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Abstract

We decompose labor-productivity growth into components attributable to (1) technological change
(shifts in the world production frontier), (2) technological catch-up (movements toward or away
from the frontier), (3) human capital accumulation (changes in the efficiency of labor), and (4)
capital accumulation (movement along the frontier). The world production frontier is constructed
using deterministic methods requiring no specification of functional form for the technology nor
any assumption about market structure or the absence of market imperfections. We find that
technological change is decidedly non-neutral. We also analyze the evolution of the cross-country
distribution of labor productivity in terms of the quadripartite decomposition, finding that (1)
productivity growth and the increased dispersion of the distribution is driven primarily, and roughly
equally, by physical and human capital accumulation and (2) international bipolarization (the shift
from a unimodal to a bimodal distribution) is brought about primarily by efficiency changes.
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1. Introduction.

In the last 15 years, we have seen a striking resurgence of interest in empirical analysis of

economic growth, powered in part by the early theoretical inquiries of Romer [1986] and

Lucas [1988], which in turn built upon and extended the classic papers of Solow [1956]

and others. We see two basic (intersecting) strands in this recent empirical research.

One, building on the early cross-sectional regressions of Baumol [1986], seeks to determine

whether there is a tendency for the world’s economies to converge over time—for the poor

to catch up with the rich. The other, harking back to the Solow [1957] decomposition of

U.S.A. growth into two components attributable to capital deepening and technological

progress, seeks to determine the sources of economic growth. These convergence and

growth-accounting studies, summarized in Barro and Sali-i-Martin [1995] and Temple

[1999],1 have been facilitated by the ambitious development of a comprehensive system

of internationally comparable real national income accounts: the Penn World Table (see

Summers and Heston [1991] and Heston and Summers [1999]).

These empirical growth studies have not led to many definitive conclusions. Indeed the

approaches to both strands of research have met with cogent criticism from Quah [1993,

1996a, 1997]. He has argued compellingly that analyses based on standard regression

methods focusing on first moments of the distribution cannot adequately address the

convergence issue. These arguments are butressed by the empirical analyses of Quah

[1993, 1996b, 1997] and others (e.g., Jones [1997]) posing a robust stylized fact about the

international growth pattern that begs for explanation. Over the last few decades, the

distribution of labor productivity has been transformed from a unimodal into a bimodal

distribution with a higher mean. This transformation in turn means that the world is

becoming divided, as a stylized fact, into two categories: the rich and the poor. Quah

refers to this phenomenon as “two-club,” or “twin-peak,” convergence. Perhaps “bipolar

divergence” would be another evocative characterization.

Most of the literature outlined above, especially the growth-accounting research, is heavily

model-driven, relying on particular assumptions about the technology, market structure,

technological change, and other aspects of the growth process. In a recent paper, Kumar

and Russell [2001] (hereafter KR) employ (deterministic) production-frontier methods2

to analyze international macroeconomic convergence. In particular, they decompose the

labor-productivity growth of 57 industrial, newly industralized, and developing countries

1 See, also, the 1996 Economic Journal symposium (Bernard and Jones [1996], Durlauf [1996],
Galor [1996], Quah [1996b], and Sali-i-Martin [1996]).

2 See Section 2 below for a brief description of this technique.
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into components attributable to (1) technological change (shifts in the world production

frontier), (2) technological catch-up (movements toward or away from the frontier), and

(3) capital accumulation (movement along the frontier). These calculations amount to

standard growth accounting with a twist—without the need for specification of a functional

form for the technology, for the assumption that technological change is neutral, or for

assumptions about market structure or the absence of market imperfections. Indeed,

market imperfections, as well as technical inefficiencies, are possible reasons for countries

falling below the world-wide production frontier. Taking a cue from the Quah critique,

KR go on to analyze the evolution of the entire distribution of these three growth factors.

Although the analysis of KR is quite simple, it yields somewhat striking re-

sults: (1) While there is substantial evidence of technological catch-up (move-

ments toward the production frontier), with the degree of catch-up directly

related to initial distance from the frontier, this factor apparently has not con-

tributed to convergence, since the degree of catch-up appears not to be related

to initial productivity. (2) Technological change is decidedly non-neutral, with

no improvement—indeed, possibly some implosion—at very low capital/labor

ratios, modest expansion at relatively low capital/labor ratios, and rapid ex-

pansion at high capital/labor ratios. (3) Both growth and bipolar international

divergence are driven primarily by capital deepening. [KR, p. 4.]

A major drawback of the KR study is the absence of human capital in their modeling.

Inspired in part by the early theoretical work on endogenous growth models (Lucas [1988]

and Romer [1990]), many empirical growth researchers have focused on the important role

played by human capital in the growth process. Extensive research on the development of

educational data for a large number of countries3 and on the returns to education,4 has

greatly facilitated the modeling of human capital and the growth process. The literature

over the past decade indicates, not surprisingly, that various measures of mean years of

schooling are correlated with productivity growth rates.5 In addition, growth-accounting

studies have indicated that the human-capital accumulation accounts for a large proportion

of productivity growth or of cross-country differences of productivity levels, possibly even

all of it.6

3 See, especially, Barro and Lee [1993, 1996, 2000].
4 See Psacharopoulos [1994, 1995], who in turn built on the classic research of Schultz [1961],

Becker [1964/1993], and Mincer [1974].
5 See, e.g., Barro [1991, 1999, 2001], Barro and Sali-i-Martin [1995], Benhabib and Spiegal

[1994], O’Neil [1995], and Sali-i-Martin [1997].
6 See, e.g., Bils and Klenow [2000], Hall and Jones [1999], and Wöβmann [2000]. These studies

are in the tradition of Solow neoclassical (exogenous) growth theory, since human capital is treated
as a (typically labor augmenting) input. In some endogenous growth theory models, the level of
human capital is not simply an input into the production process, but is a catalyst for innovation
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Ignoring the growth of human capital could generate a bias in the KR results, especially to

the extent that the growth of human capital is correlated with any of the other components

of their decomposition. In this paper, we incorporate human capital into the KR analysis.

We use the human capital measure of Hall and Jones [1999], which is based on the sum-

mary of returns-to-education regressions by Psacharopoulos [1994]. Introduction of human

capital into the KR framework results in a quadripartite decomposition of productivity

growth into the contributions of technological change, efficiency changes, physical-capital

accumulation, and human-capital accumulation. We analyze the contribution of these four

components to the growth of productivity and to the shift in the worldwide distribution

of productivity.

We introduce two additional changes in the KR framework. First, the KR approach ad-

mits the possibility of an implosion of the technological frontier over time. In fact, their

calculations indicate a modest implosion in the mid-level of the capital-labor ratio and

a substantial implosion at low levels of capitalization. It is difficult to believe that the

technological frontier could implode. Moreover, the large implosion at low levels of capi-

talization appears to be generated entirely by the economic collapse of one (problematic)

frontier country (Sierra Leone), and Summers and Heston [1991] stress that measurement

error tends to be greatest for the poorest countries. Thus, following an approach first sug-

gested by Tulkens and Vanden Eeckaut [1995], we adopt a construction of the worldwide

technology that precludes such technological degradation. Second, we analyze separately

the effects of the components of the quadripartite decomposition on (a) the change in mean

productivity and (b) the mean-preserving shift of the productivity distribution. The KR

analysis of productivity distribution shifts confounds these two phenomena.

Our results confirm the KR finding that technological change is palpably non-neutral

but contradict the KR finding that capital accumulation accounts for most of increase in

productivity and for the shift in the productivity distribution over 1965–90 period. In

particular, we find that about half of the productivity growth can be attributed to the

accumulation of human capital and that the qualitative shift from a unimodal to a bimodal

distribution is accounted for by efficiency changes, whereas the increased dispersion of

productivity is accounted for primarily by the accumulation of human and physical capital.

Section 2 constructs the worldwide technology frontiers in 1965 and 1990 and measures

the efficiency of 52 economies. Section 3 decomposes the productivity changes in the four

and technological growth. An interesting application in this spirit, using production-frontier meth-
ods and Malmquist productivity indexes, can be found in the recent paper by Grosskopf and Self
[2001].
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components and Section 4 analyzes the mean-preserving shift in the world productivity

distribution. Section 5 concludes.

2. Technology Frontiers and Efficiency Measurement (Technological

Catch-Up).

2.1. Data Envelopment Analysis.

The KR approach to constructing the worldwide production frontier and associated effi-

ciency levels of individual economies (distances from the frontier), motivated in part by

the first such effort in this direction by Färe, Grosskopf, Norris, and Zhang [1994], is based

on the pioneering work of Farrell [1956] and Afriat [1972].7 The basic idea is to envelop

the data in the “smallest,” or “tightest fitting,” convex cone, and the (upper) boundary of

this set then represents the “best practice” production frontier. Although this data-driven

approach, implemented with standard mathematical programming algorithms, requires no

specification of functional form, it does require an assumption about returns to scale of

the technology (as well as free input and output disposability).

Our technology contains four macroeconomic variables: aggregate output and three aggre-

gate inputs—labor, physical capital, and human capital. Let 〈Y jt , L
j
t , K

j
t , H

j
t 〉,

t = 1, . . . , T, j = 1, . . . J , represent T observations on these four variables for each

of the J countries. Following the macroeconomic literature, we assume that human capi-

tal enters the technology as a multiplicative augmentation of physical labor input, so that

our JT observations are 〈Y jt , L̂
j
t , K

j
t 〉, t = 1, . . . , T, j = 1, . . . J , where L̂jt := Hj

tL
j
t is

the amount of labor input measured in efficiency units in country j at time t.

As noted in the Introduction, our approach to constructing the frontier uses the “sequential

production set” formulation of Tulkens and Vanden Eeckaut [1995] to preclude implosion

7 A fully general exposition of this approach, aimed primarily at economists, can be found
in Färe, Grosskopf, and Lovell [1995]; the management-science approach to essentially the same
methods began with the paper by Charnes, Cooper and Rhodes [1978], who coined the evocative
term “data envelopment analysis” (DEA), and is comprehensively treated in Charnes, Cooper,
Lewin, and Seiford [1994].
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of the frontier over time. In particular, we construct the constant-returns-to-scale, period-t

technology using (in principle8) all data up to that point in time:

Tt =

{
〈Y, L̂,K〉 ∈ R3

+

∣∣∣ Y ≤∑
τ≤t

∑
j

zjτY
j
τ ∧

L̂ ≥
∑
τ≤t

∑
j

zjτ L̂
j
τ ∧ K ≥

∑
τ≤t

∑
j

zjτK
j
τ , z

j ≥ 0 ∀ j
}
.

(2.1)

This technology is the Farrell cone; other assumptions about returns to scale would incor-

porate an additional constraint on the activity levels, zjt , t = 1, . . . , T, j = 1, . . . J (see,

e.g., Färe, Grosskopf, and Lovell [1995]). For later reference, note that the assumption

of constant returns to scale allows us to represent the technology in a two-dimensional

subspace, scaling output and capital by effective labor:

T̂t =

{
〈ŷ, k̂〉 ∈ R2

+

∣∣∣ ŷ ≤∑
τ≤t

∑
j

zjτ ŷ
j
τ ∧

1 ≥
∑
τ≤t

∑
j

zjτ ∧ k̂ ≥
∑
τ≤t

∑
j

zjτ k̂
j
τ , z

j ≥ 0 ∀ j
}
,

(2.2)

where ŷ = Y/L̂ and k̂ = K/L̂ are the ratios of output and capital to effective labor,

respectively.

The Farrell (output based) efficiency index for country j at time t is defined by

E(Y jt , L̂
j
t , K

j
t ) = min

{
λ | 〈Y jt /λ, L̂

j
t , K

j
t 〉 ∈ Tt

}
(2.3)

or, equivalently,

Ê(ŷjt , k̂
j
t ) = min

{
λ | 〈ŷjt /λ, k̂

j
t 〉 ∈ T̂t

}
. (2.4)

This index is the inverse of the maximal proportional amount that output Y jt can be

expanded while remaining technologically feasible, given the technology Tt and the input

quantities L̂jt and K l
t , or, equivalently, the inverse of the maximal proportional amount

that output per efficiency unit of labor ŷjt can be expanded while remaining technologically

feasible, given the technology T̂t and the capital per efficiency unit of labor k̂jt ; it is less

than or equal to 1 and takes the value of 1 if and only if the jt observation is on the period-

t production frontier. In this case of a scalar output, the output-based efficiency index

is simply the ratio of actual to potential output evaluated at the actual input quantities,

8 Because of data limitations, we focus on two time periods, 1965 and 1990, and changes over
that 25-year interval.
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but in multiple-output technologies the index is a radial measure of the (proportional)

distance of the actual output vector from the production frontier.9

2.2. Data.

For aggregate output, physical capital, and labor, we use the same Penn World Table

data as KR, focusing on the first and last years for which data are available, 1965 and

1990, and the changes over that 25-year period.10 For human capital, we adopt the Hall

and Jones [1999] construction, which in turn is based on the Barro and Lee [1993, 1996,

2000] education data and the Psacharopoulos [1994] survey of wage equations evaluating

the returns to education. In particular, let εjt represent the average number of years of

education of the adult population in country j at time t and define labor in efficiency units

in country j at time t by

L̂jt = Hj
tL

j
t = h(εjt )L

j
t = eφ(εjt )Ljt , (2.5)

where φ is a piecewise linear function, with a zero intercept and a slope of .134 through

the fourth year of education, .101 for the next four years, and .068 for education beyond

the eighth year. Clearly, the rate of return to education (where φ is differentiable) is

d lnh(εjt )

dεjt
= φ′(εjt ), (2.6)

and h(0) = 1.

Because of a lack of data on human capital for some countries, our data set includes 52

countries, five fewer than the KR data set.11 The countries included in our data base,

along with the values of the augmentation factors, Hj
t = eφ(εjt ), for 1965 and 1990, are

listed in Table 1.

9 The Farrell efficiency index can be calculated by solving a linear program for each observation.
See, e.g., Färe, Grosskopf, and Lovell [1995].
10 These are the countries for which complete data sets on output, labor, and capital are available,

though, as is common in the convergence literature, KR exclude two major oil-producing countries,
Iran and Venezuela. Including these two countries has no significant effect on their results, though
it is worth noting that when they are included both are on the KR production frontier in 1965.
11 Unfortunately, four of the five omitted countries (Ivory Coast, Madagascar, Morocco, and

Nigeria) are African, leaving us with just six countries from that continent. The other omitted
country is Luxembourg.
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2.3 Efficiency and Technological Catch-Up.

Table 2 lists the efficiency levels of each of the 52 countries for the beginning and end years

of our sample, 1965 and 1990.12 For comparison purposes, we calculate these efficiency

indexes both with and without human capital. The technology and efficiency index without

human capital are constructed by replacing L̂jt with Ljt in (2.1) and (2.3). The efficiency

figures for 1965 without human capital are identical (up to rounding error) to those in KR,

since the 1965 production frontiers are identical, being determined by the same (frontier)

countries: those with efficiency scores of 1.00 (Argentina, Paraguay, Sierra Leone, and the

U.S.A.).13 The 1990 efficiency indexes without human capital, however, are different from

those in KR, because our calculations preclude implosion of the frontier, thus knocking

Sierra Leone off the 1990 frontier, and because Luxembourg, a 1990 frontier economy in

KR, is not in our data set.

We are primarily interested in comparisons of efficiency measurement with and without

the inclusion of human capital in the technology. Assuming that human capital is rea-

sonably well measured, an improvement in the efficiency score when human capital is

incorporated into the measurement of efficiency indicates that some of the measured in-

efficiency in the simpler model should, in fact, have been attributed to a relative paucity

of the quantity of human capital, or, equivalently, to a mismeasurement of labor input. A

similar interpretation applies to a decrease in efficiency scores.

Note first, from Table 2, that the mean efficiency score in 1965 is increased from .64 to .68

by the incorporation of human capital. This suggests that a good deal of the dispersion of

1965 efficiency in KR is attributable to mismeasurement of labor input: adjusting for the

efficiency of the labor force moves economies toward the frontier, closing the gap by about

11 percent on average. Curiously, the biggest efficiency improvements emanating from the

incorporation of human capital in 1965 occur in highly capitalized economies—Finland,

the Netherlands, Norway, and Switzerland—as well as in some developing countries—

most notably, Syria, Guatemala, and Mexico. Also notable, though, is the movement to

the 1965 frontier of Mauritius, the Netherlands, and Spain, countries that, even without

considerations of human capital, are not far from the frontier.

The effect of incorporating human capital into the 1990 calculations is less pronounced;

some countries move substantially toward the frontier while others move farther away.

Those helped most by the consideration of human capital are a few OECD countries

12 Our efficiency calculations were carried out using the software OnFront, available from Eco-
nomic Measurement and Quality i Lund AB (Box 2134, S-220 02 Lund, Sweden [www.emq.se]).
13 The (two-dimensional) frontiers, discussed below, appear in Figures 1–3.
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(especially Italy, Portugal, and Spain) and some developing countries (notably again, Syria

and Guatemala), while those whose scores suffer are some of the most highly capitalized

countries (notably, Norway, Canada, Switzerland, and the U.S.A.). The case of Italy is

especially interesting, because taking account of human capital moves that country to the

frontier, replacing the United States at high capital/effiency-labor ratios.

Over time, the mean efficiency index increases slightly when human capital accumulation

is not taken into account but declines slightly when human capital is included in the

calculations. Figure 4 shows plots of the distributions in 1965 and 1990.14 This picture

suggests that some mass in the middle of the distribution was shifted toward the frontier

and some away from the frontier.

Constant returns to scale and labor-augmention of human capital allow us to construct the

production frontiers in ŷ − k̂ space, as elucidated by the constructions in (2.2) and (2.4).

Figures 1 and 2 contain the production frontiers and scatter plots of the data for 1965 and

1990, respectively, while Figure 3 superimposes the two frontiers.15 The construction in

(2.1) (alternatively (2.2)) does not allow implosion of the frontier. One fact that emerges

immediately from these graphs is the non-neutrality of technological change. Up to a

capital/efficiency-labor ratio of 6000, the 1965 and 1990 frontiers are virtually coincident,

but for higher levels of capitalization the frontier shifts upwards dramatically. This is

basically the same result as found in the KR analysis without human capital, indicating,

perhaps not surprisingly, that almost all technological change occurs at high levels of

capitalization.

3. Quadripartite Decomposition of the Factors Affecting Labor Produc-

tivity.

3.1. Conceptual Decomposition.

The tripartite decomposition of productivity growth in KR can be applied straightfor-

wardly to the growth of output per efficiency unit of labor as follows. Letting b and c

stand for the base period and the current period, respectively, we see, by definition, that

14 This distribution and the others we employ below are nonparametric kernel-based density
estimates, essentially “smoothed” histograms of productivity levels. See the Appendix for the
particulars.
15 West Germany and, especially, Switzerland (with a capital/efficiency-labor ratio 69 percent

greater than Italy) are off the horizontal scale in 1990. (Neither is on the frontier.)
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potential (frontier) outputs per efficiency unit of labor in the two periods are given by
ˆ̄yb(kb) = ŷb/eb and ˆ̄yc(kc) = ŷc/ec, where eb and ec are the values of the efficiency

indexes in the respective periods. Thus,

ŷc
ŷb

=
ec · ˆ̄yc(k̂c)
eb · ˆ̄yb(k̂b)

. (3.1)

Now denote potential output per unit of efficiency unit of labor at current-period capital

intensity using the base-period technology by ˆ̄yb(kc). Similarly, potential output per unit

of efficiency labor at base-period capital intensity using the current-period technology is

denoted ˆ̄yc(kb). Multiplying top and bottom of (3.1) alternatively by ˆ̄yb(kc) and ˆ̄yc(kb)

yields two alternative decompositions of the growth of ŷ:

ŷc
ŷb

=
ec
eb
·

ˆ̄yc(kc)

ˆ̄yb(kc)
·

ˆ̄yb(kc)

ˆ̄yb(kb)
(3.2)

and
ŷc
ŷb

=
ec
eb
·

ˆ̄yc(kb)

ˆ̄yb(kb)
·

ˆ̄yc(kc)

ˆ̄yc(kb)
. (3.3)

The decomposition in (3.2) measures technological change by the shift in the frontier

in the output direction at the current-period capital/efficiency-labor ratio and measures

the effect of capital accumulation along the base-period frontier. The decomposition in

(3.3) measures technological change at the base-period capital/labor ratio and capital

accumulation by movements along the current-period frontier. These two decompositions

do not yield the same results; that is, the decomposition is path dependent. In fact, in the

absence of neutrality of technological change (as assumed by Solow [1957] and the many

studies building on his pioneering paper), this ambiguity is endemic to growth accounting

exercises. In the tradition of Caves, Christensen, and Diewert [1982] and Färe, Grosskopf,

Lindgren, and Roos [1994], we resolve this ambiguity, as did KR, by adopting the “Fisher

ideal” decomposition, based on geometric averages of the two measures of the effects of

technological change and capital accumulation, obtained by multiplying top and bottom

of (3.1) by
(
ˆ̄yb(kc)ˆ̄yc(kb)

)1/2
:

ŷc
ŷb

=
ec
eb

(
ˆ̄yc(kc)

ˆ̄yb(kc)
·

ˆ̄yc(kb)

ˆ̄yb(kb)

)1/2(
ˆ̄yb(kc)

ˆ̄yb(kb)
·

ˆ̄yc(kc)

ˆ̄yc(kb)

)1/2

=: EFF × TECH ×KACC.

(3.4)

The growth of productivity, yt = Yt/Lt, can be decomposed into the growth of output

per efficiency unit of labor and the growth of human capital, as follows:

yc
yb

=
Hc

Hb
· ŷc
ŷb
. (3.5)
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Combining (3.4) and (3.5), we obtain the quadripartite decomposition:

yc
yb

=
ec
eb

(
ˆ̄yc(kc)

ˆ̄yb(kc)
·

ˆ̄yc(kb)

ˆ̄yb(kb)

)1/2(
ˆ̄yb(kc)

ˆ̄yb(kb)
·

ˆ̄yc(kc)

ˆ̄yc(kb)

)1/2
Hc

Hb

=: EFF × TECH ×KACC ×HACC.

(3.6)

3.2. Empirical Results.

Table 3 shows each of the components of the (relevant) decomposition of productivity

growth from 1965 to 1990, both without and without human capital. The first row for each

country shows the country’s productivity growth and the contributions to productivity

growth of the three factors, efficiency change ([EFF − 1] × 100), technological change

([TECH−1]×100), and physical capital accumulation ([KACC−1]×100), ignoring the

role of human capital in the production process. The second row for each country shows the

contributions to productivity growth of human capital accumulation ([HACC−1]×100)

as well as each of the other three components of the quadripartite decomposition.

The figures without human capital are little different from those in KR for most countries.

The differences in the means of the efficiency and technological-change components of

growth are not substantially changed by the incorporation of human capital, but the

mean contribution of capital accumulation is sliced from 58 percent to 30 percent. The

difference is made up by a 26-percent mean contribution from the accumulation of human

capital. It appears that roughly half of the growth of productivity attributed to physical-

capital accumulation by KR is, in fact, attributable to human-capital accumulation. This

result accords closely with the standard (model driven) growth-accounting exercise of

Wöβmann [2000], who incorporates notions of quality of education into the calculation of

human capital. On the other hand, Wöβmann finds that human capital explaind all of

the disparity of productivity levels of OECD countries in 1988.

Observations about several interesting individual cases by KR hold up fairly well when

human capital is introduced into the analysis. Consider the four Asian “growth miracles,”

with output per worker more than tripling in Hong Kong and Japan, quadrupling in

Taiwan, and more than quintupling in South Korea over this 25-year span (Singapore is

not in our data set). Although human-capital accumulation is well above average for Hong

Kong, Korea, and Taiwan (and somewhat below average for Japan), it remains the case

that the Japan, South Korea, and Taiwan growth spurts were driven primarily by capital

accumulation, whereas that of Hong Kong resulted primarily from efficiency improvements.

In fact, the Hong Kong experience is even more sharply focused by including human
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capital, since this has little effect in lowering the contribution of efficiency improvements to

the growth process, while substantially lowering the contribution of capital accumulation.

We should add Thailand to the “Asian Tiger” group, since its productivity almost tripled

over our 25-year period. It appears that the largest contribution to the Thai growth spurt

is physical capital accumulation, with human capital accumulation accounting for no more

than the improvement in efficiency.

The story of Argentina’s stagnation is also little changed by the incorporation of human

capital. It remains the case that the cause seems to be a collapse in efficiency; the accu-

mulation of both human and physical capital are about average over this period. On the

other hand, the disastrous 34-percent collapse of productivity in Zambia looks a little dif-

ferent: while the large (roughly 30 percent) contribution of the deterioration in efficiency

is unaffected by the introduction of human capital, the negative contribution of physical

capital accumulation is worsened to about 30 percentage points and compensated for by

an above-average accumulation of human capital.

Figure 5 summarizes these calculations by plotting the four productivity-component growth

rates against output per worker in 1965. GLS regression lines are also plotted. Panel (a),

showing the relationship between the contribution of efficiency to productivity growth and

the initial level of productivity, evinces no clear pattern, with many negative as well as

positive changes. The regression slope coefficient is not statistically significant, suggest-

ing that technological catch-up has done little, if anything, to lower income inequality

across countries. Apparently, technology transfer has benefited relatively rich countries

about as much as relatively poor countries. Panel (b) indicates that relatively wealthy

countries have benefited much more from technological progress than have less-developed

countries, as is evident from Figure 3. Clearly, the positive regression slope coefficient is

highly statistically significant. Panel (c) indicates a wide dispersion of contributions of

capital contribution. The negative slope is statistically insignificant at the 5-percent level

but significant at the 10-percent level, suggesting that poorer countries might have bene-

fited more from capital accumulation, on average, over the sample period. Finally, Panel

(d) evinces a highly significant inverse relationship between the intitial productivity level

and the contribution of human capital accumulation to productivity growth; apparently,

human capital accumulation has contributed to the convergence of productivity levels.

4. Analysis of Productivity Distributions.

We now turn to an analysis of the distribution dynamics of labor productivity. A plot of

the distributions of output per worker across the 52 countries in our sample in 1965 and
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1990 appears in Figure 6. Over this 25-year period, the distribution of labor productivity

was transformed from a unimodal into a bimodal distribution with a higher mean. Here we

extend the analysis of KR by attempting to explain this bipolarization of the distribution

of output per worker in terms of our quadripartite decomposition. Since the effect of the

four factors on the mean change in productivity has already been analyzed in the context

of Table 3, however, we focus in this paper on mean-preserving shifts in the distribution

when we sequentially introduce the four components. Figure 7 shows the 1965 and 1990

distributions of departures from the productivity mean, yt− ỹ, where ỹ is the productivity

mean in year t; that is, each distribution has zero mean. The salient features of the shift are

the switch from unimodal to bimodal and an increased dispersion, perhaps more evident

in this mean-preserving comparison than in that of Figure 6. We aim to explain these

features of the change in the productivity distribution from 1965 to 1990 in terms of the

four components of the decomposition of productivity changes.

Re-write the tripartite decomposition of labor productivity changes in (3.6) as follows:

yc = (EFF × TECH ×KACC ×HACC) · yb. (4.1)

Thus, the labor productivity distribution in 1990 can be constructed by successively mul-

tiplying labor productivity in 1965 by each of the four factors. This in turn allows us to

construct counterfactual distributions by sequential introduction of each of these factors

(where b = 1965 and c = 1990). For example, the counterfactual 1990 labor-productivity

distribution of the variable,

yE = EFF · yb, (4.2)

with its mean extracted, isolates the (mean preserving) effect on the distribution of changes

in efficiency only, assuming a stationary world production frontier, no capital deepening,

and no accumulation of human capital, and the counterfactual 1990 labor-productivity

distribution of the variable,

yE = (EFF × TECH) · yb, (4.3)

with its mean extracted, isolates the (mean preserving) effect on the distribution of changes

in efficiency and the technology, assuming no capital deepening, and no accumulation of

human capital.

We can then exploit recent developments in nonparametric methods to test formally for the

statistical significance of differences between (actual and counterfactual) distributions—

to test indirectly, that is, for the statistical significance of the relative contributions of

the four components of the decomposition of productivity changes to (mean preserving)

changes in the distribution of labor productivity. In particular, Fan and Ullah [1999],

building on earlier work of Li [1996], have proposed a nonparametric, time-series test for
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the comparison of two unknown distributions, say f and g—that is, a test of the null

hypothesis, H0 : f(x) = g(x) for all x, against the alternative, H1 : f(x) 6= g(x) for

some x.16 Since this test is likely to have low power, given the relatively small number of

observations in our data set, we believe that a 5-percent, or even a 10-percent significance

level is more appropriate than a 1-percent significance level.

Table 4 contains the test results for all possible combinations, and Figures 8–11 contain

a selection of counterfactual distributions generated by sequential introduction of compo-

nents of the quadripartite decomposition. The first test (first row of Table 4) easily rejects

the hypothesis that the actual 1965 and 1990 distributions in Figure 7 are identical, indi-

cating that the increase in the mean is not the only statistically significant change in the

productivity distribution over the 1965–90 period. The next four tests (rows 2–5) each

introduce just one of the four components, and it is apparent that the null hypothesis is

rejected in each case at the (preferred) 5-percent level, though identity of the two distri-

butions is barely rejected when physical capital accumulation alone is used to construct

the counterfactual distribution. This result contrasts with that of KR, suggesting that

their result that capital accumulation alone can explain the shift in the distribution, even

at the 10-percent significance level, is essentially attributable to the effect on the shift in

the mean rather than the shift from a unimodal to a bimodal distribution with increased

dispersion.

Let us now examine what happens when we introduce more than one component, first

following the sequence in (4.1). This sequence is illustrated in Figure 8. Panel (a) in this

figure, as in those that follow, is identical to Figure 7, displaying the actual distributions of

deviations from the mean in 1965 and 1990, to facilitate comparisons to the counterfactual

distributions for 1990 that follow. Each of the succeeding panels contains the actual 1990

distribution and a counterfactual distribution. Thus, Panel (b) compares the actual 1990

distribution to the counterfactual 1990 distribution corresponding to equation (4.2); it

shows what the 1990 distribution would have looked like if only efficiency had changed for

each country in our sample. A striking aspect of this comparison is that the bimodalism

emerges in this counterfactual distribution, but the dispersion seems to be substantially

unaffected. Thus, it seems that efficiency changes alone can account for the qualitative

change from unimodalism to bimodalism. Although we do not report the result here, it

should be noted that the bimodalism does not arise in the mean-preserving comparison

of the actual 1990 distribution to the counterfactual 1990 distribution corresponding to

equation (4.2) when human capital accumulation is not included in the analysis; thus, it

16 See the Appendix for an exact description of the test statistic, which is also described in Pagan
and Ullah [1999].
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appears that this contrast to the KR results is attributable to the incorporation of human

capital accumulation into the analysis, not to the abstraction from shifts in the mean.

Panel (c) of Figure 8 contains the counterfactual distribution under the assumption that

only efficiency and the technology changed. This factor seems to dampen the bimodal-

ism a bit but also spreads the distribution somewhat. As shown in Table 4 (row 6), this

counterfactual distribution is statistically significantly different from the actual 1990 dis-

tribution at the most-stringent significance level. Thus, it appears that efficiency changes

and technological change together cannot explain the mean-preserving shift of the pro-

ductivity distribution. Panel (d) adds capital accumulation to the mix. This seems to

restore the bimodalism and enhance the dispersion. As revealed in Table 4 (row 12), this

counterfactual distribution is statistically insignificantly different from the actual 1990

distribution at the most-stringent significance level. Thus, it appears that the change in

human capital is not needed to explain the (mean preserving) shift in the distribution

from 1965 to 1990.

Let us see, however, what happens if we reverse the order of introduction of the physical

and human capital accumulation components of the decomposition. The first three panels

of Figure 9 are identical to those in Figure 8, but panel (d) introduces human instead of

physical capital accumulation. Here, too, the resulting distribution is statistically identical

to the actual 1990 distribution at the most stringent significance level (row 13). Thus,

it appears that neither physical nor human capital accumulation needs to be taken into

account to explain the mean-preserving shift in the productivity distribution from 1965

to 1990, but either suffices when added to changes in efficiency and technological change.

Figure 10 introduces capital accumulation first, and the resultant counterfactual 1990

distribution in panel (b) is slighty bimodal and more dispersed, but, as noted above, still

statistically significantly different from the actual 1990 distribution at the 5-percent level.

When technological change is added in panel (c), however, the bimodalism becomes a little

more prominent, the spread is enhanced, and the resultant counterfactual distribution is

not statistically significantly different from the actual one at any significance level. Thus,

capital accumulation, along with technological change suffices to explain statistically the

distribution shift, without the help of efficiency changes.

Figure 11 introduces human capital accumulation first and then technological change,

and the resultant counterfactual distribution in panel (c) is not bimodal, although the

spread is considerably enhanced. The resultant distribution is not statistically significantly

different from the actual distribution at the 10-percent level and is right on the boundary
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of significance at the 5-percent level. Thus, human capital accumulation and technological

change are not quite sufficient to explain the shift at the 5-percent level.

To summarize, inspection of the various counterfactual distributions in Figures 8–11 and

the statistical tests in Table 4, leaves us with the gestalt impression that (a) efficiency

changes are the principal driving force behind the qualitative change in the productivity

distribution from unimodal to bimodal, with some help from physical capital accumulation,

and (b) physical and human capital are the principal driving forces behind the increased

dispersion of productivity levels, with some help from technological change. With help

from technological change, physical capital accumulation can explain statistically, at all

significance levels, the mean-preserving shift in the distribution from 1965 to 1990. Human

capital accumulation can account for the shift statistically at the 5-percent level with help

from technological change, but not at the 10-percent level.

5. Conclusion.

In this paper, we have introduced human capital into the KR growth-accounting analysis

of international macroeconomic convergence. Along the way, we have also amended the

KR methodology by (1) adopting the Tulkens and Vanden Eeckaut [1995] approach to

dynamic frontier analysis, thus precluding implosion of the worldwide production frontier

over time and (2) separating the analysis of changes in the productivity distribution to

analyses of (a) changes in the mean and (b) mean-preserving shifts in the distribution of

productivity. Our principal conclusions are as follows:

•Well over half of the increase in mean productivity attributed by KR to the accumulation

of physical capital was, in fact, the result of the accumulation of human capital.

• In contradistinction to the KR conclusion that capital accumulation also accounts for the

shift in the distribution, primarily from unimodal to bimodal, our analysis indicates that

efficiency changes account for the qualitative shift from unimodal to bimodal, whereas

the accumulation of physical and human capital account for the increased worldwide

dispersion of productivity.

• The KR conclusion that technological change is decidedly non-neutral, with virtually all

progress taking place in the highly capital-intensive region of input space, is confirmed

by our analysis incorporating human capital accumulation.
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Of course, these conclusions rely heavily on the conceptual measurement of human capi-

tal, and the underlying measurement of years of education. As Wöβmann [2000] points

out, these measurements are problematic and controversial. Nevertheless, theoretical and

empirical research, as well as simple intuition, suggests that human capital is an element

of the growth process that is too important to ignore.

Appendix

Each of the distributions in Figures 4 and 6–11 is a kernel-based estimate of a density

function, f(·), of a random variable x, based on the standard normal kernel function and

optimal bandwidth:

f̂(x) =
1

nh

J∑
j=1

k

(
xj − x
h

)
,

where
∫∞
−∞ k(ψ)dψ = 1 and ψ = (xj − x)/h. In this construction, h is the optimal

window width, which is a function of the sample size n and goes to zero as n → ∞.

We assume that k is a symmetric standard normal density function, with non-negative

images. See Pagan and Ullah (1999) for details.

The statistic used to test for the difference between two distributions, predicated on the

integrated-square-error metric on a space of density functions, I(f, g) =
∫
x

(
f(x) −

g(x)
)2
dx, is

T =
nh1/2

σ̂
∼ N(0, 1),

where

=
1

n2h

n∑
i=1

n∑
j=1
j 6=i

[
k

(
xi − xj
h

)
+ k

(
yi − yj
h

)
− k
(
yi − xj
h

)
− k
(
xi − yj
h

)]

and

σ̂2 =
1

n2hπ1/2

n∑
i=1

n∑
j=1

[
k

(
xi − xj
h

)
+ k

(
yi − yj
h

)
+ 2k

(
xi − yj
h

)]
.

As shown by Fan and Ullah [1999], the test statistic asymptotically goes to the standard

normal. Our sample in our study contains only 52 observations, but the KR bootstrapping

exercise for a similar number of observations shows that the critical values, at 5 percent

and 1 percent are very near the standard normal critical values; hence, we use the standard

normal critical values in our significance tests.
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Table 1: Human-Capital Augmentation Factors

Country 1965 1990 Country 1965 1990

Argentina 1.93 2.50 Korea, Rep. 1.78 2.79

Australia 2.80 2.96 Malawi 1.25 1.41

Austria 2.29 2.60 Mauritius 1.47 1.92

Belgium 2.48 2.64 Mexico 1.40 2.07

Bolivia 1.68 1.84 Netherlands 2.00 2.67

Canada 2.57 3.04 New Zealand 2.82 3.18

Chile 1.85 2.35 Norway 2.13 3.11

Columbia 1.45 1.77 Panama 1.74 2.39

Denmark 2.71 2.96 Paraguay 1.56 2.05

Dominican Rep. 1.36 1.7 Peru 1.52 2.08

Equador 1.50 2.08 Philippines 1.72 2.33

Finland 2.05 2.83 Portugal 1.35 1.77

France 2.06 2.45 Sierra Leone 1.07 1.19

Germany, West 2.60 2.75 Spain 1.65 2.11

Greece 1.88 2.47 Sri Lanka 1.62 1.94

Guatemala 1.21 1.42 Sweden 2.47 2.85

Honduras 1.25 1.64 Switzerland 2.39 2.92

Hong Kong 1.87 2.62 Syria 1.20 1.77

Iceland 2.07 2.55 Taiwan 1.66 2.42

India 1.22 1.64 Thailand 1.52 1.96

Ireland 2.19 2.65 Turkey 1.32 1.70

Israel 2.26 2.75 U. K. 2.35 2.69

Italy 1.85 2.13 U.S.A. 2.79 3.36

Jamaica 1.41 1.81 Yugoslavia 1.88 2.43

Japan 2.37 2.78 Zambia 1.27 1.73

Kenya 1.17 1.49 Zimbabwe 1.26 1.72

Mean 1.84 2.29
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Table 2: Efficiency Indexes.

Without Human Capital With Human Capital

Country 1965 1990 1965 1990

Argentina 1.00 .65 1.00 .64

Australia .76 .82 .74 .76

Austria .85 .73 .80 .75

Belgium .70 .86 .72 .86

Bolivia .50 .41 .50 .42

Canada .79 .93 .84 .80

Chile .85 .65 .86 .63

Columbia .41 .45 .48 .54

Denmark .76 .69 .73 .67

Dominican Republic .72 .51 .80 .54

Equador .38 .34 .42 .40

Finland .51 .74 .66 .67

France .80 .83 .85 .87

Germany, West .69 .80 .69 .74

Greece .55 .57 .56 .61

Guatemala .81 .73 .96 .85

Honduras .45 .41 .52 .44

Hong Kong .45 1.00 .46 .996

Iceland .96 .83 .94 .87

India .37 .41 .44 .47

Ireland .71 .80 .67 .82

Israel .60 .79 .61 .80

Italy .67 .87 .76 1.00

Jamaica .56 .52 .62 .54

Japan .59 .62 .54 .60

Kenya .26 .29 .31 .37

Korea, Republic of .43 .57 .41 .57
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Table 2: Efficiency Indexes (Continued).

Without Human Capital With Human Capital

Country 1965 1990 1965 1990

Malawi .28 .26 .27 .30

Mauritius .94 .98 1.00 .99

Mexico .85 .74 .996 .82

Netherlands .84 .88 1.00 .90

New Zealand .84 .71 .83 .66

Norway .61 .80 .79 .65

Panama .44 .32 .46 .33

Paraguay 1.00 1.00 .98 1.00

Peru .58 .40 .66 .40

Philippines .42 .47 .42 .43

Portugal .67 .77 .75 .92

Sierra Leone .94 .63 1.00 .78

Spain 1.00 .80 1.00 .93

Sri Lanka .32 .33 .33 .35

Sweden .81 .77 .84 .71

Switzerland .84 .89 .96 .78

Syria .42 .63 .62 .80

Taiwan .52 .57 .52 .62

Thailand .44 .57 .45 .56

Turkey .50 .55 .57 .61

United Kingdom .99 .89 .92 .91

U.S.A. 1.00 1.00 1.00 .90

Yugoslavia .70 .59 .65 .55

Zambia .42 .29 .48 .33

Zimbabwe .17 .23 .21 .25

Mean .64 .65 .68 .67
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Table 3: Percentage Change of Quadripartite Decomposition Indexes.

Productivity EFF - 1 TECH - 1 KACC - 1 HACC - 1

Country Change × 100 × 100 × 100 × 100

Argentina 4.6% -35.3 1.6 59.1

-36.1 0.0 26.5 29.4

Australia 42.7 8.8 17.3 11.8

3.2 15.8 12.9 5.8

Austria 95.1 -14.6 15.4 98.0

-5.9 15.3 58.6 13.4

Belgium 78.4 22.5 15.4 26.3

19.5 16.6 20.3 6.5

Bolivia 32.8 -18.5 5.0 55.0

-17.1 0.2 45.3 9.8

Canada 54.6 17.9 15.4 13.6

-4.6 18.5 15.9 18.0

Chile 16.6 -23.8 1.8 50.2

-26.1 0.0 24.2 27.0

Columbia 68.9 7.7 2.4 53.2

13.1 1.3 20.6 22.2

Denmark 39.1 -8.1 14.6 32.0

-8.2 10.6 25.6 9.0

Dominican Republic 51.8 -29.2 8.6 97.3

-33.4 0.4 74.6 30.0

Equador 80.9 -8.9 0.7 97.3

-4.8 2.4 33.4 39.0

Finland 96.2 46.0 14.7 17.2

0.8 23.2 14.3 38.4

France 78.3 3.8 16.5 47.4

2.5 17.9 24.3 18.7
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Table 3 (Continued).

Productivity EFF - 1 TECH - 1 KACC - 1 HACC - 1

Country Change × 100 × 100 × 100 × 100

Germany, West 70.7 16.3 15.4 27.1

7.5 18.6 26.7 5.7

Greece 129.5 4.2 5.7 108.4

10.6 6.7 47.8 31.5

Guatemala 28.5 -10.3 9.4 30.9

-11.6 0.3 23.9 17.0

Honduras 22.9 -8.5 6.8 25.7

-14.3 0.2 9.2 31.0

Hong Kong 251.1 120.2 2.3 55.8

116.4 0.0 15.7 40.2

Iceland 66.4 -14.1 4.7 85.0

-7.6 4.5 39.7 23.3

India 80.5 12.7 18.2 35.5

7.2 1.5 23.8 34.0

Ireland 133.1 12.6 4.2 98.6

22.2 3.4 52.2 21.0

Israel 86.1 31.7 5.3 34.2

30.3 2.7 14.5 21.6

Italy 117.4 30.3 14.0 46.4

31.9 19.1 20.2 15.1

Jamaica -3.6 -8.1 6.1 -1.1

-12.8 0.2 -14.3 28.6

Japan 208.5 3.6 14.9 159.3

9.9 15.0 107.6 17.6

Kenya 35.3 14.2 24.2 -4.7

19.2 1.7 -12.3 27.1
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Table 3 (Continued).

Productivity EFF - 1 TECH - 1 KACC - 1 HACC - 1

Country Change × 100 × 100 × 100 × 100

Korea, Republic of 424.5 30.7 7.1 274.6

36.7 0.7 143.8 56.2

Malawi 43.9 -8.8 4.7 50.8

10.5 0.9 14.1 13.0

Mauritius 57.0 3.6 9.5 38.4

-1.1 0.5 21.3 30.3

Mexico 47.5 -13.3 2.0 66.7

-17.6 0.0 21.5 47.2

Netherlands 51.5 4.5 13.7 27.4

-10.5 14.5 10.9 33.1

New Zealand 7.4 -16.2 14.0 12.5

-21.0 9.1 10.5 12.7

Norway 69.7 29.5 31.1 0.0

-17.4 40.8 0.0 45.9

Panama 32.9 -27.9 1.2 82.1

-27.4 0.0 33.0 37.6

Paraguay 63.2 0.0 12.0 45.8

2.3 1.5 19.6 31.5

Peru -16.1 -32.2 1.5 21.8

-38.4 0.0 -0.5 36.9

Philippines 43.8 10.1 7.9 21.0

2.7 0.5 3.1 35.2

Portugal 168.8 15.0 5.0 122.6

21.9 0.7 67.3 30.9

Sierra Leone -5.8 -37.5 0.4 50.0

-22.3 0.5 8.1 11.6
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Table 3 (Continued).

Productivity EFF - 1 TECH - 1 KACC - 1 HACC - 1

Country Change × 100 × 100 × 100 × 100

Spain 111.7 -14.9 8.7 128.9

-7.3 14.5 56.4 27.6

Sri Lanka 72.1 3.2 3.0 61.8

4.7 0.1 37.1 19.9

Sweden 36.0 -4.2 15.1 23.4

-14.6 16.6 18.6 15.2

Switzerland 38.7 5.8 27.4 2.9

-19.3 35.6 3.8 22.0

Syria 107.9 48.9 2.2 36.4

29.3 7.8 0.8 47.9

Taiwan 319.0 10.6 11.6 239.3

18.0 9.6 123.1 45.3

Thailand 194.7 28.6 12.4 103.7

25.6 1.1 80.6 28.6

Turkey 129.3 10.0 6.6 95.6

7.3 0.2 65.2 29.0

United Kingdom 60.7 -9.3 4.4 69.8

-1.0 2.8 38.1 14.4

U.S.A. 31.1 0.0 14.5 14.5

-9.9 8.6 11.1 20.5

Yugoslavia 88.1 -15.3 6.6 108.4

-15.5 0.4 71.9 29.0

Zambia -33.9 -29.4 16.0 -19.3

-31.0 1.0 -30.3 36.2

Zimbabwe 11.4 37.2 2.4 -20.8

19.3 0.1 -31.8 36.6

Mean 78.6 3.9 9.6 58.0

0.7 7.1 29.8 26.5
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Table 4: Distribution Hypothesis Tests

Null Hypothesis (H0) T-test Ten-percent Five-percent One-percent
statistics significance level significance level significance level

(critical value: 1.28) (critical value: 1.64) (critical value: 2.33)

1. f(y90) = g(y65) 4.46 H0 rejected H0 rejected H0 rejected

2. f(y90) = g(y65 × EFF) 4.58 H0 rejected H0 rejected H0 rejected

3. f(y90) = g(y65 × TECH) 3.09 H0 rejected H0 rejected H0 rejected

4. f(y90) = g(y65 × KACC) 1.76 H0 rejected H0 rejected H0 not rejected

5. f(y90) = g(y65 × HACC) 2.53 H0 rejected H0 rejected H0 rejected

6. f(y90) = g(y65 × EFF× TECH) 2.95 H0 rejected H0 rejected H0 rejected

7. f(y90) = g(y65 × EFF× KACC) 1.82 H0 rejected H0 rejected H0 not rejected

8. f(y90) = g(y65 × EFF× HACC) 2.47 H0 rejected H0 rejected H0 rejected

9. f(y90) = g(y65 × TECH× KACC) 0.79 H0 not rejected H0 not rejected H0 not rejected

10. f(y90) = g(y65 × TECH× HACC) 1.65 H0 rejected H0 rejected H0 not rejected

11. f(y90) = g(y65 × KACC× HACC) 0.45 H0 not rejected H0 not rejected H0 not rejected

12. f(y90) = g(y65 × EFF× TECH× KACC) 0.65 H0 not rejected H0 not rejected H0 not rejected

13. f(y90) = g(y65 × EFF× TECH× HACC) 1.17 H0 not rejected H0 not rejected H0 not rejected

14. f(y90) = g(y65 × EFF× KACC× HACC) 0.71 H0 not rejected H0 not rejected H0 not rejected

15. f(y90) = g(y65 × TECH× KACC× HACC) 0.13 H0 not rejected H0 not rejected H0 not rejected


