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Abstract 
Efficiency estimation in stochastic frontier models typically assumes that the underlying 
production technology is the same for all firms. There might, however, be unobserved 
differences in technologies and input/output qualities that can be inappropriately labeled as 
inefficiency if such differences are not taken into account. We address this issue by developing 
a Stochastic Frontier Latent Class Model in a “panel data” framework. This model exploits the 
information contained in the data more efficiently compared to the traditional cluster analysis. 
An application of the proposed model is presented using Spanish banking data.  
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1. Introduction 

 

Stochastic production (or cost) frontier functions are now increasingly used to measure 

efficiency of individual producers. Estimation of these functions rests on the 

assumption that the underlying production technology is common to all producers. 

However, firms in an industry may use different technologies. In such a case estimating 

a commom frontier function encompassing the entire sample observations may not 

appropriate in the sense that the estimated technology is not likely to represent the 

‘true’ technolgy. That is the estimate of the underlying  technology may be baised. In 

other words, if the unobserved technological differences are not taken into account in 

estimation, effect of these omitted unobservables might be inappropriately labeled as 

inefficiency.  

 

To reduce the likelihood of these types of misspecification, researchers often estimate 

frontier functions by classifying the sample observations into certain categories using 

exogenous sample separation information. For instance, Mester (1993) and Grifell and 

Lovell (1997) grouped banks into private and savings banks. Kolari and Zardkoohi 

(1995) estimated separate costs functions for banks grouped in terms of their output 

mix. Mester (1997) grouped sample banks in terms of their location. Polachek and 

Yoon (1987) allowed for different regimes in estimating of the earning frontier functions 

of employers and employee.  

 

In the above studies, estimation of the technology using a sample of firms is carried out 

in two stages. First, the sample observations are classified into several groups. This 

classification is based on either some a priori sample separation information (e.g., 

ownership of firms (private, public and foreign), location of firms, etc.) or applying 

cluster analysis to variables such as output and input ratios. In the second stage, 

separate analyses are carried out for each class/sub-sample. This procedure is not 

efficient in the sense that information contained in one class is not used to estimate the 

technology (production or cost frontier) of firms that belong to other classes. However, 

in most of the empirical applications this inter-class information may be quite important 

because firms belonging to different classes often come from the same industry/sector. 

Although their technologies may be different, they share some common features.  
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To exploit the information contained in the data more efficiently, we advocate using a 

Stochastic Frontier Latent Class Model (hereafter SFLCM) that combines the 

stochastic frontier approach and a latent class structure.1 In this model both firm’s 

technology and the probability of particular group membership are estimated 

simultaneously. The frontier that is estimated for one particular class might (with a 

nonzero probability) be the reference technology for any observation, whether it 

belongs to that class or to some other classes. This implies that all the observations in 

the sample should be used to estimate the underlying technology for each class.2 The 

proposed methodology also classifies the sample into several groups even when 

sample-separating information is not available (which is required in a traditional cluster 

analysis). In this case, the latent class structure uses the goodness of fit of each 

estimated frontier as additional information to identify groups of firms.  

 

Recently only a few studies combined the stochastic frontier approach with the latent 

class structure in order to estimate a mixture of frontiers functions.3 In particular, 

Caudill (2002) introduces an expectation-maximization (EM) algorithm to estimate a 

mixture of two stochastic cost frontiers in presence of no sample separation 

information.4 Greene (2001) proposes a maximum likelihood SFLCM using sample 

separation information and allowing for more than two classes, although he does not 

provide any application.  

 

The main feature of the models proposed by both Caudill and Greene is that they 

assume independence of the efficiency term over time. That is, their models are 

developed in a “cross-sectional” framework where a firm observed in two periods is 

treated as two separate firms. This assumption doesn’t allow one to test whether the 

efficiency is time-invariant or not. In any case, time-invariant inefficieny is not 

                                                 
1 See Greene (2002) for a survey of latent class models. 
2 In the standard procedure, we are implicitly restricting the cross-class probabilities to be zero 
and the own probabilities to be equal one. This precludes using observations from other classes 
to estimate a particular class frontier. 
3 This combination has also been employed by Tsionas (2000) to allow for heterogeneity in the 
distribution of the inefficiency term, exclusively. 
4 See, in addition, Beard, Caudill and Gropper (1991, 1997) for applications using a non-frontier 
approach. 
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particularly appealing in a productivity growth study.5 We avoid this problem by 

developing a SFLCM in a “panel data” framework, which allows cost (or technical) 

efficiency to vary over time in a parametric form. An application of the proposed model 

is presented using Spanish banking data.6  

 

The rest of the paper is organized as follows. Section 2 describes the empirical model. 

Section 3 describes the data. Section 4 reports the empirical results. Section 5 contains 

a summary and some concluding remarks. 

 

 

2. Panel data specification of a Stochastic Frontier Latent Class Model 

 

To determine efficiency the technology of banks belonging to each class must be 

modeled. Here we assume that the techology is represented by the dual cost function. 

In particular, we assume that the cost fuction for class j is of the translog form, viz., 

jitjitjititit vutwyCC ||),,,(lnln ++= β       (1) 

where subscripts i = 1,…,N; t =1,…,T; and j =1,…,J stand, for firm, time and class, 

respectively; Cit is actual total cost; yit and wit are, respectively, vectors of outputs and 

input prices; and βj is the vector of parameters to be estimated for class j. For each 

class, the stochastic nature of the frontier is modeled by adding a two-sided random 

error term vit|j, which is assumed to be independent of a non-negative cost inefficiency 

disturbance uit|j.  

 

Additional restrictions should be imposed in order to estimate (1) by the maximum 

likelihood method. In particular, the noise term for class j is assumed to follow a normal 

distribution with mean zero and constant variance, 2
vjσ . The inefficiency term uit|j is 

                                                 
5 These models do not estimate the inefficiency term consistently since its variance does not 
vanish as the sample size increases. A detailed discussion of this issue can be found in 
Schmidt and Sickles (1984) and Greene (1993a).  
6 The Spanish banking industry has many types of banks, although the savings and private 
banks are the majority. We distinguish between the savings banks and private banks because 
they have been regulated in different ways and have been traditionally specialized in different 
services. A small number of the private banks are universal banks while a large number of them 
are regional banks that employ, just like savings banks, a high proportion of deposits to fund 
loans. There are also some non-commercial national and foreign banks that specialize in 
interbanking activities. 
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modeled as the product of a time-invariant firm effect, ui|j, and a parametric function of 

time λt(ηj), where ηj is a vector of parameters to be estimated. The term ui|j is supposed 

to come from a non-negative truncated normal distribution with zero mean and 

variance 2
ujσ .  

 

Several forms for the function λt have been proposed in the literature. A common 

feature of them is that they are exclusively functions of time. Following the literature,7 

we adopt an exponential form for λt, but allow other variables that might explain 

differences over time or among firms (e.g., public, private, etc.) to be included in λt.  In 

particular, the specification of our inefficiency term uit|j can be written, in general terms, 

as: 

   ( ) 0|,|'exp|)(| ≥⋅⋅=⋅= jijijitjijtjit uuzuu ηηλ   (2) 

where ηj = (η1j,…,ηHj) are parameters and zit = (z1it,…,zHit) is a matrix of H variables that 

might affect inefficiency. This specification yields several other parametric functions 

proposed in the literature as special cases. If ηj is a scalar and zit = (T-t) we get the 

specification proposed by Battese and Coelli (1992). If η is a 21×  vector and zit=(t t2) 

we get the specification proposed by Kumbhakar (1990). Finally, if ηj is a T×1  vector 

and zit is a set of T time-dummy variables, we get the specification proposed by Lee 

and Schmidt (1993). 

 

With these distributional assumptions, the log likelihood function for firm i assuming 

that it belongs to class j can be written as (see Battese and Coelli, 1992):  
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7 See the next paragraph. 
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with ε it = ε it(βj) = lnCit - lnC (yit, wit, t, βj); σj
2 = σvj

2 +σuj
2; γj = σuj

2 /σj
2; and θj = (βj σj

2 γj ηj) 

are the parameters associated with the technology of class j, and Φ(·) is the standard 

normal distribution function.  

 

Note that the likelihood function in (3) is defined for all the time periods over which firm 

i is observed, while in Greene it is defined for firm i at each time t. Thus, the full 

contribution of firm i to the overall likelihood function is obtained in Greene’s paper as 

LFi = ∏
iT

t
itLF , where LFit is the likelihood function for firm i at time t. This, however, 

cannot be done in our model due to the fact that firm observations are not independent 

over time. 

 

The class determination for each firm is addressed by adopting a latent class structure. 

In this formulation, the likelihood function for the firm i is obtained as the weighted sum 

of their j-class likelihood functions, where the weights are the probabilities of class 

membership. That is, 

1,10,)()(),(
1

=Σ≤≤⋅= ∑
=

ijjij

J

j
jijjiji PPPLFLF δθδθ   (4) 

where θ = (θ1,…,θJ), δ = (δ1,…,δJ) and the class probabilities are parameterized as a 

multinomial logit model, 

0,,...,1,
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∑ =
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q
P δ

δ

δ
δ    (5) 

where qi is a vector of firm-specific variables. The overall likelihood function resulting 

from (3) to (5) is a continous function of the vectors of parameters θ and δ, and can 

written in as: 

∑ ∑∑
= == 
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⋅==
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j
jijjij

N

i
i PLFLFLF

1 11

)()(ln),(ln),(ln δθδθδθ    (6) 

Under the mantained assumptions, maximum likelihood techniques will give 

asymptotically efficient estimates of all the parameters. A necessary condition for 

identifing δ, the parameters of the latent class probabilities, is that the sample must be 
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generated from either different technologies or different noise/inefficiency terms. 

Otherwise, we cannot classify the observations into several groups since the vector of 

parameters δ is not identified. 8  

 

The estimated parameters can be used to compute the conditional posterior class 

probabilites. Following the steps outlined in Greene (2001) the posterior class 

probabilities can be obtained from 

∑
=

⋅

⋅
= J

j
jijjij

jijjij

PLF

PLF
ijP

1

)()(

)()(
)|(

δθ

δθ
    (7) 

This expression shows that the posterior class probabilities depends not only on the 

estimated δ parameters, but also on the vector θ, i.e., the parameters from the cost 

frontier. This supports our statement that, in addition to the variables included in the 

latent class probabilities, a latent class model uses the goodness of fit of frontiers from 

every class as additional information to identify groups of firms.9  

 

In the standard stochastic frontier apporach where the frontier function (the reference 

technology) is same for every firm, we estimate inefficiency relative to the frontier for all 

                                                 
8 It can be shown that the vector of parameters δ is not identified if firms belonging to different 
groups use the same technology (i.e., θj = θh) Consider, for instance, the case of two groups (J = 
2). The first derivative of the log likelihood (6) with respect to δ can then be formulated as:  

∑
=

∂∂⋅−=∂∂
N

i
iiii PLFLFLFLF

1
12211 )())()((),(ln δδθθδδθ  

this equation shows that irrespective of the value of δ, ∂lnLF/∂δ is always equal to zero if the 
stochastic cost frontier parameters are the same in both classes.  
9 It is to be noted that although Greene (2001) works with a density function for each firm i at 
time t, he proposes estimating the posterior class probability for the complete set of 
observations of firm i. That is, as in equation (7), he proposes estimating P(j|i) instead of P(j|i,t). 
This seems to support our strategy of constructing the whole model from the firm’s point of view, 
and not from the density function of each observation i at time t. This difference does not seems 
to be important because the expression used here and the one proposed by Greene for 
estimating P(j|i) are equivalent, except for LFij(θj) which in Greene (2001) is estimated as the 
product of Ti independent density functions, whereas here it is estimated using equation (3). 
Since the likelihood functions are different the estimated parameters are likely to be different. 
Thus although the same formula is used to compute the posterior probabilities – the estimated 
probabilities are likely to differ. 
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observation, viz, inefficiency from )|( iituE ε  and efficiency from E[exp(-uit)|ε i]. 10  In 

the present case, the interpretation of inefficiency is, however, different. The model 

proposes that a firm may belong to more than one class (with some probability). Thus 

there is no unique reference technology against which inefficiency is to be computed. 

There are two ways to solve this problem. First, we examine the posterior probability 

for each firm and assign it a class based on the highest probability (assuming that there 

is no tie). Once the class assignment is done inefficiency for that firm is computed 

using the frontier for the assigned class as its reference technology. Note that this 

method ignores all other class probabilites although the (posterior) class probabilities 

are not zero. This scheme of arbitrary weighting and somewhat ad hoc choice of the 

reference technology can be avoided by using the second method, viz.,  

∑
=

⋅=
J

j
itit jEFijPEF

1

)(ln)|(ln        (8) 

where P(j|i) is the posterior probability of belonging to class j given firm i defined in (7), 

and EFit(j) is its efficiency using the technology of class j as the reference technology. 

Note that here we don’t have a single reference technology. It takes into account 

technologies from every class.  

 

This is the strategy suggested by Greene (2001) to get firm-specific estimates of the 

parameters of the stochastic frontier model. The efficiency results obtained from using 

(8) would be different from those based on the most likely frontier and using it as the 

reference technology. These differences appear due to the fact that the “reference” 

frontiers are not the same. The size of the difference depends on the relative 

importance of the posterior probability of the most likely cost frontier, the higher the 

posterior probability the smaller the differences.  

 

 

3. Data and sample  

 

This section includes an application of the SFLCM discussed in the previous section 

using the Spanish private and savings banks. The number of banks decreased steadily 

                                                 
10 εi denote the vector of the Ti associated εit for firm i. For more details, see Kumbhakar (1990) 
and Battese and Coelli (1992, eq. 3). These authors extend Jondrow et al. (1982) result that 
allows computation of individual inefficiencies in a panel data framework.  
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over the last ten years due to merger and adquisitions.11 Since mergers took place 

mainly in the early 1990s and in 1992 a change took place in the structure of the public 

balance sheets that reduced the amount of information reported by banks, we use an 

unbalanced panel of 169 banks over the period 1992-2000.  

 

Three sets of variables are required to estimate the model introduced in Section 2. 

These are: the stochastic frontier variables (i.e. Cit, yit ,t and wit); the zit variables in the 

parametric function of the inefficiency term; and the qi variables in the class 

probabilities.  

 

The variables used in the stochastic cost frontier are defined in the same way for every 

group of banks. We follow the banking literature and use the intermediation approach 

proposed by Sealey et al. (1977) to define inputs and outputs. The intermediation 

approach treats deposits as inputs and loans as outputs. In our application we include 

four types of outputs, viz., bonds, cash and others assets not covered by the following 

outputs (y1); interbanking loans (y2); loans to firms and households (y3); and non-

interest income (y4). The last output is not commonly used in the intermediation 

approach. We include non-interest income in an attempt to capture off-balance-sheet 

activities such as, brokerage services, management of financial assets or mutual funds 

for the customers. These activities are becoming increasingly important in Spanish 

banks.12  

 

Total cost includes both interest and operating expenses. The interest expenses 

explains about 71% of total cost and they came from demand, time and saving 

deposits, deposits from non-banks, securities sold under agreements to repurchase, 

and other borrowed money. The operating expenses that represent the remaining 29% 

of total cost includes labor expenses and other general operating expenses, such as 

                                                 
11 While a merger implies that a new bank is born and the disappearance of two banks, in an 
acquisition only one disappears and no new bank is born. 
12 Our measure of nontraditional banking activities is not without problems. First, we cannot 
distinguish between variations due to changes in volumes and variations due to changes in 
prices. Second, non-interest income is partly generated from traditional activities (such as fees 
from service charges on deposits or credits) rather than nontraditional activities alone. Since 
comprehensive information on the degree of off-balance-sheet services is not available, we 
prefer to describe them in an approximate way. Many recent efficiency studies also include fee or 
non-interest income as an output (for example, Lang and Welzel (1996), Resti (1997) and Rogers 
(1998)). 
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rent and occupancy cost, communication expenses, or travel and relocation expenses. 

Since comprehensive information about the amount of physical assets and other 

operational inputs is not available in our database, we do not distinguish between labor 

and other operational expenses. Accordingly, we include two input prices in our cost 

functions. These are: loanable funds price, measured by dividing interest expenses by 

total amount of deposits and other loanable funds (w1); and operational inputs price, 

measured by dividing total operating expenses by total number of employees (w2). The 

descriptive statistics of these variables can be found in Table 1. All monetary variables 

were deflated by the GDP deflator index, and are expressed in thousand Euros (using 

2000 as the base year).  

 

Regarding the parametric part of the inefficiency term, (.),λ  we consider three zit 

variables. The first variable is the time trend (t). With only time the specification of (.)λ  

corresponds to the Battese and Coelli (1992) form. Since (.)λ  is a function of time with 

only one parameter, efficiency either increases, decreases or remains constant. The 

second variable, DA, is a dummy variable that increases its value by one unit each time 

the bank extended its activity through acquisition of other bank, and it takes a value of 

zero if the bank doesn’t acquire other finantial institutions from the second year to the 

last year of the sample. Since an acquisition process involves structural changes 

(closure of branches, staff relocation, etc.), we expect an increase in inefficiency when 

an acquisition takes place. The third variable, DS, is also a dummy variables that takes 

a value one if the finantial institution is a savings banks, and zero otherwise. The 

coefficient of this variables allow us to test whether savings banks are as efficient as 

private banks.  

 

Finally, we consider the firm-average value of five variables, apart from an intercept, as 

determinants of the latent class probabilities. As customary in cluster analysis, the 

variables included in the class probabilities are four balance sheet ratios: loans to firms 

and households (LNB), interbanking loans (LB), time and saving deposits (DNB), and 

deposits from banks (DB). We also include the labor to branch ratio (LBR) to identify a 

set of non-commercial banks that operate in large population cities with large branches.  

 

In summary the final specification of the cost frontier model (ignoring the j-class 

subscript for notational ease) can be writen as:  
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where  

   [ ] iSAit uDDtu ⋅+⋅+−= 321 )1(exp ηηη     (15) 

and the latent class probabilities as: 

[ ]
[ ]∑ =

+++++

+++++
= J

j ijBijNBijBijNBijj

ijBijNBijBijNBijj
jij
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1 543210
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)(
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δδδδδδ
δ      (16) 

 

 

4. Empirical Results 

 

The SFLCM is estimated with three classes. Likelihood ratio tests have been carried 

out in order to test whether data supports the model with one class or two classes. 

Estimating a model with (J-1) classes is equivalent to estimating a model with J classes 

but restricting the parameters of the cost frontier equation (θ) and the latent class 

probability parameters (δ) for any two classes to be the same. The likelihood ratio test 

rejects the one-class model against the model with two classes. Like-wise the two-

class model is rejected in favor of the three-classes model.13 Overall, these tests 

indicate that no two classes share the same cost frontier and/or the samer error 

structures. This result suggests that efficiency estimations might be biased if these 

differences are not controlled. Since our data supports the three-class model, we 

confine our discussion to the three-class model only.  

 

                                                 
13 These Likelihood ratio tests follow a 2χ  distribution function with 33 degrees of freedom and 

the 2χ values are 1889.4 and 254.0, respectively.  
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To show the advantages of the proposed methodology, we also carried out a traditional 

cluster analysis to split the sample.14 The variables considered in the cluster analysis 

are the same five variables included in the latent class probabilities. In addition, the 

cluster analysis was carried out using the so-called k-means method. This method 

allow us to work with the same number of classes than in the SFLCM.  

 

Table 2 sumarizes the classifications resulting from both methodologies. Even though 

they use the same five separating-variables to identify groups of firms, the 

classifications are differents. The differences are due to the fact that a latent class 

structure uses not only sample-information (such as a cluster analysis) but also the 

goodness of fit for each class models.  

 

The main features of banks in each class are summarized in Table 3. The biggest 

group that is identified using both methodologies (second class) includes most of the 

banks and it is mainly formed by commercial banks. This group includes almost all the 

savings banks in the sample and a set of regional banks which employ a high 

proportion of deposits to fund loans to individuals and industrial or commercial firms. A 

small set of multiple-line or universal banks also belongs to this group. Due to the fact 

that the largest financial banks in Spain belong to this group, the average size of these 

banks is much larger than the banks in other classes.  

 

The other two groups are mainly formed by non-commercial banks that specialize in 

activities related to interbanking market. From the results of the cluster analysis, we 

can identify two different types of non-commercial banks. The first class includes a set 

of personal banks which capture a high proportion of deposits to fund loans to other 

banks. The third group is formed by business banks that are specialized in loans to 

non-banks supported by deposits from other banks. A joint feature of the non-

commercial banks in these two groups is that they usually operate in large population 

cities with large branches (about 24 workers per branch). 

 

As indicated in Table 2, the non-commercial bank groups obtained from using the 

SFLCM are quite different from those found using the cluster analysis. This means that 

significant information not contained in sample-separating variables has been used by 

the SFLCM to split the sample. For instance, the SFLCM classification might reflect 
                                                 
14 See, for instance, Pérez et al. (1999). 
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unobservable differences in loans (mortgage vs. bussines, short-term vs. long-term) or 

in borrowed money (demand deposits vs. time or saving deposits) that require different 

levels of monitoring or different cost structures. If these differences are not controlled 

for in estimating the technology, the misspecification can be mistakenly identified as 

inefficiency.  

 

Table 4 reports average cost efficiency estimated using the highest probability cost 

frontier as a reference technology.15 This table shows that the average cost efficiency 

of the Spanish bank sector is 82.1 percent using the SFLCM and 78.0 percent using 

the traditional cluster analysis. As expected, this result reveals that traditional cluster 

analyses (that do not take into account unobservable differences in cost structures) 

tend to underestimate the industry average efficiency level. Another interesting feature 

is the time path of efficiency. The results in Table 4 show a decreasing trend in cost 

efficiency over the period 1992-2000. The rate of reduction in the cluster analysis is 

found to be higher compared to the SFLCM. Thus, the cluster analysis, in this 

application, overestimate the rate of change in cost efficiency. 

 

The parameter estimates using the SFLCM are presented in Table 5. The parameter 

estimates in the cluster analysis are reported in Table 6. In the cluster analysis the cost 

frontier and efficiency function parameters are estimated separately for each 

subsample. This is equivalent to estimating a SFLCM but assigning a priori a latent 

class probability equal to one for one class and a probability equal to zero for other 

classes. This two-stage procedure does not exploit all the information contained in the 

data because information contained in one class is not used to estimate the 

parameters in other classes. The results in Tables 5 and 6 reveal that the overall 

likelihood function value from the SFLCM is clearly higher than that value obtained 

from the cluster analysis. Therefore, the best model that the data supports is the 

SFLCM.  

 

We now return to estimation and results other than efficiency. To estimate the cost 

frontier we normalize all the variables by their respective geometric mean. In this way, 

the translog cost frontier represents a second-order Taylor approximation, around the 

                                                 
15 The efficiency levels using (8) are quite similar to those reported in Table 4. This is because 
estimated posterior probabilities for the highest probability classes are, on average, very high 
(92.3, 97.8 and 91.1, respectively).  
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geometric mean, to any generic cost frontier. Since the cost function is homogene of 

degree one in input prices we need to impose parametric restrictions to ensure that the 

estimated cost function satisfies linear homogeneity property. In practice, linear 

homogeneity restrictions are automatically satisfied if the cost and input prices are 

expressed as a ratio of one input price. Here we use wages (price of labor) as a 

numeraire. The estimated cost frontier elasticities are found to be positive at the point 

of approximation, except for output y4 in the first class in the cluster analysis. The lack 

of (positive) monotonicity in this output might be due to model misspecifications we 

mentioned earlier.  

 

The time trend measures variations in cost not explained by other explanatory 

variables and are usually attributed to exogenous technical change measured by 

tC ∂∂− /ln . Thus, a positive sign on it means technical progress (cost diminution over 

time, ceteris paribus). The results in Table 5 show, in general, a positive technical 

change, with the exception of the SFLCM technology in the third class. In addition to 

technical change, the estimated cost frontiers provides a measure of scale economies. 

Returns to scale can be estimated as one minus the sum of output cost elasticity (RTS 

= ∑ ∂∂−
k kyC ln/ln1 ). At the sample mean, this measure is only a function of  the first-

order output coefficients. The sum of these coefficients is less than unity for all groups 

of banks indicating the presence of increasing returns to scale. Many of the past 

banking studies found similar results.  

 

We now examine the behavior of cost efficiency among banks and over time. Except 

for the third class, we reject the null hypothesis of time-invariant efficiency (i.e. H0: η1= 

0). That is, the estimated variations in cost efficiency over the period 1992-2000 are 

significant for most of the Spanish banks. This result suggests that efficiency change 

should be included in an examination of bank productivity growth. As expected, the 

sign on the coefficient of DA is positive and statistically different fron zero in the last two 

classes. This means that  inefficiency increases when acquisition takes place resulting 

closure of branches, staff relocation, etc. The estimated coefficients on DS are positive 

but not statistically different from zero, indicating that savings banks are as efficient as 

private banks. It is important to note that none of the banks belonging to the first class 

is involved in acquisition, and all savings banks belong to either class one or class two. 

In a latent class framework, this does not preclude estimating a coefficient for DA (DS) 

in the first (third) class, as it happens in a cluster analysis (see Table 6). In these 
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cases, the coefficient is estimated by exploiting information of banks belonging to other 

classes. 

 

Finally, we examine the coefficients of the latent class probabilities. These coefficients 

are statistically significant thereby indicating that the variables included in the class 

probabilities do provide useful information in classifying the sample. The sign of these 

variables suggests that the higher (smaller) the deposits ratio (loans to banks ratio), the 

smaller (higher) the probability of belonging to the first two classes. The value and the 

negative sign on the labor to branch ratio in the second class suggest that probability of 

membership in the second-class decreases significatively when the branch size 

increases. 

 

 

5. Conclusions 

 

Estimates of cost efficiency can be biased if firms in an industry use different 

technologies. In order to reduce the likelihood of misspecification, researches often 

often classify the sample into groups using sample separation information and then 

carry out estimation separately on the sub-samples. This procedure, however, is not 

efficient because it does not take into account inter-class information that can be quite 

important in most of the empirical applications. In the present paper, we propose using 

a Stochastic Frontier Latent Class Model that exploit all the information contained in the 

data efficiently. This model is developed in a “panel data” framework which allows cost 

efficiency to vary over time in a parametric form.  

 

We include an application of the methodology using Spanish banking data. The 

classifications resulting from using the SFLCM and a traditional cluster analysis are 

different, indicating that unobservable differences (in loans, borrowed money, etc., 

which require different levels of monitoring or different cost structures) are used by the 

SFLCM to split the sample. The result reveals that the cluster analysis (that do not take 

into account unobservable differences in cost structures) tends to underestimate 

average efficiency of the banks and overestimate the changes in cost efficiency. 
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Table 1. Cost Frontier Variables: Descriptive Statistics 

             Mean          Max            Min            St.Dev. 
y1 1649945 4952474 451 68334229 
y2 1397305 3886538 0 36232525 
y3 2748801 6561083 0 91895929 
y4 43639 117438 0 1431196 
w1 6.060 5.337 0.031 136.960 
w2 87.513 189.338 15.543 3210.884 

Costs 276648 718232 65 7129464 
 
 
 
 
 

Table 2. LCM and Cluster Analysis: Class comparison 
 
 LCM 

 Class 1 Class 2 Class 3 Total 

Class 1 
0 

(0.0) 
(0.0) 

3 
(15.8) 
(2.9) 

16 
(84.2) 
(30.2) 

19 

Class 2 
8 

(7.0) 
(57.1) 

95 
(83.3) 
(93.1) 

11 
(9.6) 
(20.8) 

114 

Class 3 
6 

(16.7) 
(42.9) 

4 
(11.1) 
(3.9) 

26 
(72.2) 
(49.1) 

36 

Cluster 
Analysis 

Total 14 102 53 169 
Note: Percentages with respect the row (column) total class in the first (second) parenthesis. 
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Table 3. LCM and cluster analysis: Class features 

LCM  Cluster Analysis 

Class 1 

Variable  Obs Mean Max Min St.d.  Obs Mean Max Min St.d. 

LB  14 12.07 38.95 0.58 12.18  19 60.95 94.36 39.60 14.08 
DB  14 37.58 94.06 1.82 34.14  19 12.51 39.64 0.00 10.84 
LNB  14 69.65 97.02 30.07 19.55  19 16.55 36.81 0.14 11.98 
DNB  14 48.55 91.48 0.64 33.47  19 66.65 88.12 34.46 16.39 
LBR  14 11.23 29.12 3.93 7.29  19 23.89 129.00 3.22 29.05 

Class 2 

Variable  Obs Mean Max Min St.d.  Obs Mean Max Min St.d. 

LB  102 21.40 46.90 2.18 8.94  114 20.25 43.92 0.40 9.21 
DB  102 14.01 58.12 1.01 11.56  114 12.86 40.57 1.01 9.13 
LNB  102 53.28 74.77 22.66 10.89  114 54.66 90.46 25.50 11.42 
DNB  102 73.47 91.07 33.47 12.11  114 73.20 91.48 34.26 11.74 
LBR  102 6.69 14.76 3.35 2.47  114 6.84 19.88 3.35 3.01 

Class 3 

Variable  Obs Mean Max Min St.d.  Obs Mean Max Min St.d. 

LB  53 41.55 94.36 0.40 24.17  36 30.23 82.90 0.58 22.26 
DB  53 37.30 87.50 0.00 27.49  36 61.90 94.06 23.29 18.28 
LNB  53 37.65 96.35 0.14 25.58  36 51.62 97.02 3.69 26.51 
DNB  53 38.57 88.12 0.18 27.39  36 16.87 42.07 0.18 13.53 
LBR  53 23.50 129.00 2.29 23.47  36 23.65 81.99 2.29 18.84 

Note: Balance sheet ratios in percentage. except for the Labor to Branch ratio (LBR). 

 

 
 

Table 4. Overall efficiency indexes. 

LCM  Cluster Analysis 

Year  Obs Mean Max Min St.d.  Obs Mean Max Min St.d. 

92  145 84.3 99.7 42.3 10.8  145 81.6 99.4 42.1 10.6 
93  147 83.8 99.6 41.9 11.1  147 80.9 99.4 36.6 10.9 
94  144 83.6 100.0 51.1 11.0  144 80.1 99.4 40.5 11.1 
95  144 82.7 100.0 50.6 11.5  144 79.1 99.4 46.0 11.6 
96  142 82.3 100.0 48.7 11.8  142 78.2 99.4 41.3 12.4 
97  139 81.7 100.0 46.8 11.9  139 77.2 99.4 36.6 13.3 
98  134 81.0 100.0 44.8 12.3  134 76.2 99.4 31.9 14.2 
99  128 79.9 100.0 42.8 12.7  128 75.3 99.3 27.3 15.3 
00  122 78.3 100.0 40.8 13.8  122 72.5 99.3 4.1 18.5 

All  1245 82.1 100.0 40.8 12.0  1245 78.0 99.4 4.1 13.4 
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Table 5. LCM Parameter Estimates 

 Class 1 Class 2 Class 3 

Parameters Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 

Cost frontier       
lny1 0.2074 11.428 0.2019 47.089 0.1761 9.416 
lny2 0.1131 10.400 0.1798 43.769 0.2805 18.207 
lny3 0.4698 17.032 0.4587 59.440 0.4471 24.953 
lny4 0.0667 2.562 0.0841 12.594 0.0183 1.176 
lnw1 0.5879 29.330 0.6262 85.625 0.8349 30.268 
0.5(lny1)

2 -0.0314 -2.220 0.1100 13.197 0.1182 5.421 
0.5(lny2)

2 0.0262 6.108 0.0832 17.629 0.0919 10.097 
0.5(lny3)

2 0.1249 10.373 0.1264 14.984 0.1482 15.997 
0.5(lny4)

2 0.0575 6.242 0.0395 2.969 0.0064 1.404 
0.5(lnw1)

2 0.1829 15.343 0.0904 7.697 -0.0595 -2.208 
lny1⋅lny2 0.0117 2.080 -0.0347 -6.832 -0.0453 -3.954 
lny1⋅lny3 -0.0393 -3.247 -0.0431 -4.532 -0.0775 -6.020 
lny1⋅lny4 0.0183 3.027 -0.0294 -4.010 0.0132 1.701 
lny1⋅lnw1 0.0080 0.874 0.0338 5.096 0.0060 0.328 
lny2⋅lny3 -0.0174 -2.583 -0.0533 -6.405 -0.0711 -8.043 
lny2⋅lny4 -0.0232 -5.531 0.0135 2.366 0.0009 0.179 
lny2⋅lnw1 0.0065 0.854 0.0343 7.161 0.0276 2.100 
lny3⋅lny4 -0.0758 -8.753 -0.0315 -2.929 -0.0249 -4.756 
lny3⋅lnw1 0.0357 2.600 -0.0127 -1.276 0.0472 3.194 
lny4⋅lnw1 -0.0588 -7.111 -0.0207 -2.939 -0.0053 -0.550 
t -0.0394 -6.289 -0.0229 -15.333 -0.0042 -0.486 
Intercept 11.199 165.833 11.397 1260.60 10.989 228.56 

Efficiency term       
t 0.0550 3.832 0.0568 9.951 0.0103 0.334 
DA 0.0596 1.047 0.0993 3.358 0.8643 3.957 
DS 0.1006 0.252 0.0606 0.434 0.1941 0.064 
σ2 0.1499 1.843 0.0201 4.634 0.1422 2.969 
ψ 0.0083 1.708 0.0454 4.223 0.1482 2.436 

Probabilities       
Intercept -7.4647 -0.849 -10.140 -2.201   
LB -0.2114 -2.804 -0.1625 -3.312   
DB 0.1613 1.680 0.2242 3.595   
LNB -0.0469 -0.920 -0.0830 -2.049   
DNB 0.1874 1.896 0.2663 4.183   
LBR -0.0393 -1.162 -0.1388 -1.827   

 Observations =  1245 LF =   1451.4086 
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Table 6. Cluster Analysis Parameter Estimates 

 Class 1 Class 2 Class 3 

Parameters Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 

Cost frontier       
lny1 0.2816 10.307 0.2117 30.298 0.1848 6.447 
lny2 0.4606 12.376 0.2008 35.567 0.2822 10.829 
lny3 0.1908 13.348 0.5173 45.223 0.4664 16.651 
lny4 -0.2140 -4.503 0.0770 7.263 0.0100 0.407 
lnw1 0.6930 19.691 0.6611 55.935 0.7890 17.750 
0.5(lny1)

2 0.1512 9.127 0.1089 8.561 -0.0881 -3.262 
0.5(lny2)

2 0.1757 7.989 0.0554 12.143 -0.0010 -0.114 
0.5(lny3)

2 0.0510 12.030 0.1514 18.524 0.0674 3.379 
0.5(lny4)

2 0.0453 6.154 0.0520 4.211 -0.0016 -0.188 
0.5(lnw1)

2 0.0703 2.149 0.1483 7.810 0.1196 5.802 
lny1⋅lny2 -0.0987 -6.740 -0.0186 -3.044 0.0759 4.253 
lny1⋅lny3 -0.0349 -4.499 -0.0666 -6.799 0.0805 4.125 
lny1⋅lny4 -0.0347 -4.696 -0.0299 -3.059 -0.0065 -0.522 
lny1⋅lnw1 0.0019 0.102 0.0093 0.989 -0.0258 -1.112 
lny2⋅lny3 0.0261 2.265 -0.0666 -8.040 -0.1368 -8.389 
lny2⋅lny4 -0.0256 -2.377 0.0131 2.005 0.0234 2.816 
lny2⋅lnw1 0.0974 3.914 0.0397 5.781 -0.0201 -1.222 
lny3⋅lny4 -0.0926 -7.128 -0.0407 -4.373 -0.0218 -2.449 
lny3⋅lnw1 -0.0414 -2.879 0.0326 3.649 0.0427 1.697 
lny4⋅lnw1 -0.0109 -1.079 -0.0532 -5.889 0.0277 1.727 
t -0.0224 -2.486 -0.0143 -5.328 -0.0586 -4.300 
Intercept 10.711 165.42 11.301 617.62 11.138 162.05 

Efficiency term       
t 0.1561 7.517 0.0216 3.002 0.1286 4.387 
DA - - 0.1847 3.967 -0.1281 -0.563 
DS - - -0.1824 -1.302 - - 
σ2 0.1182 2.571 0.0782 4.942 0.1102 2.975 
ψ 0.0350 2.310 0.0438 4.527 0.4461 1.881 

Observations 132 884 229 
LF 114.2238 977.6686 -7.5292 

Overall LF 1084.3632 

 


