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Abstract 
This contribution is the first systematic attempt to develop a series of nonparametric, 
deterministic technologies and cost functions without maintaining convexity. Specifically, 
we introduce returns to scale assumptions into an existing non-convex technology and, 
dual to these various technologies, define non-convex cost functions. These non-convex 
cost functions are never lower than their convex counterparts. Both non-convex 
technologies and cost functions (total, ray-average and marginal) are characterised by 
simple, closed form expressions. Furthermore, a local duality result is established 
between a local cost function and the input distance function. Finally, nonparametric 
goodness-of-fit tests for the convexity axiom are developed. This is a first step towards 
making convexity a statistically testable hypothesis. 
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1. Introduction 
 

In applied production analysis, the boundary of technology nowadays plays a prominent 

role in efficiency and productivity measurement (Lovell (1993)). This boundary can be 

estimated via several methodologies. One well-known method is the use of 

nonparametric, deterministic technologies and support functions. The early 

nonparametric test literature on production (e.g., Diewert and Parkan (1983), 

Varian (1984)) focused on directly testing “revealed behavioural” conditions (e.g., 

Weak Axiom of Cost Minimisation) that are finite in nature on a finite amount of 

observations. Realising that the production possibilities set is unobservable while 

producer’s objective functions are, this approach leads to the determination of inner and 

outer approximations of technologies that contain the true but unknown frontier. More 

recently, the introduction of efficiency measures into these nonparametric frontier 

methodologies has led to extensive efficiency and productivity decompositions. For 

instance, while already Farrell (1957) measured technical and allocative efficiency, Färe, 

Grosskopf and Lovell (1983, 1985) separate technical efficiency into scale efficiencies, 

congestion as well as pure technical efficiencies. 

 

A familiar result in nonparametric production analysis is that a convex monotone hull 

provides an inner bound approximation to the true technology (Varian (1984)). 

Probably less known is that a non-convex monotone hull, known as the Free Disposal 

Hull (FDH) (see Deprins, Simar and Tulkens (1984)), is the closest inner approximation 

of technology so far (Färe and Li (1998)). This contribution is the first attempt to 

systematically extend this non-convex technology by including scaling laws, developing 

corresponding non-convex cost functions, and establishing a duality result between 

both non-convex technologies and cost functions. Duality results show that these non-

convex technologies with standard returns to scale assumptions imply non-convex cost 

functions that are not lower than their convex counterparts. In addition, both types of 

cost functions only coincide under special conditions. While convexification is 

innocuous when limited to the input set, this is no longer true when extended to the 

input-output space. Furthermore, this work offers a framework to test for convexity. 

The remainder of this introduction develops the five main goals of the contribution as 

well as potential reasons to test for the convexity axiom in applied production analysis. 
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Main Goals of the Contribution 

A first major goal of this paper is to extend this non-convex FDH technology by 

integrating traditional returns to scale assumptions without invoking convexity at all (in 

contrast to recent work that only partially relaxes convexity)1. A first key result is that this 

integration of returns to scale assumptions into this non-convex FDH creates the closest 

inner bound non-convex approximations to the true technology allowing for various 

scaling laws. 

 

Since dropping convexity altogether precludes an appeal to traditional duality results, a 

second main goal is to develop non-convex cost functions corresponding to these non-

convex technologies. These need to be compared to the traditional, empirical cost 

functions that impose general (not partial) convexity. This leads to a second central 

pair of results. Traditional general convex cost functions are always lower or equal than 

these new, non-convex cost functions. In particular, both types of cost functions are 

only identical (hence convexity harmless) under a set of strong assumptions: constant 

returns to scale and a single output.  

 

The leap from partial to general convexity when moving from theory to empirical 

application may have far reaching consequences that so far escaped notice. Though 

tests for monotonicity and concavity of cost and production functions are widely applied 

ever since the first study finding divergences between primal and dual approaches 

(Appelbaum (1978)), one cannot exclude that the difference between the theoretical 

assumption of convexity of the input set and the general convexity maintained in all 

empirical methodologies is another source of potential conflict between primal and dual 

results. This adds another potential problem to the list of conflicts between theory and 

practice in production (e.g, Love (1999)). 

 

A third major goal is to come up with a duality result that allows inferring the original 

non-convex technologies from these non-convex cost functions. A third central result of 

this contribution is that we manage to prove a new, local duality result between non-

convex technologies obeying different scaling laws and the corresponding non-convex 

cost functions. While this local duality result is the best one can hope for in a non-

                                                           
1 See, e.g., Bogetoft (1996), Bogetoft, Tama and Tind (2000) and Färe, Grosskopf and Njinkeu 
(1988). Färe, Grosskopf and Lovell (1994: 52-53) link most of the different piecewise technologies 
presented in the literature. 
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convex setting, it nevertheless forms the basis for completely reconstructing the 

original, non-convex technologies making use of enumerative principles. 

 

One may conjecture that the relaxation of convexity in applied production analysis has 

been hampered by the fear of computational complexity. Therefore, a fourth major goal 

is to dig into this more practical issue of some relevance for empirical analysis. It turns 

out that these non-convex nonparametric production and cost frontiers create little 

computational problems. In a fourth central series of results, we derive simple closed-

form expressions to characterise both technology and (total, marginal and ray-average) 

cost functions, making use of implicit enumeration algorithms based upon vector 

comparisons. 

 

A final goal of this contribution is to offer a framework for testing the convexity axiom. 

These tests are couched in the framework of the recent efficiency measurement 

literature. Of course, minimal axioms are not only important when evaluating efficiency, 

since the volumes of technology and cost correspondence directly affect the amount of 

inefficiency one can reveal (Grosskopf (1986)), but are of equal importance for all 

traditional purposes of economic analysis. Exploiting the relationship between efficiency 

measures and goodness-of-fit measures used for hypothesis testing (Färe and 

Grosskopf (1995), Varian (1990)), we derive nonparametric tests for the convexity 

hypothesis for both technologies and cost functions.  

 

Our contribution is motivated by the conviction that empirical production analysis should 

build upon minimal axioms. This simply responds to a suggestion of Fuss, McFadden 

and Mundlak (1978: 223): “Given the qualitative, non-parametric nature of the 

fundamental axioms, this suggests […] that the more relevant tests will be 

non-parametric, rather than based on parametric functional forms, even very general 

ones.” By dropping convexity altogether, the non-convex production and cost models 

described in this work can differentiate sharply between the effects of convexity and 

returns to scale assumptions on economic analysis.  

 

Why Test for Convexity? 

While convexity is traditionally invoked in economics, its use in production theory and 

in efficiency gauging in particular is questionable. We first develop two theoretical 
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arguments. Next, we add some arguments from an empirical, statistical and managerial 

viewpoint. 

 

First, convexity is difficult to justify as a general property of technologies. Farrell (1959: 

380) points to indivisibilities and economies of scale as sources of non-convexities and 

adds that “the onus of proof rests on those who deny their existence”. Allais (1977) 

confirms Farrell’s arguments and adds a few of his own: in particular, he favours local 

convexity, but rejects global convexity.2 Shephard (1970: 15) interprets convexity solely 

in terms of time divisibility of technologies and sees no other justification for its use. 

Moreover, recent theoretical developments have dispensed with convexity in deriving 

essential results regarding, for instance, the existence of general equilibrium (e.g., 

Brown (1991)). Despite this theoretical attention devoted to non-convexities in 

production, no empirical methodology is available to handle these non-convexities.  

 

In addition to these theoretical objections, there is some recent empirical evidence that 

non-convex costs matter in manufacturing and could explain the volatility of production 

relative to sales. For instance, Hall (2000) and Ramey (1991) find non-convex costs in 

automobile industry due to changes in the chosen number of shifts and the eventual 

shutting down of plants for a week at the time. Without entering into long-standing 

controversies, it seems clear that these findings are to some extent in line with 

arguments advanced by engineering production function advocates that engineering 

processes only under very stringent circumstances yield nicely behaved (e.g., convex) 

technologies (Wibe (1984)).  

 

While some may question the validity of these general arguments, probably few would 

deny our ignorance with respect to public sector technologies in particular. Moreover, 

since prices are often lacking, performance gauging in the public sector is necessarily 

limited to technical rather than allocative efficiency. Under these circumstances, a 

detailed knowledge of technology is indispensable and convexity may be questionable 

(Bös (1988)). 

 
                                                           
2 He is even more severe in his judgement when stating, “this omission [of discussing convexity] 
is to be found in all the contemporary literature. I do not hesitate to say that it is deliberate, for 
even a limited discussion of the postulate of general convexity would rapidly lead to the 
inevitable conclusion that this postulate cannot be accepted” Allais (1977: 188). Also Koopmans 
(1957) called the widespread use of convexity in production theory a matter of analytical 
convenience. 
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Second, the at times harmless convexification of production possibility sets when 

developing dual value functions may have led to misinterpretations about the role of 

convexity. Focusing on the cost function -the main interest of this contribution- 

convexity is harmless if and only if convexity of the input set is maintained (e.g., Varian 

(1992)). Duality implies that one can reconstruct the input set underlying the cost 

function. Reconstructed and original input sets are identical when the original input set 

is convex and monotonic. Otherwise, the convexified and monotonised reconstruction 

of the input set is a superset of the eventual non-convex or nonmonotonic original input 

set. But, both original and reconstructed input sets always have the same cost 

functions. Therefore, no economic information is lost when ignoring eventual non-

convex or nonmonotonic (parts) of technology.  

 

However, there are two problems with imposing partial convexity. First, the doubts 

raised about convexity in general hold a fortiori with respect to partial convexity. 

Second and more importantly, most empirical methodologies impose general 

convexity, not partial convexity. Imposing general convexity, there is no guarantee that 

non-convex parts of technology are irrelevant for determining minimum costs for given 

input prices. It turns out that non-convex minimal cost levels corresponding to non-

convex technologies are never situated below the corresponding general convex cost 

levels. Furthermore, both types of cost functions only coincide under very specific 

conditions. This consequence of imposing general convexity in empirical specifications 

has largely escaped notice. Henceforth, general convexification is not innocuous when 

defining technologies and cost functions, but ideally requires testing. 

 

Though empirical production analysis is still dominated by convex technology and cost 

specifications, the non-convex FDH model has proven useful from empirical, statistical 

and managerial viewpoints.  

 

First, it contributed to empirically documenting the importance of convexity in shaping the 

volume of the production possibility set and the ensuing inefficiency. For example, 

Cummins and Zi (1998) systematically compare a wide range of parametric and 

nonparametric methodologies and confirm that efficiency results are consistent in terms 

of ranking among models of the same “family”, that there can be large differences 

between parametric and nonparametric models, and –crucial for our argument- that 

nonparametric convex and FDH models differ widely: technical inefficiency is only about 
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2% on FDH while it amounts to about 40% on nonparametric convex technologies. This 

divergence is alarming when realising that regulators recently started integrating frontier 

benchmarks in their policies. Last but not least, FDH efficiency scores tend to correlate 

somewhat better with conventional performance measures (e.g., return on equity) than 

scores estimated using nonparametric convex frontiers. 

 

Second, FDH has attractive statistical properties. Imposing free disposability only, it is a 

consistent estimator for any monotone boundary, although its rate of convergence is 

small (Simar and Wilson (2000)). When technology is convex, which ideally requires 

testing, then it is possible to improve the small sample error of FDH by, either using 

information on its asymptotic distribution of efficiency estimates, or by simulated 

(bootstrapped) empirical distributions. In addition, asymptotically there is no reason for 

imposing convexity: (i) when technology is truly convex, the FDH estimator converges to 

the true estimator though its convergence is notably slower than the convex estimator; (ii) 

while a convex model causes specification error when the true technology would be non-

convex. The same arguments apply to the cost functions too.  

 

Third, scattered in the literature, there is some evidence that managers question the 

validity of convexity in efficiency measurement (e.g., Epstein and Henderson (1989)). 

They have difficulties accepting that relative performance is determined by projections 

onto hypothetical piecewise linear combinations, whose feasibility cannot be observed. 

 

Having developed these theoretical and empirical reasons for questioning convexity, this 

contribution unfolds as follows. Section 2 introduces basic production axioms and defines 

non-convex and convex nonparametric, deterministic frontier technologies. Section 3 

derives non-convex total, marginal and ray-average cost functions corresponding to 

these technologies. Section 4 establishes and interprets a local duality result between 

these non-convex technologies and their corresponding cost functions and defines 

general, nonparametric tests for the impact of convexity conditional on a scaling law. 

Then, Section 5 introduces specific nonparametric tests for the impact of convexity into 

an existing taxonomy of efficiency concepts developed by Färe, Grosskopf and Lovell 

(1983, 1985). A brief empirical illustration is added in Section 6. A final section concludes 

and provides directions for future research.  
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2. Non-convex technologies: axioms and formulations 

 

Efficiency is measured using deterministic, nonparametric technologies based on activity 

analysis (see Koopmans (1951)). Production technologies are based on K observations 

using a vector of inputs nx +ℜ∈  to produce a vector of outputs my +ℜ∈ . Technology is 

represented by its production possibility set T = {(x,y): x can produce y}, i.e., the set of all 

feasible input-output vectors. The input set L(y) denotes all input vectors x producing the 

output vector y, i.e., L(y) = {x: (x,y) ∈  T}. The output set P(x) is defined as the set of all 

output vectors y that can be obtained from the input vectors x, i.e., P(x) = {y: (x,y) ∈  T}. A 

final convenient characterisation of technology for ∀ (x,y) ∈  T is the input distance 

function:  

( ) { }




=∞+
≠∈≥

=
0if

,0if),/(,0:max
,

y
yTyx

yxDi

θθθ
   (1) 

Our contribution needs the following assumptions on technology: 

(A.1) No free lunch ((x,y) ∈  T ∧  x = 0 ⇒  y = 0) and inaction is feasible ((0,0) ∈  T). 

(A.2) T is closed. 

(A.3) Strong or free disposal of inputs and outputs: (x,y) ∈  T ∧  (x′,-y′) ≥ (x,-y) ⇒  (x′,y′) 

∈  T. 

(A.4) T exhibits: 

(i) Constant Returns to Scale (CRS) when δT ⊆  T, ∀ δ > 0; 

(ii) Non-Increasing Returns to Scale (NIRS) when δT ⊆  T, ∀ δ ∈ [0,1]; 

(iii) Non-Decreasing Returns to Scale (NDRS) when δT  ⊆  T, ∀ δ ≥ 1; 

(iv) Variable Returns to Scale (VRS) when (i), (ii) and (iii) do not hold. 

(A.5) T is convex. 

 

Assumptions (A.1) and (A.2) are weak mathematical regularity assumptions. Strong or 

free disposability of inputs (outputs) means that inputs (outputs) can be wasted without 

opportunity costs. Specific assumptions regarding the returns to scale of technologies, 

i.e., the way the production process can be scaled up and down for each observation, 

are made in (A.4). The crucial question we focus on is the usefulness of the traditional 

convexity assumption (A.5). Several non-parametric technologies have been derived 
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from these axioms.3 The non-convex Free Disposal Hull satisfies (A.1) to (A.3) and (A.4–

iv). Convex technologies satisfying (A.1) to (A.5) have been defined (Färe, Grosskopf 

and Lovell (1985)). Also nonparametric tests focusing on (A.3) are available (e.g., Färe, 

Grosskopf and Lovell (1987)). This contribution focuses on developing nonparametric 

tests for (A.5).  

 

We now present the non-convex technologies and contrast these with standard convex 

models.4 An illuminating way to construct these production models is to start off from the 

production possibilities sets associated with a single observation and then build the 

technology of the sample as a union of sets.  

 

Consider a set of production units ( ) ( ){ }KK yxyxW ,,...,, 11=  that contains the null input-

output vector ((0,0) ∈  W). Individual production possibilities sets are based upon one 

production unit (xk,yk), the strong disposability (SD) assumption and different 

maintained hypotheses of returns to scale (Γ): 

{ }
{ }

{ }
{ }
{ }
{ } .1:)iv(

;10:)iii(
;0:)ii(

;1:)i(with
,,,,where

,0,:),(),(,

≥=
≤≤=

≥=
==

∈
∈≤≤≥=

δδ
δδ

δδ
δ

δδδ

NDRS
NIRS
CRS

δVRS
NDRSNIRSCRSVRSΓ

Γyyxxyx yxS kkkk
ΓSD

   (2) 

The most basic non-convex technology imposes strong disposability (A.3) and no 

scaling (i.e., VRS are imposed (δ = 1)).5 The other technologies add a specific 

assumption regarding returns to scale for each single observation. The scaling 

parameter δ follows the definitions in axiom (A.4). Non-convex and convex unions of 

                                                           
3 (A.1) is sometimes ignored when defining convex nonparametric technologies (e.g., Banker, 
Charnes and Cooper (1984)), probably because it creates some problems for specific returns to 
scale assumptions. For instance, a convex technology with VRS including the origin immediately 
turns into a NIRS technology.  
4 Convex technologies are defined in Banker, Charnes and Cooper (1984), Färe, Grosskopf and 
Lovell (1983, 1985), among others. FDH-based, non-convex technologies in this article have been 
partly outlined in Bogetoft (1996: 464), while Kerstens and Vanden Eeckaut (1999) mainly develop 
the definitions in (4). Other non-convex technologies include, for instance, the Free Replicability 
Hull also mentioned in Bogetoft (1996). 
5 VRS technologies do not assume any particular scaling law to hold. In fact, VRS technologies 
satisfy NDRS and NIRS in different regions (Färe, Grosskopf and Lovell (1994)). 
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these individual production possibilities sets yield the FDH and FDH-based technologies 

on the one hand and the traditional convex models on the other hand: 

,),(and),( ,

1

,,

1

,  yxSCo= TyxS= T kk
ΓSD

K

k
ΓC

kk
ΓSD

K

k
ΓNC 





 ∪∪

==
  (3) 

where NC and C represent non-convexity and convexity, respectively, Γ is as defined in 

(2) and Co(A) denotes the convex hull of a set A. Observe that from an economic 

viewpoint convexity naturally requires multiple observations before it makes a 

difference in constructing technologies. 

 

In addition to this approach based on sets and their operations, a new, unified algebraic 

representation of non-convex and convex technologies under different returns to scale 

assumptions can be given as follows: 

{ }

,0and1:)ii(

,}1,0{and1:)i(with

,,where

,,,,:),(

1

1

11

,



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
 ≥=ℜ∈=







 ∈=ℜ∈=

∈






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∑

∑

∑∑

=
+

=
+
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k

K

k
k

K
k

k

K

k
k

K
k

k

K

k
kk

K

k
kk

ΓΛ

zzzC

zzzNC

CNCΛ

ΓΛzzδyyzδxxyxT δ

  (4) 

where Γ is again as defined before.6 There is one activity vector (z) operating subject to a 

non-convexity or convexity constraint and a scaling parameter (δ) allowing for a particular 

scaling of observations spanning the frontier. 

 

This unified representation deviates from standard formulations of convex models in the 

literature to highlight the similarity between convex and non-convex production models 

(Färe, Grosskopf and Lovell (1994)). This new formulation guarantees a one-to-one 

correspondence between decision variables and parameters on the one hand and 

underlying production assumptions on the other hand. This advantage is important for 

pedagogical purposes, because convexity and returns to scale assumptions are clearly 

separated: (i) The scaling factor (δ) reflects the specific returns to scale assumption. (ii) 

Inequality signs are due to the strong output and input disposability axioms. (iii) The sum 

                                                           
6 It is inspired by the formulation of the convex CRS model in, e.g., Banker, Charnes and Cooper 
(1984: 1082). 



 11 

constraint on the activity vector (z) represents the convexity hypothesis; while the same 

sum constraint together with the binary integer constraint on z represents non-convexity.  

 

Intuitively, these non-convex technologies are the most conservative, inner bound 

approximations of the true technology allowing for various returns to scale hypotheses. 

This can be phrased in terms of the so-called minimum extrapolation principle (Bogetoft 

(1996)). 

 

Definition 1: An empirical reference technology TΛ,Γ, an estimate of T, satisfies the 

minimal extrapolation principle if TΛ,Γ is the smallest subset of NM +
+ℜ  containing the data 

W and satisfying certain technological assumptions. 

 

The existence of a smallest technology is not automatically guaranteed with any set of 

assumptions, but needs to be proven (see Bogetoft (1996: 458) for details). We are now 

ready to define formally that the non-convex technologies TNC,Γ satisfy the minimum 

extrapolation principle. This is the first central result of our contribution. 

 

Proposition 1: The non-convex technologies TNC,Γ are the minimal extrapolation 

technologies containing the data ( ) ( ){ } NM
KK yxyxW +

+ℜ⊂= ,,...,, 11  and satisfying (A.1) 

to (A.4). 

Proof: See the Appendix.  

 

Evidently, the convex technologies TC,Γ are similarly the minimum extrapolation 

technologies satisfying (A.1) to (A.5). 
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Remark 1: 
To show that not all technologies necessarily provide an inner bound approximation, 

we define yet another non-convex VRS model as the intersection of non-convex NIRS 

and NDRS technologies (TNC,VRS-∩ = TNC,NIRS ∩ TNC,NDRS).7 Obviously, TNC,VRS-∩ ⊆  TNC,NIRS 

and TNC,VRS-∩ ⊆  TNC,NDRS. Furthermore, TNC,VRS ⊆  TNC,VRS-∩, though both satisfy VRS. Both 

TNC,VRS and TNC,VRS-∩ are comparable to a convex VRS model, except for convexity. 

Clearly, TNC,VRS is the true VRS non-convex inner bound technology.8 

 

To solve existing convex models as well as the new FDH-based technologies, we 

develop a new mathematical programming problem based on technology definition (4). 

Input efficiency (Ei(x,y)), i.e., the inverse of the input distance function, relative to all eight 

production models is computed by solving for each observation (x,y) the following binary 

mixed integer, non-linear programming problem (P.1): 

[ ] { }Λ,Γ
ii TyxyxDyxE ∈== − ),(:min),(),( 1 λλ    (5) 

whereby Γ and Λ follow the definitions in (2) and (4). In the Farrell (1957) tradition, a 

radial efficiency measure, the inverse of the input distance function, indicates the 

maximum amount by which inputs can be decreased while producing given outputs. 

Ei(x,y) is bounded above by unity, which designates efficient production on the isoquant 

of technology. 

 

Convex models require solving a non-linear program, while non-convex technologies are 

solved using non-linear, binary mixed integer programs. But, a simple transformation of 

(4) enables solving convex technologies using linear programs (Färe, Grosskopf and 

Lovell (1994)). Computing Ei(x,y) on non-convex technologies only involves simple 

analytical expressions. Given the binary nature of the integers and the fact that they sum 

to unity, these programs can be solved using a type of implicit enumeration algorithm 

based upon vector comparisons (Garfinkel and Nemhauser (1972), § 10.1). In particular, 

the construction of FDH-based technologies as non-convex unions of individual 
                                                           
7 Following definitions of operations on technologies in Ruys (1974), TNC,VRS-∩ can be explicitly 
written as a conjunction of TNC,NIRS and TNC,NDRS technologies. The convex VRS model is similarly 
written as: TC,VRS = TC,NIRS ∩ TC,NDRS. Also both convex and non-convex CRS models can be 
defined as a union of NIRS and NDRS technologies. These indirect ways of estimating VRS and 
CRS technologies are developed in Briec et al. (2000). 
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subsets (3) allows using the enumerative principle (i.e., minimising (maximising) a 

function over a finite union of sets reduces to taking the minimum (maximising) of the 

minima (maxima) of the subsets).9  

 

The closed-form expression for calculating Ei(x,y) on FDH-based technologies intuitively 

consists of two main steps. (i) In the first part a modified index set of better observations 

is defined allowing for a rescaling of observations in the sample according to the specific 

returns to scale assumption postulated. Since the vector dominance comparison 

accounts for the possibility that observations are rescaled within certain parameter 

bounds, this is coined “scaled vector dominance”. The “scaled better set” ),,( ΓyxB  of 

observation (x,y) is conditional on a returns to scale assumption: 

{ } ,,,:)(),,( Γyyxx,yxΓyxB kkkk ∈≥≤= δδδ          (6) 

where Γ characterises returns to scale (2). Obviously, the next relation holds: 

),(),(),,()( kk
SD,Γ

kk ,yxSyxΓyxB,yx ∈⇔∈     (7) 

where )( kk
SD,Γ ,yxS  refers to the individual production possibilities sets with different 

returns to scale (Γ) assumptions (2). (ii) In the second part the input efficiency measure 

Ei(x,y) is calculated given some knowledge about the scaling parameter. Instead of 

testing for all values of the scaling parameter (δ), for each evaluated observation one 

only needs to find optimal values for δ depending on the selected orientation of 

measurement and the returns to scale assumption. 

 

This intuitive procedure is condensed to a new proposition regarding the solution of the 

input radial efficiency measure using scaled vector dominance. But, to obtain an 

enumerative process for measuring Ei(x,y), we first need to state precisely under which 

conditions (xk,yk) “dominates” (x,y) given Γ. To accommodate eventual null 

components, the following notation is introduced for any input-output vector ( )y,x : 

( ) { }{ }01 >∈= nx:N,...,nxI  and ( ) { }{ }01 >∈= my:M,...,myJ . We are now able to 

state our conditions for membership to the scaled better set without loss of generality. 

                                                                                                                                                                          
8 This intersection definition highlights the fact that in the non-convex world several VRS 
technologies can be defined since the VRS definition is very general, in that it only excludes three 
particular cases of scaling. 
9 This algorithm generalises the implicit enumeration method for FDH in the literature. 
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Lemma 1: For k = 1,...,K, we have the following condition: 

( ) ( )
∅≠∩
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y
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Proof: Condition ),,()( ΓyxB,yx kk ∈  can be written Γyyxx kk ∈≥≤ δδδ ,, . 

Equivalently, we get 
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immediately yields the result. Q.E.D. 

 

We finally end up with the following closed-form expression for the radial input efficiency 

measure Ei(x,y). 

 

Proposition 2: Ei(x,y) on non-convex technologies ΓNCT ,  is computed:10 
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Proof: See the Appendix.  

 

 

3. Non-convex cost functions: total, marginal and ray-average formulations 

 
When technology is non-convex, then also the cost function fails convexity. It is 

possible to derive a cost function corresponding to these nonparametric, non-convex 

and convex technologies with different returns to scale assumptions. Denoting the 

input correspondence on Λ,ΓT  as ( ) ( ){ }Λ,ΓΛ,Γ TyxxyL ∈= ,:  and letting p be a vector 

                                                           
10 No specific enumeration algorithm is developed for TNC,VRS-∩. As an intersection of 
technologies, Ei(x,y) is simply the minimum of two measures: Ei(x,y) computed w.r.t. TNC,NIRS and 
on TNC,NDRS. 
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of positive input prices, the cost function corresponding to both types of technologies is 

defined by: 

( ) ( ){ }yLxxpypC Λ,ΓΛ,Γ ∈⋅= :min, .    (8) 

While convex cost functions require solving linear programming problems, we obtain 

the following closed-form expressions for the non-convex cost functions. 

 

Proposition 3: Let p be a positive vector of input prices. Let the non-convex cost 

function ( ) ( ){ }yLxxpypC NC,ΓNC,Γ ∈⋅= :min, . Then, we have the following 

characterisations: 
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Proof: See the Appendix.  

 

To illustrate the ease of computing the above non-convex cost function and to make a 

comparison with the cost function found by Hall (2000) for U.S. car manufacturing, let 

us consider the following example. 

 

Example 1: For simplicity, we consider a set of data with two input-output vectors: 

( )( ){ }3,2,1,1=W , and we assume a unit input price (p=1). Furthermore, to fix ideas we 

consider the case of a non-decreasing returns to scale technology ( NDRSΓ = ). Using 

the above results, we obtain: 



 16 

( )

( )













⋅=









⋅⋅





⋅⋅





=













⋅⋅











=

=

1,
3

max2,1,maxmin

11,max,11,maxmin

11,maxmaxmin,

2
2

1
1

2,1

,

yy

x
y
yx

y
y

x
y
yypC k
k

k

NDRSNC

 

It is then clear that: 
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




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
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≤≤
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10if1

,,  

This technology and cost function are illustrated in Figures 1 and 2. Clearly, a glance 

at Figure 4 in Hall (2000) reveals that this simple numerical example manages to 

reproduce the basic shape of the total cost function with one or two shifts estimated for 

car manufacturing. Notice that the non-convex cost function is non-decreasing in the 

outputs. Obviously, also the properties of the cost function with respect to input prices 

are preserved. 

 

Figure 1. 

A Non-Convex NDRS Technology 

Figure 2. 

A Non-Convex NDRS Cost Function 

x 

y 

TNC,NDRS 

0 1 2 3 

1 
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3 

 

 

y 

C 

CNC,NDRS(p,y) 

1 2 3 

1 

2 

3 

0 

 

 

It is now important to compare this non-convex cost function to its convex counterpart. 

While partial convexity of the input set is innocuous, general convexity of the 

technology is not. Trivial as it may seem, a second, so far unnoticed central result is 
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that the cost functions based on general convex technologies are almost always lower 

or equal to cost functions based on non-convex technologies. 

 

Proposition 4: Let p be a positive vector of input prices. Let the non-convex cost 

function ( ) ( ){ }yLxxpypC NC,ΓNC,Γ ∈⋅= :min,  and let the convex cost function 

( ) ( ){ }yLxxpypC C,ΓC,Γ ∈⋅= :min, . Then, we have the following properties: 

1) In general: ( ) ( ).,, ypCypC NC,ΓC,Γ ≤  

2) In the case of CRSΓ =  and a single output: ( ) ( ).,, ypCypC NC,ΓC,Γ =  

 

Proof: 1) ( ) ( )ypCypC NC,ΓC,Γ ,, ≤  follows trivially from the fact that C,ΓNC,Γ TT ⊆ . 2) 

Assume that the output set is one-dimensional. Consider a production technology C,CRST  

enveloping the sample ( ) ( ){ }KK yxyxW ,,...,, 11= . For k=1…K, let us denote 
k

k y
y=δ . 

Now let us define the data-set 

( ) ( ){ } ( ) ( ){ }yxyxyxyxW KKKKKK ,,...,,,,...,,' 111111 δδδδδδ == . Clearly, 
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11 :,..., δδδ . Since 

{ }( )KK xxCo δδ ,...,11  is by definition a convex polyhedron, the minimum of a linear 

function is achieved by some extreme point. Therefore, 
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k
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ypmin . Now, let us 

calculate the cost function for a non-convex otherwise similar technology. From 

Proposition 3, we have ( ) ( ) 
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 and the result is obtained.  Q.E.D. 
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Remark 2: 
The analytical expression for the convex, single output, CRS cost function developed 

near the end of the proof (i.e., ( )








⋅⋅=
= k

k
Kk

CRSC xp
y
yypC

...1

, min, ) is –to the best of our 

knowledge- new. 

 

This remarkable property that, in general, convex cost functions are never higher than 

non-convex cost functions has far reaching implications for the use of frontier 

technologies for benchmarking purposes. Imposing convex cost targets may be 

excessively demanding when convexity is doubtful. This is illustrated by the next 

example. Only for the single output, constant returns to scale case, convex and non-

convex cost functions are identical. Thus, the convexity hypothesis cannot be tested in 

this particular case. 

 

Example 2: Let us reconsider the set of data from Example 1. Assume again that the 

input price is p=1 and consider again the non-decreasing returns to scale case. 

Moreover, assume that y=2. For the convex NDRS hull, we observe ( ) 232,1, =NDRSCC . 

However, for the non-convex technology, we obtain a higher cost level: 

( ) 22,1, =NDRSNCC . 

 

We are now interested in deriving a closed-form expression for the corresponding 

non-convex marginal cost functions. Since technology is non-smooth, the cost function 

is non-smooth. Hence, the marginal cost function is not everywhere defined. However, 

differentiability of the cost function fails only at certain points and thus it remains 

almost everywhere differentiable. Therefore, it is possible to obtain a closed-form 

expression for the marginal cost function for any returns to scale condition on 

technology.  

 

Definition 2: At points where the cost function is differentiable, the marginal cost 

vector is defined by: 

( ) ( )
y

ypC
ypC

Λ,Γ
Λ,Γ
m ∂

∂
=

,
, . 
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Proposition 5: Let us denote ( ) ( ){ }yLxxpyK NC,Γ

k

Γ ∈⋅= :minarg  and 

( ) ( ) 





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∈ km

m

yJm y
yykM

k

maxarg, . The non-convex marginal cost vector NC,Γ
mC  satisfies the 

following properties: 

1) If VRS=Γ , then the output set P(x) can be partitioned in 0K  domains 

0
21 K

D,...,D,D  having a non-empty interior such that ( )ypC NC,Γ
m , =0 kDy

°
∈∀  for 

k=1,..., 0K , where kD
°

 denotes the interior of the domain. 

2) If { }NIRSCRSΓ ,∈ , ( )( ) 1# =yK Γ  and ( )( ) 1,# =ykM , then the cost function is 

differentiable, and we have 
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where ( )yKk Γ=0  and ( )ykMm ,0 = , and # denotes the cardinality operator. 

3) If NDRSΓ = , ( )( ) 1# =yK Γ  and ( )( ) 1,# =ykM , then the cost function is 

differentiable, and we have 
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where ( )yKk Γ=0  and ( )ykMm ,0 = . 

Proof: See the Appendix.  

 

At points where the cost function is not differentiable, the limit of the marginal cost 

function is ∞−  and the limit of the marginal productivity is ∞+ . The analysis of the 

non-parametric, convex marginal cost function in Chavas and Cox (1995) is based 

upon parametric programming and no analytical expressions can be obtained. 

 

We now apply the above result to Example 1.  
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Example 3: We consider ( )( ){ }3,2,1,1=W , the input price p is unity (p=1), and we only 

consider the non-decreasing returns to scale case ( NDRSΓ = ). From Example 1, we 

obtain: 
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10if0

,        

In the context of a multi-output technology the average cost notion is undefined, but it 

can be replaced by the ray-average cost function (e.g., Chavas and Cox (1999)).  

Definition 3: For all technologies, the ray-average cost function is defined as: 
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or in a more condensed form: 
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For non-convex technologies, the following result shows that the non-convex ray-

average cost function is independent of the specific returns to scale assumption. 

 

Proposition 6: Let p be a positive price vector. The non-convex ray-average cost 

function ( )ypRAC NC,Γ ,  satisfies the following properties: 
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for { }RS,NDRSVRS,CRS,NIΓ ∈ . In particular, at the optimum we find that 
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Proof: See the Appendix.  
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The above result provides a closed-form expression for the non-convex ray-average cost 

function. By contrast, the non-parametric, convex ray-average cost function requires the 

solution of non-linear programming problems for each of the sample data (e.g., Chavas 

and Cox (1999)). Furthermore, this proposition also indicates the non-convex ray-

average cost function is independent of the returns to scale specification. In particular, it 

is identical to the cost function under constant returns to scale (see also Balk (2001: 175) 

for the convex case). 

 

 

4. Non-convex cost and distance functions: a local duality result and 

nonparametric tests 

 

4.1. Local Duality between Non-Convex Cost and Distance Functions 
While cost functions for convex technologies are common knowledge, it is 

indispensable to provide a dual characterisation for the case of the non-convex 

production technologies. While a duality result is hard to establish for this global cost 

function, a local characterization is, however, possible for each set ( )kk
SD,Γ yxS , , 

because the latter is convex. 

 

Definition 4: Let p be a positive price vector. The function 

( ) ( ) ( ){ }kk
SD,Γk,Γ yxSyxxpypC ,,:min, ∈⋅=  is called the local cost function of 

technology NC,ΓT at point ( )kk yx , . 

 

Lemma 2: Let p be a positive price vector. The local cost function of technology NC,ΓT  

at point ( )kk yx ,  is: 
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Proof: The proof is a special case of the proof established for the global cost function 

(see Proposition 3).  Q.E.D. 

 

This local cost function for a non-convex technology yields a dual relationship to the 

input distance function (or the related input efficiency measure). In particular, the local 

cost function locally characterises technology at point ( )kk yx , , since the subset 

),(
kk

yxS SD,Γ  is convex. 

 

Proposition 7: Ei(x,y) on non-convex technologies NC,ΓT  is: 
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Proof: Assume that ),,(B),( Γyxyx kk ∈  and express ( )),(, kk
SD,Γ

i yxSyxE  with 

respect to the local cost function. Since ),,(B),( Γyxyx kk ∈ , it follows that 

( ) ),(, kk
SD,Γ yxSyx ∈ . But, since ),( kk

SD,Γ yxS  is convex, it follows that 

( )),(, kk
SD,Γ

i yxSyxE  = ( ){ }1:,inf =⋅
+ℜ∈

xpypC k,Γ

p N
. Now since kyy ≤ , from Lemma 2, 

we replace ( )ypC k,Γ ,  by its value with respect to { }RS,NDRSVRS,CRS,NIΓ ∈ , and we 

obtain the result. Q.E.D. 

 

In essence, this is just a traditional, convex dual relationship between local cost and 

input distance functions for the convex technology with a single observation 

( ),(
kk

yxS SD,Γ ). Of course, the actual technology as the union of these individual 

technologies can be locally non-convex around the single point on which this local 

duality result focuses. Consequently, the support function for the actual technology 
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could well be nowhere near the support function of the technology with a single 

observation.  

 

But, the local nature of this duality result does not prevent a straightforward 

reconstruction of the complete non-convex technologies with specific returns to scale 

assumptions from their corresponding cost functions, and vice versa. Since FDH-

based technologies and cost functions are simply non-convex unions of individual 

subsets (3) respectively local cost functions (Definition 4), both technologies and cost 

functions can always be reconstructed using the enumerative principle. Clearly, a non-

convex technology reconstructed on the basis of a non-convex cost function is identical 

to the initial non-convex technology. Since initial and reconstructed technologies have 

the same non-convex cost functions, no economic information is lost. 

 

4.2. General Nonparametric Tests for the Convexity of Cost and Distance 

Functions 

In principle, the appropriateness of the convexity axiom can be tested for any comparison 

between convex and non-convex technologies and support functions imposing similar 

returns to scale hypothesis, since differences between efficiency measures and support 

function levels in these components are completely attributable to convexity. Each of 

these can be considered a nonparametric goodness-of-fit test of the convexity axiom. To 

be more explicit, we define tests for the convexity of technology (CTi (x,y)) and of the cost 

function (CCi (x,y)) as ratios between the convex and non-convex input efficiency 

measures respectively cost functions. 

 

Definition 5: Nonparametric goodness-of-fit tests for the convexity of technologies 

respectively cost functions conditional on a specific scaling law Γ are: 

1) ( ) ( ) ( )yxEyxEyxCT ΓNC
i

ΓC
i

Γ
i ,,, ,,= ; 

2) ( ) ( ) ( )ypCypCyxCC ΓNC
i

ΓC
i

Γ
i ,,, ,,= . 

 

Since ( ) ( )yxEyxE ΓNC
i

ΓC
i ,, ,, ≤ , ( ) 1,0 ≤≤ yxCT Γ

i . A similar reasoning applies to 

( )yxCC Γ
i , . If ( ) 1, =yxCT Γ

i  ( ( ) 1, =yxCC Γ
i ), then the hypothesis that technologies (cost 

functions) are convex cannot be rejected. In the literature so far, comparisons between 

traditional FDH and convex VRS production models were the only way of capturing this 
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convexity effect. This new approach provides a perfect base to disentangle the precise 

impact of convexity and returns to scale hypotheses. 

 

 

5. Efficiency decompositions and the testing of convexity 
 

In the efficiency literature several taxonomies of efficiency notions have been developed 

(e.g. Färe, Grosskopf and Lovell (1983, 1985), Seitz (1971)). Because it is the most 

widespread, in this contribution we stick to the conceptual framework developed in Färe, 

Grosskopf and Lovell (1983, 1985). Specific non-parametric tests for convexity are 

integrated into this efficiency framework. 

 

Informally defined, Technical Efficiency (TE) requires production on the boundary of 

technology under the least restrictive returns to scale assumption (i.e., VRS). Production 

in the interior implies technically inefficiency. It is a private goal defined in terms of the 

best interest of the producer. Second, Overall Technical Efficiency (OTE) is always 

measured relative to a CRS technology, thereby conflating scale and technical 

efficiencies. Finally, a producer is Scale Efficient (SCE) if its size of production 

corresponds to a long run zero, profit competitive equilibrium configuration; it is scale 

inefficient otherwise. This social goal measures any divergence between the actual 

(VRS) and ideal (CRS) technological configuration. Overall Efficiency (OE) requires 

computing a cost function relative to a CRS technology with strong disposability and 

taking the ratio of minimal to actual costs. OE is as the multiplicative result of OTE and 

Allocative Efficiency (AE), a residual term bridging the gap between OE and OTE. AE 

requires that there is no divergence between actual and optimal costs. A producer is 

allocatively inefficient otherwise.  

 

The radial efficiency measure Ei(x,y) used relative to different technologies entails the 

different concepts in this efficiency taxonomy.11 This is reflected in the notation of Ei(x,y) 

that can be conditioned on, e.g., a particular returns to scale hypothesis. A formal 

characterisation of all of these notions is provided in the following definition. 

 
                                                           
11 Radial efficiency measures project onto the isoquant and may leave some technical 
inefficiency unmeasured. Nonradial efficiency measures (Lovell (1993)) project onto the efficient 
subset of technology (see Koopmans (1951) definition of TE) and are particularly attractive on 
FDH. However, we focus on radial efficiency measures for the ease of exposition. 
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Definition 6: A formal definition of input-oriented efficiency notions is provided by: 

1) Technical Efficiency TEi (x,y) = Ei(x,y VRS). 

2) Overall Technical Efficiency OTEi (x,y) = Ei (x,y CRS). 

3) Scale Efficiency SCEi (x,y) = Ei (x,y CRS) / Ei (x,y VRS). 

4) Overall Efficiency OEi (x,y,p) = C(y,p CRS) / p⋅x. 

5) Allocative Efficiency AEi (x,y,p) = OEi (x,y,p) / OTEi (x,y). 

 

Since Ei (x,y CRS) ≤ Ei (x,y VRS), evidently 0 < SCEi (x,y) ≤ 1.12 This ratio indicates the 

lowest possible input combination able to produce the same output in the long run as a 

technically efficient combination situated on a VRS technology. It is easy to verify that all 

of these components are smaller or equal to unity (Färe, Grosskopf and Lovell (1994)). 

 

The embeddedness of technologies in terms of the strength of the returns to scale 

assumptions determines the relations between these efficiency measures. These static 

efficiency concepts are mutually exclusive and exhaustive and their radial measurement 

yields a multiplicative decomposition (Färe, Grosskopf and Lovell (1985: 188-191)). 

Using Definition 6, the following identity readily follows:  

OEi (x,y,p) = AEi (x,y,p) . OTEi (x,y), where OTEi (x,y) = TEi (x,y) . SCEi (x,y) (11) 

A characteristic of production that can be further analysed is the nature of returns to 

scale. For both observations on and below the frontier, it is possible to obtain qualitative 

information on local scale economies (i.e., for its bounding hyperplane). Since traditional, 

methods do not apply for non-convex technologies, a more general procedure based on 

goodness-of-fit has been devised (Kerstens and Vanden Eeckaut (1999)).13 

                                                           
12 For the initial proposal, see Førsund and Hjalmarsson (1974, 1979). Färe, Grosskopf and Lovell 
(1983) stress that technical optimal scale, and not a price-dependent (dual) notion of optimal scale, 
is used as the benchmark. See also Banker, Charnes and Cooper (1984). 
13 For inefficient observations, this characterisation obviously depends on the chosen 
measurement orientation. Briec et al. (2000) show that the earlier comparison between CRS, NIRS 
and VRS models (Färe, Grosskopf and Lovell (1983)) does not apply for non-convex models, 
because VRS technologies are not uniquely defined (see Remark 1) and therefore no longer 
implicitly reveal information about NIRS and NDRS parts of technology. 



 26 

To define tests for convexity, we first clarify the relation between convex and non-convex 

decompositions. As is obvious from (3), non-convex technologies are nested in their 

convex counterparts. As a consequence, non-convex OTEi (x,y) and TEi (x,y) 

components are larger than their convex counterparts. But, there is no a priori ordering 

between non-convex and convex SCEi (x,y) components. While the underlying efficiency 

measures can be ordered, it is impossible to order the ratios between these efficiency 

measures. Non-convex cost functions never assign lower cost levels than their convex 

counterparts. We summarise and prove these findings in the following lemma. 

 

Lemma 3: Relations between convex and non-convex decomposition components are: 

1)  ( ) ( )yxOTEyxOTE NC
i

C
i ,, ≤ ; 

2) ( ) ( )yxTEyxTE NC
i

C
i ,, ≤ ; 

3) ( ) ( )pyxOEpyxOE NC
i

C
i ,,,, ≤ . 

Proof: Trivial (depends on the nestedness of technologies and cost functions) and thus 

discarded. Q.E.D. 

 

Clearly, convex technologies and cost functions may overestimate technical respectively 

overall inefficiency, making tests of the convexity hypothesis a necessity. Remark that 

scale and allocative efficiency components cannot be ordered, because they are ratios or 

residuals of the other components. To be explicit, we have: 

( ) ( )yxSCEyxSCE NC
i

C
i ,,

<
=
>

 and ( ) ( )yxAEyxAE NC
i

C
i ,,

<
=
>

        (12) 

The difference between both OTEi (x,y) and OEi (x,y) components can be completely 

attributed to convexity. Therefore, it is useful to define convexity-related technical 

efficiency (CRTEi (x,y)) and cost efficiency (CRCEi (x,y)) components as a ratio between 

these convex and non-convex components: 

 

Definition 7: A nonparametric goodness-of-fit test for the convexity of the efficiency 

components based upon constant returns to scale technologies respectively cost 

functions is: 

1) ( ) ( ) ( )yxOTEyxOTEyxCRTE NC
i

C
ii ,,, = ; 
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2) ( ) ( ) ( )pyxOEpyxOEpyxCRCE NC
i

C
ii ,,,,,, = . 

 

Clearly, 0 < CRTEi (x,y) ≤ 1, since ( ) ( )yxOTEyxOTE NC
i

C
i ,, ≤ . A similar reasoning 

applies to CRCEi (x,y). When CRTEi (x,y) = 1 (CRCEi (x,y) =1), then the hypothesis that 

constant returns to scale technologies (cost functions) are convex cannot be rejected. 

Furthermore, the definition of CRTEi  (x,y) makes it possible to link non-convex and 

convex decompositions of OTEi (x,y) by means of the identity: 

( ) ( ) ( )yxCRTEyxOTEyxOTE i
NC
i

C
i ,.,, =     (13) 

The same holds true for the convexity-related cost efficiency component (CRCEi (x,y)):  

( ) ( ) ( )yxCRCEpyxOEpyxOE i
NC
i

C
i ,.,,,, =       (14) 

Which of these differences between convex and non-convex decompositions proves to 

be most important is an empirical matter. For reasons of space, this contribution only 

provides a simple empirical illustration in the next section. 

 

 

6. Empirical illustration 
 

For the empirical analysis, we partially duplicate earlier research by selecting a small 

sample earlier analysed by Coelli (1996). Over the period 1953 to 1987, he analyses the 

performance of the broad-acre Western Australian agricultural sector. The detailed 

sample data is used to construct Törnqvist quantity indices on 5 inputs ((i) livestock, (ii) 

materials and services, (iii) labour, (iv) capital and (v) land) and on 3 outputs ((i) grain, (ii) 

sheep, and (iii) other outputs), as well as Törnqvist price indices (see Coelli (1996) for 

details). Comparing the observations over the 34 years period, changes in technology 

are ignored. Descriptive statistics for both convex and non-convex decomposition results 

are presented in Table 1. The upper part of this table analyses the technology, the lower 

part the cost function. To facilitate the comparison of the decompositions, we duplicate 

the OTEi(x,y) component in both parts of the table. To respect the multiplicative nature of 

these decompositions, we compute geometric averages. For reasons of space, we do 

not depict frequencies, but the distributions are markedly skewed to the right. 
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The main findings are as follows. First, TEi(x,y) is of less importance than SCEi(x,y), 

whereby in the non-convex world TEi(x,y) is close to unity. Second, convexity-related 

technical inefficiency affects 11 observations and accounts for about 4.2% on average 

and 12.5% at most. Third, allocative inefficiencies related to the cost function dominate 

all other sources of ill performance and both decompositions come up with a somewhat 

similar percentage. Fourth, convexity-related cost inefficiency affects 15 observations 

and is only about 2.2% on average and 6.2% at worst. Finally, the bottom row reveals 

that the number of efficient observations per component is in the non-convex case 

obviously greater or equal to the numbers obtained in the convex case.  

 

Table 1: Non-Convex and Convex Decompositions of Overall Efficiency 

Technology analysis 

 Non-Convex Decomposition Convex Decomposition 

 TEi(x,y) SCEi(x,y) OTEi(x,y) CRTEi(x,

y) 

TEi(x,y) SCEi(x,y) OTEi(x,y) 

Average* 0,9967 0,9120 0,9089 0,9569 0,9654 0,9010 0,8698 

Stand. 

Dev. 0,0186 0,0948 0,0967 0,0360 0,0537 0,1052 0,1143 

Minimum 0,8901 0,7301 0,7301 0,8752 0,8112 0,6968 0,6683 

# Effic. 

Obs. 

33 14 14 11 22 11 11 

Cost function analysis 

 Non-Convex Decomposition Convex Decomposition 

 OTEi(x,y) AEi(x,y) OEi(x,y) CRCEi(x,

y) 

OTEi(x,y) AEi(x,y) OEi(x,y) 

Average* 0,9089 0,8447 0,7678 0,9776 0,8698 0,8629 0,7506 

Stand.Dev. 0,0967 0,0909 0,1470 0,0239 0,1143 0,0884 0,1548 

Minimum 0,7301 0,6737 0,5357 0,9381 0,6683 0,6741 0,5047 

# Effic. 

Obs. 

14 5 5 15 11 5 5 

    * Geometric Average 

 

Without attributing too much weight to this empirical analysis based on a small sample, 

we conclude that convexity seems to make a difference on the average level as well as 

for individual observations. In particular, the nonparametric tests reject the convexity 
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axiom for about a third of the observations. Hence, practitioners should be aware of the 

potential impact of convexity on performance gauging. Obviously, more extensive 

empirical analyses are called for. 

 

 

7. Conclusions and directions for future research 

 
Starting from an existing non-convex production model (FDH) several new nonparametric 

deterministic technologies have been explored introducing various returns to scale 

assumptions. The corresponding non-convex cost functions have also been derived. This 

contribution has obtained analytical solutions to characterise both non-convex input 

distance functions (or their inverse, the input efficiency measure) and total cost functions. 

In addition, closed-form expressions have equally been obtained for the marginal and 

ray-average cost functions. This obviously opens up a wide range of possibilities for their 

empirical application. Furthermore, a local duality result has been established between 

input distance functions and the corresponding “local” cost functions. The resulting series 

of non-convex technologies and cost functions yield a decomposition of overall efficiency 

(OEi (x,y)) that is similar to the existing one based on convex models. The formal 

relations between convex and non-convex decompositions and their respective technical, 

scale and allocative efficiency components have been spelled out in detail. In general, 

the use of convex technologies and cost functions overestimates both technical and 

overall inefficiencies. A hitherto unnoticed result worth stressing is that convex and 

non-convex cost functions are in general not identical, except in the particular case of 

single output constant returns to scale models. Some simple numerical examples and a 

small empirical application show the tractability of the approach and reveal the potentially 

different results that may emerge as a consequence of imposing convexity. 

 

Our study was limited to input distance functions and cost functions. One obvious 

extension is to derive similar results from revenue and short-run profit perspectives. 

Long-run profit functions are obviously independent of convexity. In addition, three further 

methodological extensions may seem worthwhile pursuing in the future. First, having 

illustrated the importance of dispensing with convexity for technical, scale and overall 

efficiency measurement, it is worthwhile to enlarge the range of non-convex technologies 

such that also the congestion component could be evaluated. This would complete the 

development of a static non-convex efficiency decomposition. Second, recently Simar 
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and Wilson (2002) have developed proper statistical tests for nonparametric frontier 

models, though they have limited themselves so far to testing the global scale behaviour 

of technologies. Extending their tests to the convexity hypothesis would be most 

valuable. Third, when panel data are available, it is obviously possible to employ these 

non-convex technologies and cost functions into a dynamic analysis of productivity 

change (e.g., Chavas and Cox (1988), Diewert and Parkan (1983)). For instance, it 

would be interesting to investigate the effect of using non-convex instead of convex 

technologies when computing Malmquist productivity indices.14 

 

Overall, we believe these methodological developments should make people more 

cautious about invoking the convexity assumption in performance gauging. In particular, 

since convex costs are lower or equal to non-convex costs, imposing the former for 

benchmarking purposes may be unrealistic when the convexity axiom is in doubt. We 

hope these new technologies and cost functions as well as the resulting efficiency 

decomposition prove useful in enlarging the methodological choices open to 

practitioners. Lacking proper statistical tests when comparing specifications, it is 

important that practitioners have a precise idea of the effect of each assumption. Using 

the relation between efficiency measures and goodness-of-fit tests, our convexity related 

efficiency component provides exactly such a tool.  

                                                           
14 Productivity measures based on FDH have been applied in Tulkens and Malnero (1996). 
Furthermore, this new non-convex decomposition can be integrated into any of the available 
decompositions of the Malmquist productivity index (Balk (2001), Färe, Grosskopf and Lovell 
(1994)). 
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Appendix 
 

Proof of Proposition 1:  

First, it is clear that TNC,Γ contains W and satisfies (A.1)-(A.4). We need to prove that for 

any technology T containing ( ) ( ){ } NM
KK yxyxW +

+ℜ⊂= ,,...,, 11  and satisfying (A.1) to 

(A.4), we have TNC,Γ⊂ T. Assume that (x,y)∈ TNC,Γ. Then, by definition, there exists some 

( ) Wyx kk ∈,  such that ( ) ( )kk
ΓSD yxSyx ,, ,∈ . Consequently, there are some 

( ) SD,Γ
kk Syx ∈,  and some Γ∈δ , such that ( ) ( )kkkk yxyx ,, δ= . But, since T contains W 

and satisfies (A.1) to (A.4), then ( ) Tyx kk ∈, . Consequently, TT Λ,Γ ⊂  and this 

terminates the proof. Q.E.D. 

 

Proof of Proposition 2: 
(i) By definition, we have  
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However, since kxx ≥ , clearly 00 >⇒> nkn xx . Thus, 
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Consequently, ( )
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obtain the result. For parts (ii) and (iii), first, assume that ),,(),( ΓyxByx kk ∈  and 

calculate ( )),(, kk
SD,Γ

i yxSyxE . We have Γyyk ∈≥ δδ , . This implies 
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Now, there are two cases: (1) Under CRS ( +ℜ=Γ ) or NIRS ( [ ]1,0=Γ ), the lower 

bound of the set 
( ) ( )

Γ
x
x

y
y

kn

n
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m
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Consequently, we obtain ( )
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enumerative principle, this concludes the proof. (2) Under NDRS ( [ [+∞= ,1Γ ), the 

lower bound is 
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Proof of Proposition 3: 
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Proof of Proposition 6: 

1) Let the set ( ) { }{ }yyKkyK k ≥∈= :,...,1 . Let the function ( ) ( )( )yKyFyF #: =→ . Let 

( ) ( ){ }MyyFF +ℜ∈= :Im . It is immediate that ( ) { }KF ,...,1Im ⊂ . Let us denote 
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°
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Proof of Proposition 5: 
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