

Scaling in holographic turbulence

Eurostrings in Gijón, 25.04.2023

Sebastian Waeber

Technion - Israel Institute of Technology

Fluid Dynamics and Turbulence

Turbulence as an ubiquitous phenomenon

Understanding turbulent flow is crucial in various fields and research areas

Yet, despite its relevance, turbulence is still not fully understood.

Turbulence as an ubiquitous phenomenon

Understanding turbulent flow is crucial in various fields and research areas

Yet, despite its relevance, turbulence is still not fully understood.

Aim: Geometrize the statistical properties of fluid flow and turbulence through the fluid/gravity duality.

(incompressible) Navier-Stokes equations:

$$\nabla_i u^i = 0$$
$$\partial_t u^i + (\mathbf{u} \cdot \nabla) u^i = -\nabla^i p + \nu \nabla^2 u^i$$

(incompressible) Navier-Stokes equations:

$$\nabla_i u^i = 0$$

$$\partial_t u^i + (\mathbf{u} \cdot \nabla) u^i = -\nabla^i \rho + \nu \nabla^2 u^i + \mathbf{f}^i$$

(incompressible) Navier-Stokes equations:

$$\nabla_i u^i = 0$$

$$\partial_t u^i + (\mathbf{u} \cdot \nabla) u^i = -\nabla^i \boldsymbol{\rho} + \nu \nabla^2 u^i + \boldsymbol{f}^i$$

- The driving force f^i is fluctuating randomly.
- The fluid velocity u^i and the pressure p are random variables.
- Navier-Stokes equations are stochastic differential equations which one solves for the probability distributions of u^i , p.

(incompressible) Navier-Stokes equations:

$$\nabla_i u^i = 0$$

$$\partial_t u^i + (\mathbf{u} \cdot \nabla) u^i = -\nabla^i \boldsymbol{\rho} + \nu \nabla^2 u^i + \boldsymbol{f}^i$$

- The driving force f^i is fluctuating randomly.
- The fluid velocity u^i and the pressure p are random variables.
- Navier-Stokes equations are stochastic differential equations which one solves for the probability distributions of u^i , p.

The Fourier transform of $f = |\mathbf{f}|$ peaks at $|\mathbf{k}| = k_f$, associated with a driving scale $2\pi/k_f$.

For sufficiently large Reynolds number

$$\mathsf{R} = \frac{\langle |\mathbf{u}| \rangle L}{\nu}$$

a solution to Navier-Stokes equations exhibits an irregular and chaotic behavior.

For sufficiently large Reynolds number

$$R = \frac{\langle |\mathbf{u}| \rangle L}{\nu}$$

a solution to Navier-Stokes equations exhibits an irregular and chaotic behavior.

$$R\sim 10^0-10^3$$

 $10^3 \lesssim R$

For sufficiently large Reynolds number

$$R = \frac{\langle |\mathbf{u}| \rangle L}{\nu}$$

a solution to Navier-Stokes equations exhibits an irregular and chaotic behavior.

 $R \sim 10^{0} - 10^{3}$

Kolmogrov (1941): For $1 \ll R$ and in the inertial range $2\pi/k_f \ll r \ll L$ statistical properties of the fluid velocity show an universal behavior.

The energy power spectrum

$$\langle (\delta S)^2 \rangle \sim r^{2/3}$$

$$E(k) \sim \partial_k \int_{k' < k} d^d k' \langle u^i(k') \bar{u}_i(k') \rangle \sim k^{-5/3}$$

$$\int E(k) dk = \int d^d x \frac{\rho}{2} u^i(x) u_i(x)$$

Westernacher-Schneider (2017)

For *d* = 2: inverse cascading energy & direct cascading enstrophy

 \rightarrow Good agreement between theory and experiment for lower moments.

Anomalous exponents

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle \mathbf{e}_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{\zeta_n} = r^{n/3 + \Delta(n)}$$

where $\langle e_r^m \rangle$ is the *m*-th moment of the averaged energy dissipation:

Anomalous exponents

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle \mathbf{e}_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{\zeta_n} = r^{n/3 + \Delta(n)}$$

where $\langle e_r^m \rangle$ is the *m*-th moment of the averaged energy dissipation:

Anomalous exponents

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle \mathbf{e}_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{\zeta_n} = r^{n/3 + \Delta(n)}$$

where $\langle e_r^m \rangle$ is the *m*-th moment of the averaged energy dissipation:

(One of) the unsolved problem(s) of turbulence is to get an analytic handle on $\Delta(n)$.

Turbulence in Holography

Holographic turbulence

Gravity in d + 1 **dimensions** \leftrightarrow **Fluid dynamics in** d **dimensions** [Bhattacharyya et. al. (2007)]

- fluid in equilibrium \leftrightarrow black hole with smooth horizon
- turbulent fluid \leftrightarrow self-similar horizon structure [Adams et. al. (2013)]

Decaying holographic turbulence $\mathcal{P}(t,k)$ 10^8 $k^{-5/3}$ 10^8

 \mathbf{k}

 10^{-1}

10

10-2

- Irregular, chaotic fluid flow develops from **unstable initial conditions**
- Scaling in inertial range is short and transient
- -5/3-power law \leftrightarrow fractal dimension of the horizon $\approx d+2/3$ [Westernacher-Schneider (2017)]
- $\langle (\delta S)^{n>2} \rangle \leftrightarrow$ some geometric/horizon related objects (?)

Geometrizing the local energy dissipation

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle e_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{n/3 + \Delta(n)}$$

Geometrizing the local energy dissipation

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle e_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{n/3 + \Delta(n)}$$

The horizon extrinsic curvature

$$\Theta_{\mu\nu} = \Pi^{\alpha}_{\mu}\Pi^{\beta}_{\nu}\nabla_{\alpha}n_{\beta}$$

can be related to the energy dissipation

$$e(x) = rac{
u}{2} \left(\partial_i u^j + \partial_j u^i \right)^2 \ \Theta^i_j \Theta^j_i \sim e(x) + \mathcal{O}(\partial^2) + \mathcal{O}(1/c^3)$$

[Eling, Oz (2009)]

Geometrizing the local energy dissipation

In the inertial range:

$$\delta S = (\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})) \cdot \hat{\mathbf{r}}$$
$$\langle (\delta S)^n \rangle = \langle e_r^{n/3} \rangle r^{n/3}$$
$$\langle (\delta S)^n \rangle \sim r^{n/3 + \Delta(n)}$$

The horizon extrinsic curvature

$$\Theta_{\mu\nu} = \Pi^{\alpha}_{\mu}\Pi^{\beta}_{\nu}\nabla_{\alpha}\mathbf{n}_{\beta}$$

can be related to the energy dissipation

$$e(x) = \frac{\nu}{2} \left(\partial_i u^j + \partial_j u^j \right)^2$$

$$\Theta_j^i \Theta_i^j \sim e(x) + \mathcal{O}(\partial^2) + \mathcal{O}(1/c^3)$$

[Eling, Oz (2009)]

In infalling coordinates with $n_{\mu}dx^{\mu} = d\rho$ one can show that $\Theta^{\mu}_{\nu}\Theta^{\nu}_{\mu} = \Theta^{i}_{j}\Theta^{j}_{i}$, so that

$$\langle e_r^n \rangle = \left\langle \left(\frac{1}{Vol(B(r))} \int_{B(r)} d^{d-1} x' e(x') \right)^n \right\rangle$$

matches

$$\langle (e_r^h)^n \rangle = \left\langle \left(\frac{1}{Vol(\tilde{B}(r))} \int_{\tilde{B}(r)} d^{d-1} x' \Theta^{\mu}_{\nu} \Theta^{\nu}_{\mu}
ight)^n \right\rangle$$

 $R^{\mu\nu} - 1/2Rg^{\mu\nu} + \Lambda g^{\mu\nu} = 0$ with $g^b_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$ as boundary condition & $Q_{\alpha\beta}$ random part of boundary metric

 $R^{\mu\nu} - 1/2Rg^{\mu\nu} + \Lambda g^{\mu\nu} = 0$ with $g^b_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$ as boundary condition & $Q_{\alpha\beta}$ random part of boundary metric

CFT in fluctuating background

Evolution of $\overline{\langle T^{\mu\nu}\rangle} = \int DQ_{\alpha\beta}P(Q_{\alpha\beta})\langle T^{\mu\nu}\rangle_{\eta+Q}$ in random background $g_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$

 $R^{\mu\nu} - 1/2Rg^{\mu\nu} + \Lambda g^{\mu\nu} = 0$ with $g^b_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$ as boundary condition & $Q_{\alpha\beta}$ random part of boundary metric

CFT in fluctuating background

Evolution of $\overline{\langle T^{\mu\nu} \rangle} = \int DQ_{\alpha\beta} P(Q_{\alpha\beta}) \langle T^{\mu\nu} \rangle_{\eta+Q}$ in random background $g_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$

relativistic hydrodynamics

 $abla_{\mu}T^{\mu\nu} = 0$ in a curved, stochasticly fluctuating background $\eta_{\alpha\beta} + Q_{\alpha\beta}$, such that $\partial_{\mu}T^{\mu\nu} = f^{\nu}(Q^{\alpha\beta}, T^{\mu\nu})$

 $R^{\mu\nu} - 1/2Rg^{\mu\nu} + \Lambda g^{\mu\nu} = 0$ with $g^b_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$ as boundary condition & $Q_{\alpha\beta}$ random part of boundary metric

CFT in fluctuating background

Evolution of $\overline{\langle T^{\mu\nu} \rangle} = \int DQ_{\alpha\beta} P(Q_{\alpha\beta}) \langle T^{\mu\nu} \rangle_{\eta+Q}$ in random background $g_{\alpha\beta} = \eta_{\alpha\beta} + Q_{\alpha\beta}$

relativistic hydrodynamics

$$abla_{\mu}T^{\mu\nu} = 0$$
 in a curved, stochasticly fluctuating background
 $\eta_{\alpha\beta} + Q_{\alpha\beta}$, such that $\partial_{\mu}T^{\mu\nu} = f^{\nu}(Q^{\alpha\beta}, T^{\mu\nu})$

non-relativistic fluid

Incompressible ($\nabla_i u^i = 0$), driven Navier-Stokes equations $\partial_t u^i = -(\mathbf{u} \cdot \nabla) u^i - \nabla^i p + \nu \nabla^2 u^i - f^i$

The metric of AdS₄ in Eddington-Finkelstein coordinates

$$ds^{2} = \Sigma(t, \vec{x}, \rho)^{2} \hat{g}_{ij}(t, \vec{x}, \rho) dx^{i} dx^{j}$$
$$- 2dt \left(F_{i}(t, \vec{x}, \rho) dx^{i} + A(t, \vec{x}, \rho) dt + \omega_{0}(t, \vec{x}) \frac{d\rho}{\rho^{2}} \right)$$

On the boundary:

$$egin{aligned} g^b_{lphaeta} &= \eta_{lphaeta} - \delta_{lpha t} \delta_{eta t} \, oldsymbol{Q}(t,ec{x}) \ Q(t,ec{x}) &= q(t,ec{x}) + 3 \, (\overline{q(t,ec{x})q(t,ec{x})})^{1/2} \end{aligned}$$

with Ornstein-Uhlenbeck process

$$\dot{q}(t,ec{x}) = -rac{q(t,ec{x})}{ au} + rac{\xi(t,ec{x})}{ au}$$
 $\overline{\xi(t,ec{x})\xi(t',ec{x'})} = D\delta(t-t')\sum_{i,|ec{k}_i|=k_f}\cos\left(ec{k}_i\,(ec{x}-ec{x'})
ight)$

Driven holographic turbulence

Radial positions of the horizon for one point in time and one sample:

- boundary perturbations imprinted on horizon
- Self-similar horizon with fluctuations dominated by driving scale

From

$$T^{\mu\nu} u_{\mu} = \epsilon u^{\nu}$$

$$T^{\mu\nu} \approx \epsilon (g^{b})^{\mu\nu} + (\epsilon + p)u^{\mu}u^{\nu} + \dots$$

we determine the energy power spectrum $E(k) \sim k \langle u^i(k) \overline{u^i}(k) \rangle$.

Numerically testing the 'geometrization' of $\langle e_r^n \rangle$

$$\langle e_r \rangle = \left\langle \frac{1}{Vol(B(r))} \int_{B(r)} d^{d-1} x' e(x') \right\rangle$$

$$\langle e_r^h \rangle = \left\langle \frac{1}{Vol(\tilde{B}(r))} \int_{\tilde{B}(r)} d^{d-1} x' \Theta_{\nu}^{\mu} \Theta_{\mu}^{\nu} \right\rangle$$

- Good match between $\langle e_r
 angle$ and $\langle e_r^h
 angle$
- (*e_r*) is constant in inertial range (indicated by red line), as expected for turbulence in 2 spatial dimensions

Summary & Outlook

Summary

- Driven, non-relativistic, turbulent flow ↔ Stochastic gravity with slowly varying, low amplitude boundary fluctuations
- Size, autocorrelation time and driving frequency of the random boundary metric are fixed by scaling relations.
- Anomalous scaling exponents are encoded in higher moments of the horizon extrinsic curvature squared averaged over geodesic balls on the horizon

Outlook

- Numerical holographic turbulence in higher dimensions
- Study relation to entanglement entropy
- Trailing strings in 'turbulent geometries'
- Study super-sonic turbulence/relativistic turbulence

Thank You

Backup slides

$$\nabla_{\mu} T^{\mu\nu} = 0 \quad \text{with} \\ T^{\mu\nu} = p g^{\mu\nu} + (\epsilon + p) u^{\mu} u^{\nu} + \mathcal{O}(\partial)$$

$$\nabla_{\mu} T^{\mu\nu} = 0 \quad \text{with} \\ T^{\mu\nu} = p g^{\mu\nu} + (\epsilon + p) u^{\mu} u^{\nu} + \mathcal{O}(\partial)$$

setting $p = p_0 T^3$ and $a^{\sigma} = u^{\lambda} \partial_{\lambda} u^{\sigma}$:

$$\nabla_{\mu}u^{\mu} + 2u^{\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2})$$
$$a^{\sigma} + P^{\sigma\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2})$$

for $u^i \ll c$:

$$abla_{\mu\nu} I^{\mu\nu} = 0 \quad \text{with}$$
 $T^{\mu\nu} = p g^{\mu\nu} + (\epsilon + p) u^{\mu} u^{\nu} + \mathcal{O}(\partial)$

setting $p = p_0 T^3$ and $a^{\sigma} = u^{\lambda} \partial_{\lambda} u^{\sigma}$:

$$\nabla_{\mu}u^{\mu} + 2u^{\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2})$$
$$a^{\sigma} + P^{\sigma\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2})$$

$$\nabla_i u^i = 0$$

$$\partial_t u^i + (\mathbf{u} \cdot \nabla) u^i = -\nabla^i p + \nu \nabla^2 u^i$$

for $u^i \ll c$:

10 1

$$\nabla_{\mu} T^{\mu\nu} = 0 \quad \text{with} \\ T^{\mu\nu} = p g^{\mu\nu} + (\epsilon + p) u^{\mu} u^{\nu} + \mathcal{O}(\partial)$$

setting $p = p_0 T^3$ and $a^{\sigma} = u^{\lambda} \partial_{\lambda} u^{\sigma}$:

If
$$u' = \epsilon$$

 $\partial_i \phi / \phi = \epsilon T$
 $\partial_t \phi / \partial_i \phi = \epsilon$, then

$$\nabla_{\mu}u^{\mu} + 2u^{\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2}) \qquad \nabla_{i}u^{i} = \mathcal{O}(\epsilon^{4})$$
$$a^{\sigma} + P^{\sigma\mu}\nabla_{\mu}\ln T = \mathcal{O}(\partial^{2}) \qquad \partial_{t}u^{i} + (\mathbf{u}\cdot\nabla)u^{i} = -\nabla^{i}p + \nu\nabla^{2}u^{i} + \mathcal{O}(\epsilon^{4})$$

relativistic hydro in curved space

Solve $abla_{\mu}T^{\mu\nu} = 0$ in a curved, stochasticly fluctuating background

$$g_{\mu\nu} = diag[g(x^{\mu}), 1, 1],$$

with

$$g = -(1 + 2\Phi)$$

such that

$$\partial_{\mu}T^{\mu\nu} = D^{\nu}(\Phi, \partial\Phi, T^{\alpha\beta})$$

relativistic hydro in curved space

Solve $abla_{\mu}T^{\mu\nu} = 0$ in a curved, stochasticly fluctuating background

$$g_{\mu\nu} = diag[g(x^{\mu}), 1, 1],$$

with

$$g = -(1 + 2\Phi)$$

such that

$$\partial_{\mu}T^{\mu\nu} = D^{\nu}(\Phi, \partial\Phi, T^{\alpha\beta})$$

non-relativistic, driven fluid

Setting $\Phi\sim\epsilon^2,$ leads to

$$egin{aligned} \Gamma^0_{00} &\sim \epsilon^4 \quad \Gamma^i_{00} &\sim \partial^i \Phi + \mathcal{O}(\epsilon^4) \ \Gamma^0_{0i} &\sim -\partial_i \Phi + \mathcal{O}(\epsilon^4) \end{aligned}$$

with $u^i \sim \epsilon$, $\partial_i \sim \epsilon$, $\partial_t \sim \epsilon^2$ and yields to leading order

$$\nabla_{i}u^{i} = 0$$

$$\partial_{t}u^{i} = -(\mathbf{u} \cdot \nabla)u^{i} - \nabla^{i}p$$

$$+ \nu \nabla^{2}u^{i} - \partial^{i}\Phi$$

Consider the ordinary stochastic differential equation,

$$\frac{\partial}{\partial t}X(t)=g(X(t))+h(X(t))\xi(t)\,,$$

where $\xi(t)$ is a random variable. Let us write

$$X(t) = X(t_0) + \int_{t_0}^t g(X(t'))dt' + \int_{t_0}^t h(X(t'))\xi(t')dt'.$$

In Stratonovich prescription

$$\int_{t_0}^t h(X(t'))\xi(t')dt' = \lim_{\Delta t \to 0} \sum_{n=0}^{N-1} h\left(\frac{X(t_{n+1}) + X(t_n)}{2}\right) \int_{t_0 + n\Delta t}^{t_0 + (n+1)\Delta t} \xi(t')dt'.$$

More results

The horizon distribution and horizon powerspectrum:

and the second moments of $e_r \& e_r^h$:

In Eddington-Finkelstein coordinates the metric of AdS₄

$$ds^{2} = \Sigma(t, \vec{x}, \rho)^{2} \hat{g}_{ij}(t, \vec{x}, \rho) dx^{i} dx^{j}$$
$$- 2dt \left(F_{i}(t, \vec{x}, \rho) dx^{i} + A(t, \vec{x}, \rho) dt + \omega_{0}(t, \vec{x}) \frac{d\rho}{\rho^{2}} \right)$$

initially fulfills

$$A|_{t=0} = 1/2(1/\rho^2 - \rho)$$

$$\Sigma \Big|_{t=0} = 1/\rho$$

$$F_i \Big|_{t=0} = 0$$

$$\hat{g}_{ij}|_{t=0} = \delta_{ij}$$

$$\omega_0|_{t=0} = 1.$$

In Eddington-Finkelstein coordinates the metric of AdS₄

$$ds^{2} = \Sigma(t, \vec{x}, \rho)^{2} \hat{g}_{ij}(t, \vec{x}, \rho) dx^{i} dx^{j}$$
$$- 2dt \left(F_{i}(t, \vec{x}, \rho) dx^{i} + A(t, \vec{x}, \rho) dt + \omega_{0}(t, \vec{x}) \frac{d\rho}{\rho^{2}} \right)$$

initially fulfills

$$A|_{t=0} = 1/2(1/\rho^{2} - \rho)$$

$$\Sigma \Big|_{t=0} = 1/\rho$$

$$F_{i} \Big|_{t=0} = 0$$

$$\hat{g}_{ij}|_{t=0} = \delta_{ij}$$

$$\omega_{0}|_{t=0} = 1.$$

corresponding to the thermal expectation value

$$\langle T^{\mu\nu} \rangle = \mathrm{Tr} \left(\frac{e^{-\beta H}}{\mathrm{Tr}(e^{-\beta H})} T^{\mu\nu} \right)$$

with temperature $T = \pi \rho_h$.

In Eddington-Finkelstein coordinates the metric of AdS4

(

$$ds^{2} = \Sigma(t, \vec{x}, \rho)^{2} \hat{g}_{ij}(t, \vec{x}, \rho) dx^{i} dx^{j}$$
$$- 2dt \left(F_{i}(t, \vec{x}, \rho) dx^{i} + A(t, \vec{x}, \rho) dt + \omega_{0}(t, \vec{x}) \frac{d\rho}{\rho^{2}} \right)$$

has near boundary expansion

$$A = \frac{Q}{2\rho^2} - \frac{\tilde{R}Q^2}{4} + \mathcal{O}(\rho)$$
$$\Sigma = \frac{1}{\rho} + \mathcal{O}(\rho^5)$$
$$F_i = \frac{\partial_i \omega_0}{\rho} + \mathcal{O}(\rho)$$
$$\hat{g}_{ij} = \delta_{ij} + \mathcal{O}(\rho^3)$$
$$\omega_0 = \sqrt{Q}.$$

$$g^{b}_{\alpha\beta} = \eta_{\alpha\beta} - \delta_{\alpha t} \delta_{\beta t} \frac{Q(t, \vec{x})}{Q(t, \vec{x})}$$
$$Q(t, \vec{x}) = q(t, \vec{x}) + 3 \left(\overline{q(t, \vec{x})}q(t, \vec{x})\right)^{1/2}$$

with Ornstein-Uhlenbeck process

$$\dot{q}(t,\vec{x}) = -\frac{q(t,\vec{x})}{\tau} + \frac{\xi(t,\vec{x})}{\tau}$$
$$\frac{\dot{\xi}(t,\vec{x})\xi(t',\vec{x}')}{\xi(t,\vec{x})\xi(t',\vec{x}')} = D\delta(t-t')\sum_{i,|\vec{k}_i|=k_f} \cos\left(\vec{k}_i \left(\vec{x}-\vec{x}'\right)\right)$$