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Abstract 
In this paper we deal with the estimation of the stochastic frontier model using panel 
data.  Panel data provide a fruitful setting for analyzing firm efficiency and a rich 
proving ground for the development of useful new techniques.  We discuss three 
classes of models, fixed effects, random parameters, and latent classes, that should 
provide promising platforms for researchers.   
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1.  Introduction 

This paper is concerned with estimation of the stochastic frontier model using panel 

data.  As is abundantly clear from a voluminous literature, panel data provide a fruitful 

setting for analyzing firm efficiency and a rich proving ground for the development of 

useful new techniques.  The subject is particularly interesting at this time for several 

reasons: 

 

• Large panel data sets are becoming increasingly common in the current literature.  

The studies of the U.S. banking industry by Habib and Ljunqvist (2000) and of country   

wide health systems by Evans et al. (2000) that are noted below provide striking 

examples. 

 

• Increases in computing power have made feasible heretofore known but largely 

unused techniques, such as variations on the random parameters model that are 

based on simulation techniques. 

 

• There have been some interesting new developments in the applied 

microeconometrics literature.  Some of these have appeared elsewhere in the received 

empirical work, but there remain large opportunities for extension into the productivity 

and efficiency literature. 

 

Panel data methods have been extended to the stochastic frontier model almost since 

the beginning, with the development of Pitt and Lee’s (1981) random effects model and 

Schmidt and Sickles’s (1984) explorations with the fixed effects estimator.  With some 

small variation, these two models, as they do in other areas, have provided the 

workhorses for the empirical work in frontier analysis.  They do have their limitations, 

however.  As we argue below, certain different treatments of the commonalities in 

panel data allow the researcher more closely to target the extensions at the point of 

interest in the model, that is, the inefficiency term, as opposed to an add on to the 

disturbance. 

 

Several classes of models are suggested below.  All have appeared, at least to some 

degree, in the applied literature, though we do present newly proposed extensions in 

several cases.  In the case of the random parameters model, the technique has 

actually become quite fashionable, and enjoys a flowering in literatures in education, 
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health economics, statistics, transport research, and to some smaller extent in 

econometrics.  But, save for some extremely recent and fairly isolated developments, 

these have not made much of a dent in the frontiers literature. 

 

This paper is divided into the following sections:  In Section 2, the canonical stochastic 

frontier model is detailed, in little detail as the objective is only to define notation.  In 

Section 3, we review the random and fixed effects estimators that have heretofore 

been used in the analysis of firm efficiency.  Sections 4 through 6 discuss three classes 

of models, fixed effects, random parameters, and latent classes, that should provide 

promising platforms for researchers.  Some conclusions are drawn in Section 7. 

 

 

2.  The Stochastic Frontier Model 

The following is familiar in the literature.  We collect the results so as to establish the 

notation to be used later.  The canonical formulation that serves as the departure point 

for later variations is Aigner, Lovell and Schmidt's (1977) model, 

    y   =  ββ′′x  +  v  - d u 

       =  ββ′′x  +  ε,           (1) 

where  u   = |U| and U ~  N[0,σu
2 ]    

  v   ~  N[0,σv
2 ] 

  d =  +1 (-1) for a stochastic production (cost) frontier. 

For convenience in what follows, we will maintain the production frontier form. Any result 

for the production model becomes a counterpart for the cost model by one or more 

appropriate changes of sign.  {We also focus on the ‘half normal’ model for the 

inefficiency term.  Some of what we do here could be extended to the exponential model 

or the normal-gamma model (Greene, 2000).  The mechanics of estimation are of 

secondary interest in most of this discussion.  We note at this point, estimation of the 

model is usually by maximum likelihood (see Kumbhakar and Lovell, 2000) though a 

small minority of applications have employed Bayesian techniques (e.g., Tsionas, 2000) 

and at least one (Greene, 2000) is based on maximum simulated likelihood methods.  

We will discuss estimation at a few points below, but most of the discussion to follow is 

based on model formulation. 
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An important extension of the model is the relaxation of the assumption that the mean of  

the variable underlying the ‘half-normal’ variable, u is zero (see Stevenson, 1980).  For 

the present, we allow this to be an unrestricted constant - we will generalize this later - so 

that 

 U~ N[µ,σu
2]   (2) 

This seemingly small variation turns out to be a large extension of the model in that it 

provides a platform on which significant individual variation may be placed, directly in an 

appropriate part of the specification.   

 

Aside from estimation of the interesting parameters in the model, one of the primary 

elements of the analysis in this framework is the firm specific inefficiency estimates.  The 

output measure will generally be in logarithmic terms, so that u will be a measure of the 

percentage by which output falls short of the theoretical optimum given by the stochastic 

frontier.  As widely documented, direct estimates of u are unidentified in this model.  The 

mainstay of estimation of this quantity is the Jondrow et al. measure, 

 E[u|ε]   =  σλ/(1 + λ2) [φ(µ*) / {1-Φ(µ*)}  -  µ*]        (3) 

where  

       µ*   =  ελ/σ  -  µ/(σλ). 

       λ =  σu / σv 

       σ =  2 2
v uσ + σ  

Standard practice involves analysis of individual or firm specific estimates computed 

using the Jondrow et al. measure of inefficiency. 

 

 

3.  Panel Data Techniques   

The received literature contains a fair amount of analysis specifically targeted at the 

features of panel data.  (We make a distinction between panel data models such as 

random and fixed effects, which are of interest here, and those which simply apply the 

model of Section 2 to data assembled for multiple units at multiple times.  Thus, the 

model 

 yit   =  ββ′′xit  +  vit  - uit,      i = 1,...,N,   t = 1,..., Ti,       (4) 
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where ‘i’ indexes firms or individuals of which there are N, and ‘t’ indexes time periods, 

with no further modification is essentially (at least for our purposes) cross sectional in 

nature.  The difference will be obvious shortly.)  This paper will discuss several 

extensions of the panel data treatment of this model.  Some of those techniques have 

already appeared in the stochastic frontiers literature in a more basic form than 

interests us here, so it is useful to examine these received applications.  (This note is 

not a survey paper.  Readers are asked to forgive the author if their particular 

application is not mentioned - the intent here is only to collect the specific model 

formats in one place). 

 

3.1.  Single Equation Methods 

This strand of the literature parallels the development of the linear regression model.  

The two standard approaches are the fixed and random effects models.  Surprisingly, 

the fixed effects model has simply layered a new interpretation on top of the linear 

regression model - we will have more to say on this subject below.  The random effects 

stochastic frontier model is one of those few cases in econometrics in which a closed 

form for the likelihood function that can be computed without quadrature has been 

derived (see Greene, 2001a). 

 

The baseline study for fixed effects in this context is Schmidt and Sickles (1984) 

followed by some extensions suggested in Cornwell and Schmidt (1996).  The original 

model is the dummy variable model which has been the standard in this literature for 

decades, 

 yit   =  ββ′′xit  +  vit  - δI         (5) 

This model can be fit by least squares, with a subsequent adjustment of the constant 

terms to account for the underlying model structure.  The difficulty here is that the firm 

specific term is supposed to be positive.  The authors suggest analyzing di* = maxjdj - di 

to remedy that shortcoming.  (We return to that consideration shortly.)  Cornwell and 

Schmidt’s extended model is of the form 

 yit   =  ββ′′xit  +  vit  - ψ(θθ,t)δI            (6) 

where ψ(θθ,t) is a nonstochastic function of time and some ancillary parameters θθ, and δi 

is a nonnegative firm specific parameter.  The firm specific effect in this model is 

 αit =  ψ(θθ,t)δI         (7) 



 6

[Kumbhakar (1990) proposed some specific functional forms.]  The time varying term, 

ψ(θθ,t), must be positive.  The benchmarking function of this formulation is imposed by 

shifting the firm specific terms so that all are positive; 

 uit =  ψ(θθ,t)[maxj (δj) - δi]         (8) 

Several variations on this theme are suggested.  The crucial feature is that this is a linear 

regression model.  In principle, it can be estimated by ordinary least squares.  (We gloss 

over the incidental parameters problems and the practical difficulties of the large number 

of parameters at this point.)  The authors do mention other estimation approaches, 

including a GMM estimator.  The most familiar case is obtained by reducing ψ(θθ,t) to 1.0, 

which produces the textbook linear fixed effects, dummy variable model. 

 

Pitt and Lee (1981) pioneered the random effects approach.  Once again, the result 

follows the linear regression model; 

  yit   =  ββ′′xit  +  vit  - ui         (9) 

The joint density of the Ti observations for firm i is complicated (see Kumbhakar and 

Lovell, 2000 for details) but is nonetheless quite tractable.  Closed forms exist for both 

the half normal and exponential models, and expressions for the firm specific 

inefficiency estimates, have been obtained as well.  Note that the inefficiency estimate 

is time invariant, as we are estimating 

 µi*  =  E[ui | εi1,...,εi,Ti]       (10) 

 

 

3.2.  Multiple Equation Methods 

The preceding describes methods for estimating technical (or overall, cost) inefficiency.  

A number of authors have considered estimation of allocative inefficiency as well, a 

pursuit which makes estimation of the demand system necessary.  Our focus in this 

study is estimation of the stochastic frontier function, so we acknowledge this strand of 

literature only in passing.  The so called ‘Greene problem’ of finding a demand system 

which is strictly consistent with the production and cost functions and which preserves 

the relationships among the inefficiency terms remains, to our knowledge, unsolved, so 

this literature is still open.  A promising move in that direction is the ‘nonminimum’ cost 

function proposed by Atkinson and Cornwell (1993, 1994).  
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3.3.  Overview 

The received single equation models essentially extend the linear regression model in 

natural directions.  As such, they carry the same shortcomings.  In particular: 

 

•   The fixed effects model suffers from the incidental parameters problem.  The 

estimators of the firm specific parameters are inconsistent - not, we note, because they 

estimate the wrong parameters, but because they are, in principle, each estimated with 

Ti observations.  How large a problem this, or the attendant ‘small sample bias’ is likely 

to be is a matter of conjecture.  However, the received wisdom on that subject seems 

excessively pessimistic (see Greene, 2001b; Heckman, 1981; and Heckman and 

MaCurdy, 1980). 

 

•   The practical difficulty of the fixed effects model is substantial.  It has a lot of 

parameters.  We will address this issue (the “curse of dimensionality”) directly below. 

 

•  In the context of the stochastic frontier model, there is a peculiar ambiguity about the 

use of the fixed effects model.  The term picks up all firm specific heterogeneity, 

whether it is in the production frontier or in the inefficiency term, and lumps it all into the 

single ‘effect.’  Thus, the received literature on this model suffers from the same defect 

that led to abandonment of the deterministic frontier model (Greene, 1980 for example) 

and has made so many practitioners skeptical of the DEA approach. 

 

•  The random effects approach is a step in the right direction.  But, random effects are 

subject to the criticism that the model is not protected against the possibility that the 

effects might be correlated with included effects.  This consideration is problematic in 

all random effects models, not just the linear regression.  We will argue that the random 

parameters model suggested below offers some remedy from this problem. 

 

We now consider some extensions of these familiar techniques. 
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4.  Fixed Effects Models 

In this discussion, it is assumed that the researcher has come to terms with the 

incidental parameters problem (and the curse of dimensionality) and remains interested 

in fixed effects.  It has always struck us as curious why practitioners who employed the 

fixed effects model did not routinely just create and use the dummy variables and 

include them in the model.  Most applications in the stochastic frontiers literature 

involve relatively few, or at least a moderate number of, firms, and a model with one 

dummy variable for each firm would usually have been well within the limits of modern 

software and hardware of the last decade.  The algebra of the fixed effects model, and 

the (K+N)×(K+N) matrices involved seem to have built a wall around the simple 

practical application of this useful model.  This sanguine view does have its limits, 

however.  Consider Habib and Ljungqvist (2000) whose stochastic frontier model for 

the banking industry involves well over 1,000 firms.  Models with this many dummy 

variables are on the border of feasibility, and the finance literature is routinely 

producing panels even larger than that.  Nonetheless, we will be interested in precisely 

this approach, as we discuss below. 

  

Habib and Ljunqvist (2000) raise another important point, which we alluded to earlier.  

The Schmidt et al. estimator puts the fixed effect in the wrong place (at least as they 

see it).  To see this consider an alternative specification of the model, 

 yit   =  ββ′′xit  +  vit  - ui         (11) 

where ui  = |Ui |  and U ~  N[µi,σu
2 ] 

That is, the mean of the underlying truncated distribution is firm specific.  As stated, it 

involves only the firm specific dummy variable, but it could involve other firm specific 

variables as well. These need not be time invariant.  One might be interested in a fully 

general form, 

 µit =  αi  +  δδ′′zit.        (12) 

The crucial point is that this is no longer a standard fixed effects model, and it cannot 

be estimated consistently by linear least squares.  Nonetheless, it is estimable - it is, 

after all, just the Stevenson (1980) model that first appeared in the literature over 20 

years ago.  As noted, earlier, one could simply use the dummy variables as is, and 

proceed as has been standard.  However, we are interested in the case in which there 
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might be thousands of firms, so some further consideration is called for.  We approach 

this in general terms, then return to the stochastic frontier model. 

 

Let a ‘single index’ model be formulated as 

 f(yit | xit, zit) =  p(yit, ββ′′xit + αi, zit, θθ)       (13) 

where f(yit | xit, zit) denotes the conditional density of the observed random variable, 

conditioned on the exogenous data, g(yit, ββ′′xit + αi, zit, θθ) denotes the actual functional 

form assumed for this density, yit is the observed random variable, αi is the effect for 

the ith firm, ββ′′xit is the ‘index function, zit denotes an additional set of exogenous 

effects, and θθ denotes a vector of ancillary parameters.  Both of the fixed effects forms 

considered above fit in this class of models - in the second, the underlying mean is the 

index function and the production parameters are included in (zit,θθ).  As stated, this 

model has K+N parameters.  There is no assumption that sufficient statistics exist that 

allow formulation of a conditional density that is free of the fixed effects - they cannot 

be conditioned out of the model.  Nonetheless, many such models can be fit by full 

maximum likelihood even with huge numbers of firms or individuals.  To do so requires 

a result that surprisingly seems to have slipped under the radar of all but a very few 

practitioners.  Details are sketched in Appendix A to this paper and given in greater 

detail in Greene (2001b).  The central result is that estimation of this sort of single 

index model requires computer memory only of order N, not N2 and does not require 

computation of any matrices larger than the dimension of (ββ,θθ).  In practical terms, it is 

not necessary to condition the effects out of the model.  (Once again, the reader is 

cautioned about the incidental parameters problem - Ti is fixed.  This is a separate 

issue.)  We have applied this result to estimation of very large models in dozens of 

frameworks, including sample selection, probit, logit, negative binomial, zero inflated 

Poisson, and, of note here, stochastic frontier models. 

  

This opens the possibility of several variations of the frontier model.  We have 

suggested two forms of the fixed effects model above.  But, any single index 

formulation lends itself to this approach. The base case applies the heterogeneity to the 

production function; 

            yit  = αi + ββ′′xit  +  vit  -  ui,       (14) 

            ui  =  | N[0, σu
2] | 
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This model (as are the others) is fit by maximum likelihood, not least squares.  The 

crucial extension made here is that the stochastic frontier model continues to do the work 

of carrying the inefficiency.  The fixed effect is strictly applied to the production model.  

Thus, though it looks like a small extension of the Schmidt and Sickles model, this is 

really a major revision of it.  However, it remains to extend the heterogeneity to the 

inefficiency in the model.  Our second case starts in that direction by extending the 

preceding fixed effects formulation to Stevenson's model; 

            yit =  αi + ββ′′xit  +  vit  -  uit, 

            ui  =  | N[µi, σu
2] |        (15) 

            µi =  µ (nonzero constant) or δδ′′zi. 

In this form, the firm specific heterogeneity is still retained in the production function part 

of the model.   

  

As noted, it is now straightforward to modify the model to place the individual specific 

index function elsewhere.  A third possibility then is to allow the heterogeneity to enter 

the mean of the inefficiency distributions - this seems the most natural of the three forms.  

In this case, 

            yit =  ββ′′xit  +  vit  -  uit, 

            ui  =  | N[µi σu
2] |        (16) 

            µi =  αi  or  αi  +    δδ′′zi. 

The mean of the inefficiency distribution (possibly) shifts in time, but also has a firm 

specific component.  Finally, the heterogeneity may be shifted to the variance of the 

inefficiency distribution.  In this form, we have 

        yit =  ββ′′xit  +  vit  -  uit, 

        ui =  | N[0, σuit
2] |        (17) 

        σuit
2 =  σu

2 × exp(αi +
 δδ′′zit) 

Note that in order to secure identification, this model must have time varying inefficiency, 

induced by time variation in the variance or αi must equal zero. 

  

We have used this approach to fit stochastic frontier models with thousands of individual 

specific constants.  The technique is surprisingly stable for the first case above.  It 

becomes somewhat less so for the second and third cases, but the fourth, the model with 

variance heterogeneity is, again, extremely promising.  As suggested by Jakubson 
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(1999) the results which enable one to fit this model even with large numbers of groups 

should be extendable to more involved parametric functions of the fixed effect, such as 

one which evolves through time.  (Schmidt and Sickles did experiment with one of the 

form αit = τi0 + τi1t + τi2t
2)  In principle this is feasible, though we have not pursued the 

extension.  In addition, it should be possible to allow more than one set of fixed effects in 

the model - for example, a model with effects both in the production function and in the 

underlying mean is identified, if rather complicated.  This possibility is left for future 

research.)  It should be noted, as it is relevant to the other models we consider, the 

distinction between µi and σui as a mean and a variance of ui is not ‘clean.’  Both the 

expected value and the variance of |Ui| are functions of both µi and σui.  For that reason, it 

appears from work done thus far that models which seek to place heterogeneity in both 

parameters may be overspecified. 

 

 

5.  Random Parameters Models 

Tsionas (2000) has suggested the following random parameters model 

       yit   =  α + ββ i′′xit  +  vit  - uit         (18) 

where       uit   =  |Ui | and Ui  ~  N[0,σu
2 ], 

       ββ i =  ββ  +  wi,  

       wi ~  N[0, ΣΣ]. 

This model is a natural extension to the Hildreth and Houck (1968) and Swamy (1970) 

random coefficients model.  By assembling the reduced form, we can see that it is 

actually a model of heteroscedasticity 

 yit   =  α  +  ββ′′xi   +  wi′′xi   +  vi  - uit          (19) 

whereby 

 yit  =  α  +  ββ′′xi   +  eit  - uit          (20) 

 Var[eit]  =  σ2  +  xi′′ΣΣ xi.        (21) 

This returns us to the stochastic frontier model formulated at the outset, albeit one with 

considerably more complicated structure.  There are numerous ways to estimate such 

a model, including the mixed GLS approach (i.e., mixture of groupwise OLS estimates) 

suggested by Hildreth and Houck.  More contemporary approaches have used formal 

maximum likelihood techniques, hierarchical Bayesian (MCMC) techniques, and 
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simulation methods.  (Tsionas used a Bayesian approach.  We note an issue at this 

point.  In spite of promotion that sometimes seems to suggest the contrary, hierarchical 

Bayesian estimation is not a model; it is an estimation method that has been used 

constructively to fit models, including this one, that are often quite feasible with 

classical techniques.) 

  

As a panel data treatment, this random parameters model has much to recommend it, 

but it retains two shortcoming from its simpler predecessors: 

 

•   This model still carries the possibility that the random effect might be correlated with 

included effects. 

 

•  The heterogeneity in this model is attached to the production function parameters, 

whereas the interesting interfirm variation is in the inefficiency parameters. 

 

We propose the following random parameters formulation of the stochastic frontier 

model:  The reduced form is 

        yit   =  ββ i′′xit  +  vit  -  uit, 

        vit  =  N[0, σv
2]  

        uit  =  | N[µit σuit
2] |        (22) 

        µit =  δδi′′zit. 

        σuit
2 =  σu

2 × exp(γγi′′wit) 

In this formulation, all parameters in the model except the generic variances, σu
2 and σv

2, 

may be random.  (We do note, it does not appear possible to fit a model in which all three 

components are simultaneously modeled as random; two at a time appears 

straightforward.)  Thus, in this form, firm specific heterogeneity in the model may appear 

at several points, and may be observed in the mean and variance terms, or unobserved 

as carried in the random parameters.  This is an extremely general, flexible model [in that 

connection, see comments by McFadden and Train (2001) and Revelt and Train (1999)]. 

  

We now fill in the underlying, hierarchical (or ‘multi-level) structure of the random 

parameters model.  Let ααi denote the full collection of parameters in the model, including 

the overall variance terms, σu
2 and  σv

2.   This is [ββ i, δδi, γγi, σu
2, σv

2].  We have the following 

partitioning of ααi  
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 ψψ1 =   the nonrandom part of ααi - we allow some parameters to be 

nonrandom, including σu
2 and  σv

2, 

 ψψ i2 =   ψψ2  +  ∆∆qi  +  ΓΓhi - these are the random parameters (∆∆ may be zero) 

 hi =   the underlying random variables in the random parameters, mean 

zero, variance equal to the identity matrix, 

 ΓΓ =   diagonal matrix of standard deviations for the random parameters.  ΓΓ 

may be allowed to be a lower triangular matrix to allow random parameters to be 

correlated as well. 

 

Note that ψψ i2 includes the term ∆∆qi where qi is a set of firm specific, time invariant effects 

such as industry, location, management structure, etc.  The appearance of this term, 

perhaps with the firm means of the other variables in the model, should help to remove 

the correlation between hi and the included variables (see Zabel, 1992, for discussion of 

this issue). 

  

This model is estimated using the technique of maximum simulated likelihood.  This 

technique has been used to great advantage in fitting multinomial logit models (see Train 

and McFadden 2001) and at scattered points in the literature to fit Poisson and binomial 

logit models.  We are not aware of previous applications to the frontier model save for 

Greene (1999) where it is used in estimation of the normal-gamma stochastic frontier 

model.  Some details are sketched in Appendix B.  Extensive documentation on 

estimation of this model may be found in Greene (2001a) and Econometric Software 

(2001).  [Version 8.0 of LIMDEP uses this model formulation for fitting about 25 different 

types of models.]    

  

One of the useful features of this model is its ability to produce a ‘posterior’ estimate of 

the firm specific parameters.  The prior mean of the parameters is 

 E[full parameter vector]  =  1

2 q

 
 + 

ψψ
ψ ∆ψ ∆

  =  Prior E[ααi | qi]      (23) 

where ααi = [ββ i, δδi, γγi, σu
2, σv

2]. 

But, there is more information in the data.  Conditioned on the observed dependent 

variable, we can construct a posterior estimate of the parameters.   For convenience, let 

ΛΛ denote [ψψ1, ψψ2, ∆∆].  Also, collect all Ti periods of data for firm i in a data matrix Xi.  The 
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density for observation on firm i at time t is  Lit (ααi , Xi |ΛΛ).  The full contribution of firm i to 

the likelihood function is 

 Li (ααi, , Xi|ΛΛ) =  
1

( , | )XiT

it i it
L

=∏ α Λα Λ       (24) 

This is the joint density of the observations on yit for firm i.  The distribution of the 

parameters in the population is g(ααi | ΛΛ, qi).  The conditional, posterior joint density for 

firm i is 

 Pi =  Eααi [Li (ααi, Xi)] =  
iα∫ Li (ααi, Xi) g(ααi | ΛΛ, qi) dααI       (25) 

The conditional distribution for the model parameters is 

    f(ααi | all data)  =  
( , | ) ( | , ) ( , | ) ( | , )

( , | ) ( | , )

X q X q

X q
i

i i i i i i i i i i

i i i i i i i

L g L g
P L g d

α

=
α∫

α Λ α Λ α Λ α Λα Λ α Λ α Λ α Λ
α Λ α Λα Λ α Λ

    (26) 

The posterior mean is 

     E(ααi | all data) 
iα∫ ααi  f(ααi | all data) dααi 

( , | ) ( | , )

( , | ) ( | , )

  X q

X q
i

i

i i i i i i i

i i i i i i

L g d

L g d
α

α

=
∫
∫

α α Λ α Λ αα α Λ α Λ α

α Λ α Λ αα Λ α Λ α
.    (27) 

The simulation technique for computing this quantity is described in Appendix B.  The 

firm specific estimates are then the input to the Jondrow inefficiency estimates. 

 

 

6.  Latent Class Models 

A large scale study recently undertaken by the World Health Organization (Evans et al., 

2000) compared efficiency in the provision of health care services by a large number of 

countries over several years.  The panel data based stochastic frontier approach taken 

is a natural one.  However, a major consideration underlies these data.  In some 

countries, particularly in subSaharan Africa, a major focus of the health care system is 

a tide of AIDS cases.  In others, such as North America or northern Europe, attention is 

more directed to smaller scale disease problems and quality of life (e.g., cancer care) 

issues.  Thus, there are subtle differences that underlie the data, no matter how 

constructed.  One approach to estimation would be simply to treat countries separately, 

but it is uncertain exactly how countries should be divided into groups.  Regionally is 

only a partial solution.  Also, this neglects the advantages that any commonalities might 

provide.  After all, the technology of health care is transportable across borders.  
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Moreover, there might be insufficient data within each country to fit the model.  

Alternatively, one might use one of the heterogeneity models already suggested.  This 

makes sense, but it is possible that this overstates the differences between countries.  

A third possible model formulation for panel data that might be useful in such a case is 

a latent class model: 

 yit | j  =  ββ j′′xit  +  vit  -  uit,       (28) 

 vit | j =  N[0, σvj
2] 

 uit | j =  | N[0, σuj
2] | 

 Prob[Class = j | zi] =  Fij  =  exp(θij) / Σ j
  exp(θij), θij  =  θθj′′zi (a multinomial logit model). 

Within each class, the basic form of the half normal (or some more elaborate) stochastic 

frontier applies.  A multinomial logit model applies to the class determination.  The salient 

feature of the latent class model is that the analyst does not know beforehand which 

class produced an observation, so the probability must be estimated (see Greene, 2001a 

for details).  By this construction, the essential flavor of the frontier estimator is retained 

while some latent heterogeneity between units is accommodated.  [Tsionas (2000c) 

suggested a restrictive form of this model, but with an eye toward the distributional 

assumptions, not the modeling of heterogeneity.] 

  

Among the useful results of this formulation is a posterior estimate of the probabilities 

of particular group membership.  Let P(i,t|j) denote the density for observation i at time t 

assuming class j - this is the density that enters the log likelihood for this observation 

using the jth set of parameter estimates.  Then,  

 P(i | j) =  
1

iT

t=∏ P(i,t|j),  P(i)  =  
1

( | )
J

ijj
P i j F

=∑ ,  P(i,j)  =  P(i|j) Fij    (29) 

Using Bayes theorem, 

 P(j | i)   =  P(i, j) / P(i)  =  

1

( | )

( | )

ij
J

ijj

P i j F

P i j F
=∑

     (30) 

Using this result, we compute j* = the index of the group with the highest posterior 

probability.  In addition to providing an estimate of which class generates our 

observation, this provides the selection rule for which parameter vector to use for 

computation of the efficiency estimates using the Jondrow et al. result given earlier.   
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Alternatively, in the same sort of calculation used in the random parameters model, a 

posterior estimate of the parameter vector would be 

 Eclasses[ββ i | all data] =  1

1

( | )

( | )

J

j ijj
J

ijj

F P j i

F P j i

=

=

∑
∑

ββ
      (31) 

Once again, this gives a firm specific estimate of the parameters of the stochastic 

frontier model.  The method of computation is analogous to that described in Appendix 

B for a continuous case. 

 

 

7.  Conclusions 

The preceding has detailed some extensions of panel data estimators that have 

appeared in part elsewhere in the literature, to a specific application to which they have 

not yet been applied.  The uses of panel data have spawned a creativity that is 

commensurate with the richness of the data sets - panel data allow the analyst to 

model the phenomena that are really of interest in these studies.  Many of the results 

given above are in fairly generic terms.  This is because we have applied them in 

dozens of model frameworks, and the stochastic is a natural, but not out of the ordinary 

special case.  As always when a menu of choices is presented, it is not obvious what is 

the best way to proceed.  If pressed, we would suggest that the random parameters 

approach offers the greatest potential for useful extensions of the stochastic frontier 

model.  The technique, itself, is remarkably stable.  We have suggested a few possible 

formulations, but ours by no means exhausts the list, and the approach gives scope for 

extension in any number of directions.  Certainly further research and experimentation 

will produce useful dividends. 
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Appendix A.  Newton’s Method for Fixed Effects Model 

 

Full details of this result are given in Greene (2001b), so we will only sketch the result 

here.  Let a ‘single index’ model be formulated as 

f(yit | xit)  =  p(yit, γγ′′xit + αi, θθ)  =  g(yit, zit, θθ) 

where f(yit | xit) denotes the conditional density of the observed random variable, 

conditioned on the exogenous data, ( , ' , )xit it ig y + αγ θγ θ denotes the actual functional 

form assumed for this density, yit is the observed random variable, αi is the effect for 

the ith firm, γγ′′xit is the ‘index function, and θθ denotes a vector of ancillary parameters.  

Both of the fixed effects forms considered above fit in this class of models.  Note that 

there are K + N parameters in the model, and N could be huge.   Indeed, the practical 

obstacle to fitting such models, which is echoed many times in the received literature 

[see, e.g., Maddala (1997) and Baltagi (1995)] is that there is no way to ‘sweep’ the fixed 

effects out of the model except in rare cases, so that it becomes necessarily actually to 

estimate all K+N parameters.  Once one embarks on this, the barrier becomes the 

(K+N)×(K+N) covariance matrix or Hessian of the log likelihood. 

  

The log likelihood for this model is 

log L  =  



∏∑ ==

),,(log
11

θθitit
T

t

n

i
zygi  

Let pit, yit, xit and zit denote the components of this function. Denote the gradient of the log 

likelihood by 

 gγ =  
γγ∂

∂ Llog
  =   

γγ
γγ

∂
α∂∑∑ ==

),,,(log)(

11
iititiT

t

N

i

yg x
 (a Kγ×1 vector) 

 gαi =  
i

L
α∂

∂ log
  =  

i

iititiT

t

yg

α∂
α∂∑ =

),,,(log)(

1

xγγ
 (a scalar) 

 gα =  [gα1, ... , gαN]′′ (an N×1 vector) 

g =  [gγ′′, gα′′]′′ (a (Kγ+N)×1 vector). 

The full (Kγ+N)× (Kγ+N) Hessian is 
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where 

  Hγγγγ =  
'

),,,(log2
)(

11 γγγγ
γγ

∂∂
α∂∑∑ ==

iititiT

t

N

i

yg x
 (a Kγ× Kγ matrix) 

  hγγi =  
i

iititiT

t

yg

α∂∂
α∂∑ = γγ

γγ ),,,(log2
)(

1

x
 (N Kγ × 1 vectors) 

  hii =  
2

2
)(

1

),,,(log

i

iititiT

t

yg

α∂

α∂∑ =

xγγ
 (N scalars). 

Newton's method of maximizing the log likelihood produces the iteration 

k
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αα

γγ
∆∆
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where subscript 'k' indicates the updated value and 'k-1' indicates a computation at the 

current value.  Full details for the results to follow appear in Greene (2001b).  We 

proceed to the final results.  After some straightforward algebra that makes use of the 

partitioned inverse formula [e.g., Greene (2000), equation (2-74)], we find 

∆∆γγ =    - 

1

1
1 '

1
−

−
γγ=γγ










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


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k
i

ii

iN
i h

g
hg  

and 

∆∆ααi =  - ( )γγ∆∆'
1

ii
ii

g
h γα + h . 

Neither update vector requires storage or inversion of a (Kγ+N)×(Kγ+N) matrix; each is  

a function of sums of scalars and Kγ×1 vectors of first derivatives and mixed second 

derivatives.1  The practical implication is that calculation of fixed effects models is a 

                                                        
1 The iteration for the slope estimator is suggested in the context of a binary choice model in 
Chamberlain (1980, page 227).  A formal derivation of ∆∆γγ and ∆α was given to the author by 
George Jakubson of Cornell University in an undated memo, "Fixed Effects (Maximum 
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computation only of order Kγ.  Storage requirements for αα and ∆∆α are linear in N, not 

quadratic.  Even for huge panels of tens of thousands of units, this is well within the 

capacity of even modest desktop computers of the current vintage.  In experiments, we 

have found this method effective for probit models with 10,000 effects, and an analyst 

using this procedure for a tobit model reported success with nearly 15,000 coefficients.  

  

The estimator of the asymptotic covariance matrix for the MLE of γγ is -Hγγγγ, the upper left 

submatrix of -H-1.  This is a sum of Kγ ×Kγ matrices, and will be of the form of a moment 

matrix which is easily computed - it is the bracketed inverse matrix in ∆∆γγ.  Thus, the 

asymptotic covariance matrix for the estimated coefficient vector is easily obtained in 

spite of the size of the problem.  The asymptotic covariance matrix of a is 

Asy.

1

1
' 1

1 1 1 1
, 1( ) ' h h ' hh H

N

i j i i i ji
ii ii jj ii

Cov a a i j
h h h h

−

−
γ γγ γ γ γ=

 
  = − = − −  

 
∑  







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


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
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
−

=−
=

jj

j

ii

i

ii hhh
ji γγγγ h

H
h1

'
)(

. 

Once again, the only matrix to be inverted is Kγ × Kγ, not N×N (and, it is already in hand) 

so this can be computed by summation.  It involves only Kγ×1 vectors and repeated use 

of the same K×K inverse matrix.  Likewise, the asymptotic covariance matrix of the 

slopes and the constant terms can be arranged in a computationally feasible format.  

Using what we already have and result (2-74) in Greene (2000), we find that Asy.Cov[c,a′′]  

simplifies in parts to   

Asy.Cov[c,ai]  =  Asy.Var[c]× i

iih
γ 

 
 

h
 

This asymptotic covariance matrix involves a large amount of computation, but a trivial 

amount of computer memory - only a Kγ × Kγ  matrix that was computed earlier.   

 

 

                                                                                                                                                                   
Likelihood) in Nonlinear Models."  The only other reference we have seen to this remarkable 
simplification is Prentice and Gloeckler (1978) who credit Rao (1965) with the inspiration. 
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Appendix B.  Simulation Estimation of the Firm Specific Parameter Vectors 

   

The simulation method is described in Greene (2001a) and Econometric Software 

(2001).   (The former may be downloaded from http://www.stern.nyu.edu/~wgreene.)  As 

this aspect of the description is complex and lengthy, we leave the full details in these 

sources.  Common to the calculations is the method of integration, which we now 

describe.  Integrals of the form 

Fi = 
iα∫ Fi (ααi, Xi) g(ααi | ΛΛ, qi)  dααi 

are computed by Monte Carlo Simulation.  The integral is an expectation; 

Fi =  Eαα F(ααi, Xi) 

where 

ααi  = 1

2 q hi i

 
 + + 

ψψ
ψ ∆ Γψ ∆ Γ

 

Note, hi is the vector of latent random variables in the model.  Estimation has provided 

estimates of the unknown parameters, ΛΛ.  The integral is then approximated with the 

average of R simulated draws, 

1

1
( , )X

R
i ir ir

F F
R

∧

=
= ∑ αα  

Each replication is done by drawing an observation on hi from the appropriate 

distribution, then using the relationships above to construct ααi.  This estimator 

converges to its population counterpart under some fairly mild conditions.  [See Train and 

Revelt (1999), for example, for discussion.]  For purposes of computing the firm specific 

parameter vectors, the expectations of two functions must be approximated, the 

likelihood for the parameters given the data, Li (ααi, , Xi) =  
1

( , )XiT

it i it
L

=∏ αα , and ααi times 

this function. The estimate is then the latter scaled by the former.  (Nonrandom 

parameters are replicated exactly by this procedure, as one would hope.) 

 


