$ fixed (always exists for any QFT with a global symmetry)

Large Charge at Finite N : 't Hooft-like limit

$$
\begin{gathered}
p \gg 1, \quad N \text { fixed } \\
g^{2} p=\lambda_{p} \text { fixed }
\end{gathered}
$$

Gauge instantons are exponentially suppressed in $p: e^{-p / \lambda_{p}}$

Existence of this limit is manifest in the spectral representation of the correlator

$$
\mathscr{G}_{p}^{(N)}(\tau)=\left\langle\mathscr{G}_{p}^{(N)}\right\rangle+\frac{1}{4 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} g_{p}^{(N)}(s) E_{s}^{*}(\tau) \quad \begin{array}{ll}
E_{s}^{*}(\tau) \sim g^{2 s} \\
g_{p}^{(N)}(s) \sim p^{s}
\end{array}
$$

Large Charge at Finite N : 't Hooft-like limit

$$
\begin{gathered}
p \gg 1, \quad N \text { fixed } \\
g^{2} p=\lambda_{p} \quad \text { fixed }
\end{gathered}
$$

A genus-like expansion in the double-scaled large charge limit

$$
\mathscr{G}_{p}^{(N)}(\tau)=\sum_{\mathfrak{g}=0}^{\infty} p^{-\mathfrak{g}} \mathscr{G}_{\mathfrak{g}}^{(N)}\left(\lambda_{p}\right)
$$

Genus 0 result for $S U(2)$

$$
\begin{array}{r}
\mathscr{G}_{\mathfrak{g}=0}^{(2)}\left(\lambda_{p}\right)=-\frac{1}{2 \pi i} \int_{\operatorname{Re} s=1+\epsilon} d s(2 s-1) \Gamma^{2}(1-s) \zeta(2-2 s)\left(\frac{\lambda_{p}}{2}\right)^{s-1} \\
\mathscr{G}_{\mathfrak{g}=0}^{(2)}\left(\lambda_{p}\right)=\int_{0}^{\infty} d w \frac{w}{\sinh ^{2}(w)}\left[1-J_{0}\left(w \sqrt{2 \lambda_{p}} / \pi\right)\right] \\
\text { Independently obtained by } \\
\text { [Caetano, Komatsu, Wang] }
\end{array}
$$

Large Charge at Finite N : 't Hooft-like limit

$$
\begin{gathered}
p \gg 1, \quad N \text { fixed } \\
g^{2} p=\lambda_{p} \text { fixed }
\end{gathered}
$$

A genus-like expansion in the double-scaled large charge limit

$$
\mathscr{G}_{p}^{(N)}(\tau)=\sum_{\mathfrak{g}=0}^{\infty} p^{-\mathfrak{g}} \mathscr{G}_{\mathfrak{g}}^{(N)}\left(\lambda_{p}\right)
$$

Genus 0 result for $S U(2)$

$$
\mathscr{G}_{\mathfrak{g}=0}^{(2)}\left(\lambda_{p}\right)=\int_{0}^{\infty} d w \frac{w}{\sinh ^{2}(w)}\left[1-J_{0}\left(w \sqrt{2 \lambda_{p}} / \pi\right)\right]
$$

Strong coupling expansion:

$$
\mathscr{G}_{\mathfrak{g}=0}^{(2)}\left(\lambda_{p}\right)=\frac{1}{2} \log \left(\frac{\lambda_{p}}{8 \pi^{2}}\right)+1+\gamma_{E}+\sqrt{2 \pi}\left(2 \lambda_{p}\right)^{1 / 4} \operatorname{Li}_{-\frac{1}{2}}\left(e^{-\sqrt{2 \lambda_{p}}}\right)+O\left(\lambda_{p}^{-1 / 4}\right)
$$

Large Charge at Finite N : 't Hooft-like limit

$$
\begin{gathered}
p \gg 1, \quad N \text { fixed } \\
g^{2} p=\lambda_{p} \text { fixed }
\end{gathered}
$$

Similar results exist for the $S U(N)$ case with the interesting difference that:

For even N the strong λ_{p} expansion terminates at a finite order
For odd N the strong λ_{p} expansion does not terminate

In both cases the scale of non-perturbative corrections at large λ_{p} is the same $\sim e^{-\sqrt{2 \lambda_{p}}}$

Large Charge at Finite N : Finite Coupling

Gauge instantons are no longer suppressed

The spectral representation of the integrated correlator easily facilitates the large charge expansion

NP terms in the large charge expansion can be rigorously computed

Large Charge at Finite N : Finite Coupling

$$
\begin{gathered}
\mathscr{F}(2) \\
\mathrm{NP}
\end{gathered}(p ; \tau) \sim p^{1 / 4} \sum_{(m, n) \neq(0,0)} \exp \left(-2 \sqrt{2 p Y_{m n}(\tau)}\right)\left(Y_{m n}(\tau)\right)^{\frac{1}{4}}+O\left(p^{-1 / 4}\right)
$$

Encodes exponentially suppressed corrections in large charge $\sim e^{-\sqrt{p}}$

Exact NP scale

$$
M=\sqrt{2} \sqrt{p} g|m+n \tau|
$$

mass of a BPS-saturated
dyonic states

First NP correction of its kind rigorously computed in the literature
(also discussed in [Grassi, Komargodski, Tizzano], [Hellerman] in the $\mathcal{N}=2$ SQCD context)

Gravity Regime: Large Charge at Large N

$$
p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}} \text { fixed }, \quad \alpha \in \mathbb{R}_{\geq 0}
$$

A triple-scaled limit: $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ and α finite
Semi-classical string theory

Gravity Regime: Large Charge at Large N

$$
\begin{gathered}
p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}} \text { fixed } \\
g_{Y M}^{2} N \text { fixed }
\end{gathered}
$$

The correlators $\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)$ in triple-scaled limit organizes into a genus expansion (!)

$$
\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)=\sum_{\mathfrak{g}=0}^{\infty} N^{2-2 \mathfrak{g}} \mathscr{G}_{\alpha}^{(\mathfrak{g})}(\lambda)
$$

Gravity Regime: Large Charge at Large N

$p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}}$ fixed $g_{Y M}^{2} N$ fixed

The correlators $\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)$ in triple-scaled limit organizes into a genus expansion (!)

$$
\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)=\sum_{\mathfrak{g}=0}^{\infty} N^{2-2 \mathfrak{g}} \mathscr{G}_{\alpha}^{(\mathfrak{g})}(\lambda)
$$

Genus 0 term has the spectral representation

$$
\begin{array}{r}
\mathscr{G}_{\alpha}^{(0)}(\lambda)=\frac{\log (\alpha+1)}{4}+\frac{1}{2 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} \Lambda(1-s)\left(\frac{\lambda}{4 \pi}\right)^{s-1} h_{\alpha}^{(0)}(s) \\
h_{\alpha}^{(0)}(s)=\widetilde{h}_{0}(s)-\widetilde{h}_{\alpha}(s), \quad \widetilde{h}_{\alpha}(s)=\frac{{ }_{2} F_{1}(1-s, s ; 1 ;-\alpha)}{2 s(1-s)} g_{2}^{(0)}(s) \\
\text { usual 't Hooft limit term } \frac{2^{2 s} \Gamma\left(s+\frac{1}{2}\right)}{\sqrt{\pi}(2 s-1) \Gamma(s+1) \Gamma(s+2)}
\end{array}
$$

Gravity Regime: Large Charge at Large N

$p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}}$ fixed $g_{Y M}^{2} N$ fixed

The correlators $\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)$ in triple-scaled limit organizes into a genus expansion (!)

$$
\mathscr{G}_{\alpha N^{2}}^{(N)}(\lambda)=\sum_{\mathfrak{g}=0}^{\infty} N^{2-2 \mathfrak{g}} \mathscr{G}_{\alpha}^{(\mathfrak{g})}(\lambda)
$$

Genus 0 term has the spectral representation

$$
\begin{aligned}
& \mathscr{G}_{\alpha}^{(0)}(\lambda)=\frac{\log (\alpha+1)}{4}+\frac{1}{2 \pi i} \int_{\operatorname{Re} s=\frac{1}{2}} d s \frac{\pi}{\sin (\pi s)} s(1-s)(2 s-1)^{2} \Lambda(1-s)\left(\frac{\lambda}{4 \pi}\right)^{s-1} h_{\alpha}^{(0)}(s) \\
& h_{\alpha}^{(0)}(s)=\widetilde{h}_{0}(s)-\widetilde{h}_{\alpha}(s), \quad \tilde{h}_{\alpha}(s)=\frac{{ }_{2} F_{1}(1-s, s ; 1 ;-\alpha)}{2 s(1-s)} g_{2}^{(0)}(s)
\end{aligned}
$$

We can learn about the NP physics of this regime by analysing the above equation

Gravity Regime: Large Charge at Large N

$p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}}$ fixed $g_{Y M}^{2} N$ fixed

Strong coupling expansion:

$$
\begin{gathered}
\mathscr{G}_{\alpha}^{(0)}(\lambda \gg 1)=\frac{\log (\alpha+1)}{4}+4\left[1-{ }_{2} F_{1}\left(-\frac{1}{2}, \frac{3}{2} ; 1 ;-\alpha\right)\right] \frac{\zeta(3)}{\lambda^{3 / 2}}+O\left(\lambda^{-5 / 2}\right) \\
O\left(\lambda^{0}\right): \text { supergravity result } \quad O\left(\lambda^{-3 / 2}\right) \text { : leading } \alpha^{\prime} \text { correction }
\end{gathered}
$$

The strong coupling expansion is asymptotic. There are exponentially small corrections
The scale of such corrections is controlled by weak coupling radius of convergence [Collier, Perlmutter] Two sets of NP corrections at large λ

$$
e^{-2 \sqrt{\lambda}} \quad e^{-2 \sqrt{\lambda / R_{\alpha}}}
$$

$$
R_{\alpha}=1+2 \alpha-2 \sqrt{\alpha(\alpha+1)}
$$

Gravity Regime: Large Charge at Large N

$$
\begin{gathered}
p \gg 1, \quad N \gg 1, \quad \alpha=\frac{p}{N^{2}} \text { fixed } \\
g_{Y M}^{2} N \text { fixed }
\end{gathered}
$$

New prediction for novel NP effects in the gravity regime of large charge
In $A d S_{5} \times S^{5}$ holography

$$
e^{-2 \sqrt{\lambda}} \quad \longleftrightarrow \quad \text { fundamental string worldsheet instantons } 2 \pi T_{F 1}=\sqrt{\lambda}
$$

What about the emergent scale $e^{-2 \sqrt{\lambda / R_{\alpha}}}\left(R_{\alpha}=1+2 \alpha-2 \sqrt{\alpha(\alpha+1)}\right)$

$$
\begin{gathered}
e^{-2 \sqrt{\lambda / R_{\alpha}}} \quad \text { fundamental string action in a background dual to }\left|\mathcal{O}_{p}\right\rangle \\
R_{\alpha}: \text { large charge dressing factor }
\end{gathered}
$$

Conclusion

The recursion formulas for integrated correlators can be generalized to other $1 / 2$ BPS operator insertions. Recently worked out and proven in [Brown, Wen, Xie [2303.13195]]

These exact results for integrated correlators in $\mathcal{N}=4$ SYM serve as a useful benchmark for future EFT approach to computing correlators at large charge

An emergent double-scaled t' Hooft like limit: Interesting NP aspects, genus expansion and connections to RMT

Large charge large N regime $p \sim N^{2}$: novel NP effects, worthy of further investigation

Thank You!

