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Fluid Dynamics and Turbulence



Turbulence as an ubiquitous phenomenon

Understanding turbulent flow is crucial in various fields and research areas

Yet, despite its relevance, turbulence is still not fully understood.

Aim: Geometrize the statistical properties of fluid flow and

turbulence through the fluid/gravity duality.
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Fluid dynamics and turbulent flow

(incompressible) Navier-Stokes equations:

∇iu
i = 0

∂tu
i +
(
u · ∇

)
ui = −∇ip + ν∇2ui

+ f i

• The driving force f i is fluctuating randomly.

• The fluid velocity ui and the pressure p are random variables.

• Navier-Stokes equations are stochastic differential equations which

one solves for the probability distributions of ui , p.

The Fourier transform of f = |f|
peaks at |k| = kf , associated with a

driving scale 2π/kf .
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Fluid dynamics and turbulent flow

For sufficiently large Reynolds number

R =
〈|u|〉L
ν

a solution to Navier-Stokes equations exhibits an irregular and chaotic

behavior.

R ∼ 100 − 103 103 . R

Kolmogrov (1941): For 1� R and

in the inertial range 2π/kf � r � L

statistical properties of the fluid

velocity show an universal behavior.

δS = (u(x + r)− u(x)) · r̂〈
(δS)n

〉
∼ rζn

ζn = n/3
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The energy power spectrum

Westernacher-Schneider (2017)

〈
(δS)2

〉
∼ r2/3

E (k) ∼ ∂k
∫
k′<k

ddk ′ 〈ui (k ′)ūi (k ′)〉 ∼ k−5/3∫
E (k)dk =

∫
ddx

ρ

2
ui (x)ui (x)

For d = 2:

inverse cascading energy

& direct cascading enstrophy

→ Good agreement between theory and experiment for lower moments.
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Anomalous exponents

In the inertial range:

δS = (u(x + r)− u(x)) · r̂〈
(δS)n

〉
= 〈en/3

r 〉rn/3〈
(δS)n

〉
∼ rζn = rn/3+∆(n)

where 〈emr 〉 is the m-th

moment of the averaged

energy dissipation:

〈emr 〉 =
〈(∫

Bd (r)
ddx ′e(x ′)

Vol(Bd(r))

)m〉
e(x) =

ν

2

(
∂iu

j + ∂ju
i
)2

Chen et. al. (2005)

(One of) the unsolved problem(s) of turbulence is to get an

analytic handle on ∆(n).
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Turbulence in Holography



Holographic turbulence

Gravity in d + 1 dimensions ↔ Fluid dynamics in d dimensions

[Bhattacharyya et. al. (2007)]

• fluid in equilibrium ↔ black hole with smooth horizon

• turbulent fluid ↔ self-similar horizon structure [Adams et. al. (2013)]

Decaying holographic turbulence

• Irregular, chaotic fluid flow

develops from unstable initial

conditions

• Scaling in inertial range is short

and transient

• −5/3-power law ↔ fractal dimension of the horizon ≈ d + 2/3

[Westernacher-Schneider (2017)]

•
〈
(δS)n>2

〉
↔ some geometric/horizon related objects (?)

6



Geometrizing the local energy dissipation

In the inertial range:

δS = (u(x + r)− u(x)) · r̂〈
(δS)n

〉
= 〈en/3

r 〉rn/3〈
(δS)n

〉
∼ rn/3+∆(n)

The horizon extrinsic curvature

Θµν = ΠαµΠβν∇αnβ

can be related to the energy

dissipation

e(x) =
ν

2

(
∂iu

j + ∂ju
i
)2

Θi
jΘ

j
i ∼ e(x) +O(∂2) +O(1/c3)

[Eling, Oz (2009)]

In infalling coordinates with

nµdx
µ = dρ one can show that

Θµ
νΘν

µ = Θi
jΘ

j
i , so that

〈enr 〉 =
〈( 1

Vol(B(r))

∫
B(r)

dd−1x ′e(x ′)
)n〉

matches

〈(ehr )n〉 =
〈( 1

Vol(B̃(r))

∫
B̃(r)

dd−1x ′Θµ
νΘν

µ

)n〉
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From stochastic gravity to driven, incompressible Navier-Stokes equations

stochastic gravity in AdSd+1

Rµν − 1/2Rgµν + Λgµν = 0 with gb
αβ = ηαβ + Qαβ as boundary

condition & Qαβ random part of boundary metric

CFT in fluctuating background

Evolution of 〈Tµν〉 =
∫
DQαβP(Qαβ)〈Tµν〉η+Q in random background

gαβ = ηαβ + Qαβ

relativistic hydrodynamics

∇µTµν = 0 in a curved, stochasticly fluctuating background

ηαβ + Qαβ , such that ∂µT
µν = f ν(Qαβ ,Tµν)

non-relativistic fluid

Incompressible (∇iu
i = 0), driven Navier-Stokes equations

∂tu
i = −

(
u · ∇

)
ui −∇ip + ν∇2ui − f i
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Stochastic gravity and driven turbulence

The metric of AdS4 in Eddington-Finkelstein coordinates

ds2 = Σ(t, ~x , ρ)2ĝij(t, ~x , ρ)dx idx j

− 2dt

(
Fi (t, ~x , ρ)dx i + A(t, ~x , ρ)dt + ω0(t, ~x)

dρ

ρ2

)

On the boundary:

gb
αβ = ηαβ − δαtδβt Q(t, ~x)

Q(t, ~x) = q(t, ~x) + 3 (q(t, ~x)q(t, ~x))1/2

with Ornstein-Uhlenbeck process

q̇(t, ~x) = −q(t, ~x)

τ
+
ξ(t, ~x)

τ

ξ(t, ~x)ξ(t ′, ~x ′) = Dδ(t − t ′)
∑

i,|~ki |=kf

cos
(
~ki (~x − ~x ′)

)
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Driven holographic turbulence

1 2 5 10 20

k L

2π

5.× 10-5
1.× 10-4

5.× 10-4
0.001

0.005

0.010

E (k) L

2π

k
-

5

3 From

Tµν uµ = ε uν

Tµν ≈ ε (gb)µν + (ε+ p)uµuν + . . .

we determine the energy power

spectrum E (k) ∼ k 〈ui (k)ūi (k)〉.

Radial positions of the horizon for

one point in time and one sample:

• boundary perturbations

imprinted on horizon

• Self-similar horizon with

fluctuations dominated by

driving scale
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x
1

L

x
2

L

0.94

0.96

0.98

1.00

1.02
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Numerically testing the ’geometrization’ of 〈enr 〉

〈er 〉 =
〈 1

Vol(B(r))

∫
B(r)

dd−1x ′e(x ′)
〉

〈ehr 〉 =
〈 1

Vol(B̃(r))

∫
B̃(r)

dd−1x ′Θµ
νΘν

µ

〉

<ϵr>/(2ν ρh
2) <ϵr

h>/(2ν ρh
2)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1.× 10
-6

5.× 10
-6

1.× 10
-5

5.× 10
-5

1.× 10
-4

5.× 10
-4

r/L

• Good match between

〈er 〉 and 〈ehr 〉
• 〈er 〉 is constant in

inertial range (indicated

by red line), as expected

for turbulence in 2

spatial dimensions
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Summary & Outlook

Summary

• Driven, non-relativistic, turbulent flow ↔ Stochastic gravity with

slowly varying, low amplitude boundary fluctuations

• Size, autocorrelation time and driving frequency of the random

boundary metric are fixed by scaling relations.

• Anomalous scaling exponents are encoded in higher moments of the

horizon extrinsic curvature squared averaged over geodesic balls on

the horizon

Outlook

• Numerical holographic turbulence in higher dimensions

• Study relation to entanglement entropy

• Trailing strings in ’turbulent geometries’

• Study super-sonic turbulence/relativistic turbulence
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Thank You
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Backup slides
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Relativistic Hydrodynamics and the non-relativistic limit

Invariance under

space-time-translations implies

∇µTµν = 0 with

Tµν = p gµν + (ε+ p)uµuν +O(∂)

setting p = p0T
3 and aσ = uλ∂λu

σ:

∇µuµ + 2uµ∇µ lnT = O(∂2)

aσ + Pσµ∇µ lnT = O(∂2)

for ui � c :

If ui = ε

∂iφ = εT φ

∂tφ/∂iφ = ε, then

∇iu
i = 0

∂tu
i +
(
u · ∇

)
ui = −∇ip + ν∇2ui
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u · ∇
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ui = −∇ip + ν∇2ui +O(ε4)
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A stochastic background metric as driving force

relativistic hydro in curved space

Solve ∇µTµν = 0 in a curved,

stochasticly fluctuating

background

gµν = diag [g(xµ), 1, 1],

with

g = −(1 + 2Φ)

such that

∂µT
µν = Dν(Φ, ∂Φ,Tαβ)

non-relativistic, driven fluid

Setting Φ ∼ ε2, leads to

Γ0
00 ∼ ε4 Γi

00 ∼ ∂ iΦ +O(ε4)

Γ0
0i ∼ −∂iΦ +O(ε4)

with ui ∼ ε, ∂i ∼ ε, ∂t ∼ ε2 and

yields to leading order

∇iu
i =0

∂tu
i =−

(
u · ∇

)
ui −∇ip

+ ν∇2ui − ∂ iΦ
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Stochastic integration

Consider the ordinary stochastic differential equation,

∂

∂t
X (t) = g(X (t)) + h(X (t))ξ(t) ,

where ξ(t) is a random variable. Let us write

X (t) = X (t0) +

∫ t

t0

g(X (t ′))dt ′ +

∫ t

t0

h(X (t ′))ξ(t ′)dt ′ .

In Stratonovich prescription∫ t

t0

h(X (t ′))ξ(t ′)dt ′ = lim
∆t→0

N−1∑
n=0

h

(
X (tn+1) + X (tn)

2

)∫ t0+(n+1)∆t

t0+n∆t

ξ(t ′)dt ′ .
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More results

The horizon distribution and horizon powerspectrum:

-0.0003-0.0002-0.0001 0.0000 0.0001 0.0002 0.0003
0

2000

4000

6000

8000

10000

12000

(A-A0)/L
2

P
h

1 2 5 10 20

k L

2π

5.× 10
-5

1.× 10
-4

5.× 10
-4

0.001

0.005

0.010

H (k) L

2π

and the second moments of er & ehr :

<(ϵr )
2>/(2ν ρh

2)2 <(ϵr
h)2>/(2ν ρh

2)2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

5.× 10
-10

1.× 10
-9

5.× 10
-9

1.× 10
-8

5.× 10
-8

1.× 10
-7

r/L
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Stochastic gravity and driven turbulence

In Eddington-Finkelstein coordinates the metric of AdS4

ds2 = Σ(t, ~x , ρ)2ĝij(t, ~x , ρ)dx idx j

− 2dt

(
Fi (t, ~x , ρ)dx i + A(t, ~x , ρ)dt + ω0(t, ~x)

dρ

ρ2

)
initially fulfills

A|t=0 =1/2(1/ρ2 − ρ)

Σ
∣∣∣
t=0

=1/ρ

Fi

∣∣∣
t=0

=0

ĝij |t=0 =δij

ω0|t=0 =1.

corresponding to the thermal

expectation value

〈Tµν〉 = Tr

(
e−βH

Tr(e−βH)
Tµν

)
with temperature T = π ρh.
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Stochastic gravity and driven turbulence

In Eddington-Finkelstein coordinates the metric of AdS4

ds2 = Σ(t, ~x , ρ)2ĝij(t, ~x , ρ)dx idx j

− 2dt

(
Fi (t, ~x , ρ)dx i + A(t, ~x , ρ)dt + ω0(t, ~x)

dρ

ρ2

)
has near boundary expansion

A =
Q

2ρ2
− R̃Q2

4
+O(ρ)

Σ =
1

ρ
+O(ρ5)

Fi =
∂iω0

ρ
+O(ρ)

ĝij =δij +O(ρ3)

ω0 =
√
Q.

gb
αβ = ηαβ − δαtδβt Q(t, ~x)

Q(t, ~x) = q(t, ~x) + 3 (q(t, ~x)q(t, ~x))1/2

with Ornstein-Uhlenbeck process

q̇(t, ~x) = −q(t, ~x)

τ
+
ξ(t, ~x)

τ

ξ(t, ~x)ξ(t ′, ~x ′) = Dδ(t − t ′)
∑

i,|~ki |=kf

cos
(
~ki (~x − ~x ′)

)
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