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Abstract 
The main purpose of this paper is to provide an introduction to artificial neural networks 
(ANNs) and to review their applications on efficiency analysis. Finally, a comparison of 
efficiency techniques in a non-linear production function is carried out. Our results 
suggest that ANNs are a promising alternative to traditional approaches, econometric 
models and non parametric methods such as data envelopment analysis (DEA), to fit 
production functions and measure efficiency under non-linear contexts.  
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1. Introduction 

A wide range of statistical and econometric techniques exists to apply in economics, 

where the complex reality must be modelled. Artificial neural networks (ANNs) are 

relatively new techniques that have been applied with success in a variety of 

disciplines: speech and image recognition, engineering, robotics, meteorology, 

banking, stock markets, etc.  

 

ANNs have its origins in the study of the complex behaviour of the human brain. 

McCulloch and Pitts (1943) introduced simple models with binary neurons. Then, 

Rosenblatt (1958) proposed the multi-layer structure with a learning mechanism based 

on the work of Hebb (1949), the so-called perceptron, and first neural networks 

applications began with Widrow (1959).  

 

However, Minsky and Papert (1969) pointed out that a two-layer perceptron was 

unable to solve the logical XOR (a basic non-linear problem). After a decay in neural 

networks researching during 70´s, the work by Rumelhart et al. (1986) had an 

important role in the growth of this technique. They rediscovered the most used 

learning algorithm, the so-called backpropagation algorithm (BP), together with the use 

of a three layer perceptron. This neural network was able to deal with non-linear 

problems.  

 

Although ANNs arose to model the brain, they have been applied when there is not 

theoretical evidence about the functional form. In this way, ANNs are data-based, not 

model-based.  

 

The paper is organized as follows. The second section provides an introduction to 

ANNs. Its advantages and drawbacks are revised too. The third part is dedicated to 

ANNs on efficiency analysis, where neural networks form a promising analysis tool 

together with known econometric models as stochastic frontier analysis (SFA) and non 

parametric methods such as data envelopment analysis (DEA). This section concludes 

with a review of some published papers about ANNs and efficiency. A simulation 

procedure is carried out in sections 4 and 5 to compare several efficiency techniques in 

a non-linear production function context. The final section of the paper offers 

conclusions and suggests areas for future research.  
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2. Artificial neural networks: an overview 

There is a vast literature about ANNs, basically in the empirical field, since middle 80´s. 

In this section theoretical background is supplied1. ANNs are normally arranged in 

three layers of neurons, the so-called multilayer structure: 

- Input layer: its neurons (also called nodes or processing units) introduce the 

model inputs.  

- Hidden layer(s) (one or more layers): its nodes combine the inputs with weights 

that are adapted during the learning process. 

- Output layer: this layer provides the estimations of the network. 

 

Another breaking point in the neural history was 1989. Several authors published this 

year that ANNs are universal approximators of functions (Carroll and Dickinson, 1989; 

Cybenko, 1989; Funahashi, 1989; Hecht-Nielsen, 1989; Hornik et al., 1989; White, 

1990). Later, it was demonstrated that ANNs could also approximate their derivates 

(Hornik et al., 1990). These results justified the forward success reached in 

applications. Scarselli and Chung (1998) provide an actual and complete review of this 

property. 

 

Among the different networks, the feedforward neural networks or multilayer 

perceptron2 (MLP) are the most commonly used. In these networks, the output3 is 

function of the linear combination of hidden units activations, each of one is a non 

linear function of the weighted sum of inputs. In this way, from: 

εθ += ),(xfy      (1) 

                                                 
1 For more details it can be consulted Hertz et al. (1991), Bishop (1995) and Ripley (1996). 
White (1989a) exposes a detailed statistical analysis of the neural learning, BP included. In 
Cheng and Titterington (1994) ANNs and traditional statistical models are shown together (with 
discussion). Kuan and White (1994) exhibit ANNs as non linear models, with an asintothic 
theory of the neural learning. Zapranis and Refenes (1999) review the model identification and 
selection with many examples from financial economics. They conclude with an interesting case 
of study totally developed. Zhang et al. (1998) revise the enormous literature about forecasting 
with ANNs. 
2 Other networks are Radial Basis Functions Networks, relate to cluster and principal 
component analysis. The Recurrent Networks are extensions of the feed-forward networks, 
because they incorporate feedbacks, such as the Jordan and Elman networks (Kuan and Liu, 
1995).  
 
3 For simplicity, we consider one output, but it is easy to extend to various outputs. 
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where x is the vector of explanatory variables, ε the error component (assumed 

independently and identically distributed, with zero mean and constant variance), f(x,θθ) 

= ŷ  is the unknown function to estimate from the available information, the network 

consists of: 
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where: 

ŷ :   network output  

F :  output layer activation function 

G :  hidden layer activation function  

n :   number of input units 

m :  number of hidden units   

x  :  inputs vector (i =1...n) 

θ  :  weights vector (parameters): 

oβ : output bias 

jγ :  hidden units biases (j=1...m) 

ijα : weight from input unit i to hidden unit j 

jβ : weights from hidden unit j to output 

From (2), it can be observed that MLPs are mathematical models often equivalent to 

traditional models in econometrics such as linear regression, logit, AR models for time 

series analysis..., but with specific terminology and estimation methods (Cheng and 

Titterington, 1994). For example, in time series analysis, it is possible to predict the 

value of a variable y at the moment t, yt, from past observations, yt-1, yt-2,  yt-3, ...; then 

the network is a non linear autoregressive model:   









++= ∑ ∑

= =
−

m

j

n

i
jijitjot yGFy

1 1

)(ˆ βαγβ      (3) 

Figure 1 represents a MLP with three layers and one output: 
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Figure 1. Single-output, three layer Feed-forward neural network -MLP(n,m,1)- 

 

The activation function for output layer is generally linear. The logistic function is used 

for classification purposes. The non linear feature is introduced at the hidden transfer 

function. From the previous universal approximation studies, these transfer functions 

must have mild regularity conditions: continuous, bounded, differentiable and 

monotonic increasing. The most popular transfer function is sigmoid or logistic4, nearly 

linear in the central part. The transfer functions5 bound the output to a finite range, [0,1] 

in the sigmoidal function: 

[ ] ℜ∈
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=→ℜ − a
e

aGG
a

,
1

1
)(1,0:      (4) 

Augmented single layer networks incorporate direct links between input and output 

layers with a linear term. Kuan and White (1994) explained that “given the popularity of 

linear models in econometrics, this form is particularly appealing, as it suggests that 

                                                 
4 In networks without hidden layer, the output can be interpreted as “a posteriori” probabilities -
relate to discriminant functions-. With hidden layer, we can interpret the outputs as conditional 
probabilities (Bishop, 1995). 

5 Another frequent function is tanh: [ ] aeae

aeae
aG −+

−−
=−⇒ℜ )(1,1 . This function differs from 

sigmoidal (4) in a linear transformation, 1)(2)2/(tanh −= asigma , and occasionally it can 
achieve faster convergence (Bishop, 1995).  
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ANN models can be viewed as extensions of, rather than as alternatives to, the familiar 

models”: 
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From (5) note that if mjj ...1,0 ==β , and if F is linear, the network is a linear model. 

Hence White (1989a) implemented a neural network test for non linearity. This test is 

compared with other similar tests by Lee et al. (1993). 

Architecture selection is one major issue with implications on the empirical results and 

consists of: 

1) Data transformation. 

2) Input variables and number, n. 

3) Hidden units number, m. 

4) Hidden and output activation function. 

5) Weight elimination or pruning. 

 

All are open questions today and there are many answers to each one. Data 

transformation is a common issue: [0,1] or [a,b] normalization, detrended and/or 

deseasonalized data in time series analysis... The hidden units number is determined 

by a trial-error6 process considering m = 1, 2, 3, 4... Finally, it is common to eliminate 

“irrelevant” inputs or hidden units (White, 1989b). 

 

Another critical issue in ANNs is the neural learning or model estimation, based upon 

searching the weights that minimize some cost function such as square error: 

( )[ ]2),(min θ
θ

xfyE −
Θ∈

        (6) 

The most popular process is the BP algorithm: 

)()()1( k
E

kk
θ

ηθθ
∂
∂

+=+        (7) 

[ ]),(),()()1( θθηθθ xfyxfkk −∇+=+      (8) 

                                                 
6 Common criterions for model selection are SIC (Schwartz Information Criterion) or AIC (Akaike 
Information Criterion). 
 



 7

BP is an iterative process (k indicates iteration). Parameters are revised from the error 

function (E) gradient by the learning rate η, constant or variable. The error propagates 

backwards to correct the weights until some stop criterion –iteration number, error...- is 

reached. BP has been criticized because of slow convergence, local minimum problem 

and sensitivity to initial values and η. Schiffmann et al. (1992) proposed some 

improvements7. 

 

After neural training (training set), new observations (validation and/or test sets) are 

presented to the network to verify the so-called  generalization capability. Here it is 

relevant the statistical classical bias-variance dilemma (Geman et al., 1992) or 

overfitting problem. 

 

ANNs have advantages, but logically they also have several drawbacks (figure 2). 

Therefore, ANNs can learn from experience and can generalize, estimate, predict, with 

few assumptions about data and relationships between variables. Hence, ANNs have 

an important role when these relationships are unknown (non parametric method) or 

non linear (non linear method), provided there are enough observations (flexible form 

and universal approximation property). However, the flexibility can conduct to learn the 

noise, and data are not very large in economic series. These restrictions promotes the 

search of parsimonious models. Finally, algorithm convergence and trial and error 

process are some relevant drawbacks too.  

l universal approximators
l flexibility
l dynamic
l inference (confidence interval

and test)

l developing theory
l algorithm convergence

l trial and error
l model noise (in addition to 

signal)

l enough observations

 
Figure 2. ANNs advantages and drawbacks 

 

                                                 
7 One alternative consists of adding a term called momentum: 

)1()()()1( −∆+
∂
∂

+=+ kk
E

kk θµ
θ

ηθθ . 
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3. ANNs and efficiency 

Efficiency analysis (Farrell, 1957) is a relevant field in economics. The appropriate use 

of few resources with the available technology is referred to as technical efficiency. 

When the technology is not fixed, input combination is searched, and the problem is 

the so-called allocative efficiency. Fried et al. (1993) and Álvarez (2001) are excellent 

references for a review of the techniques and applications in the measurement of 

productive efficiency. 

 

In this analysis, a key issue is the frontier function estimation. This estimation can be 

carried out following two alternatives, parametric and non parametric techniques: 

− Parametric methods: a functional form is adopted such as Cobb-Douglas, translog, 

CES, Leontief generalized.... Parametric techniques can be deterministic or 

stochastic: 

ü Deterministic: frontier deviations are explained because of inefficiency. 

ü Stochastic: frontier deviations are decomposed into noise –usually semi-

normal- and inefficiency components (Aigner et al., 1977). 

Estimations can be done by COLS (corrected ordinary least squares), or maximum 

likelihood. In COLS independent term is corrected by adding the largest possitive error 

from initial OLS. 

− Non parametric techniques: no functional form is assumed8: 

ü Data envelopment analysis (DEA), Charnes et al. (1978). A deterministic 

frontier is formed by enveloping the available data using mathematical 

programming. Constant/variable returns to scale and input/output combinations 

convexity are common assumptions. 

Thus, from the following general expression: 

iii ufy −+= εθ),( ix         (9) 

where 0≥iu  is technical inefficiency, we can adopt the network (2) to estimate the 

frontier. Costa and Markellos (1997) proposed two procedures: a) similar way than 

COLS after neural training; b) by an oversized network until some signal to noise ratio 

is reached. Then, inefficiency is determined as observation-frontier distance. 

 

                                                 
8 Another non parametric technique is FDH, Free Disposal Hull. 
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ANNs are flexible, non parametric (free-model) and stochastic techniques, and it is 

theoretically possible to make statistical inference such as interval confidence9 to 

inefficiency indexes. However, ANNs have not theoretical studies in efficiency analysis 

and few applications have been made in this field. Moreover, results are not easily 

interpretable and many technical resources are needed. As we expected, no technique 

is superior to the rest, and the nature of the particular problem will determine the most 

appropiate one. The comparison of efficiency measurement approaches is summarized 

in table 1 (partially based on Costa and Markellos, 1997): 

 

Table 1. Efficiency measurement techniques 

Comparative Factor Econometrics DEA ANNs 

Assumptions: functional form, data... Strong Medium Low 

Flexibility Low-Medium Medium High 

Theoretical basis Strong Strong Medium 

Theoretical studies and applications on 
Efficiency 

Yes Yes Few 

Statistical significance Yes Yes Yes 

Interpretability of results Medium Low Medium 

Estimation / prediction High No High 

Costs: software, estimation time... Low Low High 

 

The following table summarizes the principal publications about ANNs and efficiency: 

 

Table 2. Summary of publications about ANNs and efficiency 

Joerding et al. (1994) 
Production function 

§ Theoretical properties imposition about technology –
positivity, monotonicity, quasiconcavity-.  

§ ANNs similar to Fourier flexible form. 

§ Simultaneous estimation of production function and 
inputs demand system. 

§ Not possible to impose Constant Returns to Scale in all 
x because linear activations –not universal 
approximation-. Approximation by adding a term to 
squares sum. 

 

 

                                                 
9 Confidence intervals in general neural network framework are proposed and revised by Hwang 
and Ding (1997), De Veaux et al. (1998) and Rivals and Personaz (2000). 
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Table 2 (continued) 

Costa and Markellos 
(1997) 
Transport efficiency 

§ Application: London Underground, time series data, 
annual 1970-1994, 2 inputs –fleet and workers- and 1 
output -kms.- 

§ Synthetic sample to frontier estimation –adding noise 
N(0,σ2) to the inputs-. 

§ ANNs results similar to COLS and DEA; however ANNs 
offer advantages at decision making, impact of constant 
Vs variable returns over scale, congestion areas.  

Guermat and Hadri 
(1999) 
Stochastic frontier 
functions  

§ Monte Carlo simulation. 

§ Data from Cobb-Douglas, CES and generalized 
Leontief. 

§ Functions: ANNs, Cobb-Douglas, translog, CES and 
Leontief. 2 inputs. 

§ Comparison: mean, maximum and minimum efficiency, 
estandard deviation, correlation between real and 
estimated efficiencies. 

§ ANNs outperform Translog and Cobb-Douglas when 
translog function is simulated. No differences when 
Leontief or CES are simulated. 

§ Functional form mis-specification –with ANNs and 
translog- not affect to mean, maximun and minimum 
efficiency, but lead to incorrect firm efficiency and 
ranking. 

Santín and Valiño (2000) 
Education efficiency 

§ Two-level model: student – production function is 
estimated by ANNs- and school. 

§ Application: data from 7454 students, 12 inputs. 

§ ANNs superior to econometric approach at frontier 
estimation. 

Fleissig et al. (2000) 
Cost functions 

§ Comparison: ANNs, Fourier flexible form, AIM –
asymptotically ideal model-, translog and generalized 
Leontief. 

§ Data: simulated from CES and generalized Box-Cox. 

§ ANNs worst than Fourier –not to impose simmetry and 
homogeneity like Fourier and AIM-. Convergence 
problems when impose these properties to ANNs.  

 

Finally, are ANNs “efficient” techniques in efficiency analysis today? Clearly, much 

work remains to be done in this area. At the present time, the answer is uncertain. The 

future answer to that question will be the result of the balance between costs 

(knowledge, model complexity, algorithms, economic interpretation, ...) and benefits 

(better results, decision making, flexibility…). 
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4. The Experiment 

In order to examine the performance of efficiency techniques, let F(x) be the further 

one input-one output non-linear continuous production function: 

2









e

x
   if x ∈ [0, e]       

Ln (x)   if x ∈ [e, e2] 

F(x) =                                                                                                                           (10) 

A * COS (x-e2) + 2 – A if x ∈ [e2, e2 + π], where A = 0.25 

Ln (x - 2π)   if x ∈ [e2 + π, 26] 

 

Through this production function (see figure 3) we introduce all returns to scale 

possibilities. The first part of (10) presents increasing returns to scale (IRS). Second 

and fourth sections show decreasing returns to scale (DRS). Third section presents a 

not common theoretical technology where an increase in one input implies a decrease 

in one output. According to Costa and Markellos (1997) we will call this phenomenon a 

“congested area”.  

 

INPUT(X) ~ U(0;26)

3020100

O
U

T
P

U
T

(Y
)

3,5

3,0

2,5

2,0

1,5

1,0

,5

0,0
IRS 

DRS 

Congested area 

 

Figure 3. The Non-Linear Production Function 
 

However, our intention here is to illustrate what occurs with efficiency estimations when 

our “traditional linear models” are not the real production functions for the multi-input 
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and multi-output specification. Here we are thinking in a large group of others non-

linear relationships possibilities beyond those outlined in economic theory with a soft 

and constant curvilinear increasing and decreasing returns to scale into our production 

process, not only between one input and one output even between different inputs. 

Should we consider any chance for the existence of this kind of technology? 

 

Costa and Markellos (1997) found this kind of non-linear relationship in their analysis of 

the production function in London underground from 1970 to 1994 with a MLP. They 

showed the existence of a negative slope between inputs (fleet size and workers) and 

outputs (millions of trains km. per year covered by fleet). Baker (2001) concludes in his 

empirical educational production function analysis with different kinds of neural 

networks, how substantial performance gains can be achieved for class sizes declining 

from 14 to 10 students, but also increasing class size (reducing our theoretical input) 

from 18 to 20 students, meanwhile a linear model only detects a slight downward 

slope.  

 

Moreover, many educational research articles10 have found significant coefficients with 

the “wrong sign” (e.g. higher per pupil district expenditure or higher teacher education 

associated with lower student test scores). Eide and Showalter (1998) and Figlio 

(1999) conclude that traditional restrictive specifications of educational production 

functions fail to capture potential non-linear effects of school resources. Although they 

employ more flexible specifications for approximating educational production function 

like quantile regression and translog function respectively with good results over linear 

and homothetic relationships, why do not explore the possibility of others non-linear 

models? 

 

Returning to our experiment, we consider four different scenarios with 50, 100, 200 and 

300 decision making units (DMUs). Pseudo-random numbers uniformly distributed 

across the input space are generated for each scenario: (0,26)  U~X    

   (11) 

Afterwards, we calculate the true output that is also the true production frontier showed 

in figure 4 and we generate inefficiencies through injecting different quantities of noise. 

Statistical noise is assigned only to the output in the next manner: 

                                                 
10 See Hanushek (1986) for a survey. 
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by)-y ay, U(y~y +*     (12) 

where y* will be the observed output, a= 0.05 if b= 0.1, 0.2, 0.3; and a=0.15 if b= 0.35, 

0.6, and we measure true technical efficiency (te) as follows: 

y)/ (y te *=                      (we allow for te>1)    (13) 

For the sake of simplicity, we assume data is free of noise term and all differences 

between true and observed output are inefficiencies11. However, we allow for te>1 with 

the aim of representing the existence of outliers. 

 

For each scenario we compute technical efficiency for OLS, COLS with SPSS 

software, SFA with FRONTIER 4.1 (Coelli, 1996b), DEAcrs and DEAvrs with DEAP 2.1 

(Coelli, 1996a) and MLP with S-PLUS software.  

 

Previous to train the MLPs, we split data in two parts, training and validation sets12. 

Normally, the model is developed on the training set and tested on the validation set. 

After an exploratory analysis, we test how error differences for training and validation 

patterns was almost identical so we decide to join in-sample (training set) and out-of-

sample (validation set) estimations for computing estimated output. We performed a 

search from three to eight neurons in one hidden layer with learning coefficient and 

weight decay fixed with 0.5 and 0.001 values respectively. In order to prevent 

overfitting, we stopped training when 500 iterations was reached. Neural networks 

validation sets estimations closer to y* (MLP Best) were selected for comparisons with 

remaining techniques13. 

 

                                                 
11 Zhang and Bartels (1998) also assume free of noise data. Nevertheless, we would obtain 
identical results in this experiment if we decompose the error term in a normal error variable iid 
u ~ N(0, δ2) and in a half normal efficiency variable iid v~ N(0, δv

2) 
12 We choose a typical rule of thumb on a 80:20 ratio. 
13 A different quite interesting alternative was proposed by Hashem (1993) through combining 
all trained neural networks according with its performance, i.e. a higher weight in final result for 
best fitting in validation sets. 
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5. The Results 

We calculate Pearson’s correlation coefficients14 between estimated and true efficiency 

scores for all techniques over all scenarios (table 3). 

 

According with results displayed in table 3, MLP results best in all cases except one. 

Note that compared with others techniques, MLP obtains robust estimations with few 

variations respect true efficiency over number of DMUs and injected noise. MLP is 

superior to traditional techniques when underlying technology is under moderate noise 

together with more DMUs. However, our results show how DEA with variable returns to 

scale is a little superior to ANN with a lot of efficiency-noise and few DMUs. 

 

Table 3. Pearson’s correlation coefficients between estimated and true efficiency 

scores for different techniques, number of DMUs and different quantities of 

injected noise. 

50 DMUs OLS COLS SF DEAcrs DEAvrs MLP_BEST
50(15) 0.180 0.104 0.441 0.297 0.431 0.788
50(25) 0.230 0.249 0.294 0.119 0.296 0.838
50(35) 0.464 0.405 0.581 0.419 0.714 0.804
50(50) 0.584 0.575 0.630 0.378 0.798 0.873
50(75) 0.608 0.520 0.443 0.473 0.895 0.887

100 DMUs OLS COLS SF DEAcrs DEAvrs MLP_BEST
100(15) 0.145 0.146 0.096 0.090 0.183 0.897
100(25) 0.255 0.211 0.239 0.286 0.293 0.751
100(35) 0.297 0.237 0.332 0.357 0.498 0.919
100(50) 0.496 0.490 0.321 0.345 0.661 0.951
100(75) 0.557 0.517 0.474 0.543 0.728 0.855

200 DMUs OLS COLS SF DEAcrs DEAvrs MLP_BEST
200(15) 0.184 0.205 0.139 0.076 0.249 0.816
200(25) 0.326 0.322 0.258 0.187 0.439 0.961
200(35) 0.377 0.329 0.280 0.348 0.479 0.947
200(50) 0.554 0.557 0.331 0.365 0.686 0.924
200(75) 0.685 0.705 0.337 0.483 0.794 0.934

300 DMUs OLS COLS SF DEAcrs DEAvrs MLP_BEST
300(15) 0.214 0.248 0.029 0.026 0.302 0.887
300(25) 0.374 0.332 0.388 0.280 0.457 0.935
300(35) 0.447 0.409 0.417 0.316 0.587 0.975
300(50) 0.606 0.607 0.663 0.319 0.736 0.935
300(75) 0.759 0.722 0.804 0.541 0.857 0.973
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In figure 4, we illustrate a particular example for 300 DMUs and when 25% of uniform 

noise is injected in true output. After drawing true frontier and all efficiency estimations 

provided by the different approaches, we observe how MLP is able to find out the non-

                                                 
14 We also compute Spearman´s rank correlation coefficients with similar results. 
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linearity contained in data. We see that MLP is an average performance technique, 

although we could do MLP becomes a frontier moving upwards the curve up to the 

highest residual as we usually do with COLS.  

 

Through figure 4, we can also see how ANNs are a good tool, as noted by Lee et al. 

(1993), to do an exploratory analysis for searching the existence of non-linear 

relationships between inputs and outputs before applying a conventional approach and 

avoiding possible functional form misspecifications. Moreover, this possibility increases 

exponentially as long as we augment number of inputs, outputs and contextual 

variables implied in our production process. 
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Figure 4. Production functions estimated by different techniques 
 

 

5. Conclusions  

The results of our simulations confirm that MLP can be used as an alternative tool to 

econometric and DEA based-techniques for measuring technical efficiency. Another 

conclusion is that no methodology is always the optimal one for all situations. The 

benefits of the MLP are its high flexibility and its freedom of a priori assumptions when 
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estimating a noisy non-linear model that allow us to prevent functional forms 

misspecifications and to test if there exist an underlying structure in the available data. 

 

Although we believe that ANNs can be a potential alternative for measuring technical 

efficiency and outperform other techniques results when the production process is 

unknown, it seems reasonable more applied and comparative research. On one hand, 

although ANNs are increasingly common in a broad variety of domains in economics, 

there is still a lack of both theoretical and empirical work in efficiency analysis. On the 

other hand, here we only concentrate on MLP approach but there are many neural 

models. Further research should explore the abilities and drawbacks of others ANNs 

approaches like Bayesian Neural Networks or Generalized Regression Neural 

Networks versus backpropagation in measuring efficiency through Monte Carlo 

experiments. 
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