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Abstract: Distance functions were initially defined on the input or output production possibility sets 
by Shephard (1953, 1970) and extended to a graph representation of the technology by Färe, 
Grosskopf and Lovell (1985) through their graph hyperbolic distance function. Since then, 
different techniques, non parametric-DEA and parametric-SFA, have been used in order to 
calculate these distance functions, but in the latest case no study is known to have relaxed the 
restrictive input or output orientation. What we propose is to relax such partial dimensionality by 
defining and estimating a parametric hyperbolic distance function which simultaneously allows for 
the maximum equiproportionate expansion of outputs and reduction of inputs. Particularly, we 
introduce a translog hyperbolic distance function showing how this specification complies with the 
conventional properties that the hyperbolic distance function satisfies. Finally, to illustrate its 
applicability in efficiency analysis, we implement it using a data set of Spanish savings banks.  
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1. Introduction 
 
Distance functions were initially defined in a producer context by Debreu (1951) and 

Shephard (1953). They had their first empirical application through Farrell’s (1957) 

overall efficiency measure. The initial attempts to measure productive efficiency, as well 

as the huge number of theoretical models and empirical applications that followed 

afterwards, were usually based on input or output production possibility set 

representations of the technology. Färe, Grosskopf and Lovell (1985) explicitly defined a 

distance function on a graph representation of the production technology. Their graph 

distance function is the first attempt to relax these restrictive assumptions since it does 

not depend on a fixed levels of outputs or inputs in order to characterize the technology –

as the input and output distance functions respectively do-, thus taking a step forward in 

applied production analysis. Actually, outputs and inputs are allowed to vary in the same 

proportion, but while outputs are increased, inputs are decreased.  

 
Input or output distance functions are passive regarding the opposite orientation and this 

restriction on the analysis could be unacceptable by analysts if a measure of productive 

and economic performance that takes into accounts both inputs and outputs adjustability 

is desired. It is clear that researchers, when adopting a particular orientation, are 

focusing on what they consider is the most relevant orientation. By adopting an input 

orientation, one assumes that producers are fully capable of allocating resources when 

improving efficiency while outputs are exogenous. When an output orientation is 

selected, the production mix is the relevant variable while inputs are exogenous. This 

reasoning can be extended to economic efficiency through duality, since an input 

orientation identifies with cost minimizing behavior while the output oriented context 

focuses on revenue maximizing behavior.  

 
The question is why not take advantage of the fact that all inputs and outputs could be 

freely adjusted subject only to the constraints imposed by the production technology. 

Thus, a graph hyperbolic distance function such as the parametric one that we propose 

here can enrich production performance analysis. Furthermore, if profit maximizing 

behavior is an adequate assumption for the market, then the hyperbolic distance function 

is a natural choice for profit efficiency analysis −as it is dual to the return to dollar 
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function, see Färe and Grosskopf (2001)1.  

 

In empirical applications, it is worth noting that while the operations research field quickly 

grabbed the distance functions concept and expanded their applications through non 

parametric Data Envelopment Analysis techniques, e.g. Charnes, et al. (1994), the 

parametric field originated with Aigner, Lovell and Schmidt (1977) is quite new to 

distance functions estimation. Examples of recent parametric output distance functions 

are English et al. (1993), Grosskopf, Margaritis and Valdamis (1995), Coelli and 

Perelman (1996, 2000), Morrison et al. (2001) and Cuesta and Orea (2002). On the 

other hand, parametric input distance functions are found in papers by Grosskopf and 

Hayes (1993), Grosskopf, Hayes and Hirschberg (1995), Bosco (1996) and, once again, 

Coelli and Perelman (1996, 2000). Nevertheless, none of them are known to have 

developed the potential of the graph hyperbolic distance functions in the parametric 

field2. Regarding DEA some steps have been taken in this direction mainly in 

environmental efficiency analysis, e.g. Färe et al. (1989) and recent productivity analysis, 

Zofío and Lovell (2001).  
 
The literature is then quite limited with regard to the definition and application of the 

graph hyperbolic function through DEA, and it has never been undertaken in the 

parametric field. The fact that such functions are not widely used is mainly due to the 

technical difficulties encountered in their calculation. In a non-parametric context, they 

require non-linear optimizing techniques, while in the parametric case they require 

special production function formulations as the one introduced here. We believe that this 

paper fulfills an important gap in the latter field. The paper is structured in the following 

sections. In the next section we introduce the desirable properties that output, input and 

hyperbolic distance functions should satisfy. Section three presents the translog 

hyperbolic distance function, THDF, and how it compares to its conventional input and 

output counterparts. The fourth section shows the empirical specification and the 

estimation procedure. An empirical application to the banking sector is undertaken in 

                     
1 Also, it would be possible to define a directional distance function, which is also defined on a 
graph representation of the technology, and is dual to the profit function, see Chambers, Chung 
and Färe (1996). However, its implementation in a parametric context would not be amenable 
because of its additive nature. 
2 Once again, directional distance functions have been applied in this field, see Chung, Färe and 
Grosskopf (1997). However, their implementation has been restricted to Data Envelopment 
Analysis, as this technique is better suited for additive model specifications. 
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section five. Finally, some conclusions are drawn in the last section.  

 

 

2. Distance Functions and Technical Efficiency 
 
Let us suppose a production technology transforming a series of input vectors xi

 = (x1i ,..., 

xKi) ∈  K
+ℜ  into the following output vectors  yi

 = (y1i,..., yMi) ∈  M
+ℜ  where the subscript i = 

(1,2,...,N) refers to a set of observed processes –firms, DMU’s, etc.-. Given this 

information, the technology can be represented by the graph set, 
 { }yxyxyx  producecan:),(=),T(     (1) 

This production structure can be expressed in equivalent terms through the output and 

input correspondences, x → P(x) ⊆  M
+ℜ  and y → L(y) ⊆  K

+ℜ , which respectively represent 

the set of all input vectors which yield y and the set of all output vectors obtainable from 

x. These output and input correspondences are inferred from the graph production 

possibility set (1): P(x)={y: (x, y) ∈ T(x, y)} and L(y) = {x: (x, y) ∈ T(x, y)}, while the graph 

can be also inferred from the input and output correspondences, T(x, y) = {(x, y) ∈
MK+

+ℜ : 

x ∈  L(y), y ∈  M
+ℜ } = {(x, y) ∈

MK+
+ℜ : y ∈  P(x), x ∈  K

+ℜ }. Thus, it is verified that a given 

production process (x, y) ∈  T (x, y) ⇔ y ∈  P(x) ⇔ x ∈  L(y), Färe, Grosskopf and Lovell 

(1985:46). The following output and input distance functions defined in the technology 

set can be expressed in terms of the output and input correspondences while the latest 

graph hyperbolic distance function cannot be expressed in such terms. We assume that 

the graph, output and input production possibility sets satisfy a set of equivalent 

properties3:  

 
 T.1: 0 ∈  T, (0, y) ∈  T⇒  y = 0, 

 T.2 If  (x, y) ∈  T then (x,λy) ∈  T for 1 ≥ λ ≥ 0. 

 T.3 If  (x, y) ∈  T, then (λx, y) ∈  T for λ ≥ 1, 

 T.4: (T ∩ {(x, y): x ≤ x }) is bounded for each x ∈  ℜ K
+, 

 T.5 T is a closed set, 

                     
3 T (x, y) satisfies strong disposability of inputs and outputs if given (x, y) ∈  T(x, y) , ∀  (x′ ≥ x, y′ ≤ 
y) ⇒  (x′, y’) ∈  T (x, y) or, alternatively, if  x ∈  L(y), x′ ∈  L(y), and y ∈  P(x), y′ ∈  P(x). The weak 
disposability axioms imply that if (x, y) ∈  T(x, y) , ∀  (µx, λy) ⇒  (µx, λy) ∈  T(x, y), µ  ≥ 1, 0 < λ ≤ 1. 
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 T.6 T is a convex set 

 

2.1 Output and Input Distance Functions 
Given this technology characterization, Shephard (1953) introduced the output distance 

function as the maximum feasible expansion of the output vector necessary to reach the 

boundary of the technology T(x, y). 

 

Definition 1: The output distance function DO: K
+ℜ  × M

+ℜ  →ℜ +  U {+∞} is defined by 

 
   ( ) ( ){ }yxyx,yx, ,T)/(:0infDO ∈ϕ>ϕ=           (2) 

The output distance function range is 0 < DO(x, y) ≤ 1 and completely characterizes the 

technology assuming weak disposability of outputs (Färe and Primont, 1995). Some 

relevant properties of DO(x,y) deriving from the axioms of the technology set can be 

stated:   

 
DO.1 DO(x,µ y) = µ DO(x, y), µ > 0. DO(x, y) is homogeneous of degree one in outputs, 

DO.2 DO(x, λy) ≤  DO(x, y), λ  ∈ [0,1]. DO(x, y) is non-decreasing in outputs,  

DO.3 DO(λx, y) ≤ DO(x, y), λ ≥ 1. DO(x, y) is non-increasing in inputs. 

 
With regard to the homogeneity condition, DO.1 states that for a scalar µ > 0 and any 

(x,y): 

 
{ }

( ) ),(D)T(
/

,:0/inf

)T(
/

,:0inf)T()/μ,(:0inf)μ,(D

O

O

yxx,yyx

x,yyxx,yyxyx

µ=








∈





µϕ

>µϕµ=

=








∈





µϕ

>





µ
ϕµ=∈ϕ>ϕ=

   (3) 

 
An alternative representation of the technology is provided by the input distance function 

as the maximum feasible reduction of the input vector necessary to place (x, y) on the 

boundary of technology T(x, y). 

 
Definition 2: The input distance function DI: 

K
+ℜ  × M

+ℜ  → ℜ + U  {+∞} is given by 

 
   ( ) ( ){ }yxyx/yx, ,T),(:0supDI ∈φ>φ=           (4) 
 
The input distance range is 1 ≤ DI(x, y) ≤ +∞  and completely characterizes the technology 

assuming weak disposability of inputs. It is linearly homogeneous of degree one and 
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non-decreasing in inputs, while it is non-increasing in outputs. The homogeneity 

condition can be shown in a similar way to (3). 

 
2.2. Hyperbolic Distance Function 

It is now possible to introduce the hyperbolic distance function as the maximum 

equiproportionate expansion of the output vector and reduction of the input vector that 

places a given observation on the boundary of the technology T(x, y). 

  
Definition 3: The hyperbolic distance function DH: K

+ℜ  × M
+ℜ   →ℜ + U {+∞} defines as: 

 
   ( ) ( ){ }yxyxx,y ,T)/,(:0infDH ∈θθ>θ= .          (5) 
 
This distance function inherits its name from the hyperbolic path that it yields toward the 

production frontier. Its range is 0 < DH(x, y) ≤ 1 and, once again, completely characterizes 

the technology assuming weak disposability of outputs and inputs. If the technology 

satisfies T.1-T.5, then the graph distance function verifies (Färe, Grosskopf and Lovell, 

1985:111): 

 
DH.1 DH(µ-1 x,µ y) = µ DH(x, y), µ > 0, 

DH.2 DH(x, λy) ≤  DH(x, y), λ  ∈ [0,1], 

DH.3 DH(λx, y) ≤  DH(x, y), λ  ≥ 1. 

 
The graph hyperbolic distance function is non-decreasing in outputs, DH.2, non-

increasing inputs, DH.3, while it presents the special homogeneity degree corresponding 

to DH.1. Since this specific homogeneity condition is a key issue when dealing with 

concrete functional specifications, it requires further attention. To be precise, it can be 

related to the concept of almost homogeneity introduced by Aczel (1966, Ch.7)4:  
 
Definition 4: A function F(x, y) is almost homogeneous of degrees k1, k2 and k3 if 
 
   ( ) ( ) 0,,μμ,μ 321 kkk >µ∀= yxFyxF .          (6) 
 
Therefore, if the set of outputs y is increased by a power of a given proportion while the 

set of inputs x is increased by other power of that proportion, then the distance function 

will be increased by yet another power of that proportion. According to this generic 

definition, the particular case represented by DH.1 implies that the hyperbolic distance 

                     
4 Lau (1972) defines almost homogeneity in a slightly different way. 



 7 

function is almost homogeneous of degrees -1, 1, 1. In other words, if the set of outputs 

is increased by a given proportion and the set of inputs is reduced by the same 

proportion, the function increases by that same proportion. 

 

In this case, the almost homogeneity condition corresponding to DH.1 states that for a 

scalar µ > 0 and any (x, y) 
 

),(D)T(
/

,:0inf

)T(
/

,:0inf)T(,:0inf),(D

H

H

yxx,yyx

x,yyxx,yyxyx

µ=








∈





µθµ
θ>





µ
θµ=

=








∈





µθµ

θ>





µ
µθ=









∈





θ
µ

µ
θ>θ=µ

µ

   (7) 

 
When the production technology exhibits constant returns to scale, Färe, Grosskopf and 

Lovell (1994) remark as an additional property of the graph hyperbolic distance its output 

and input zero degree of homogeneity: 

 
 DH.4. DH(µx, µy; CRS) = DH(x, y; CRS), µ > 0. 
 
When coming to the interpretation of the output, input and graph distance functions, 

these representations of the technology can be regarded as measures of technical 

efficiency5. It is then necessary to define certain subsets of T(x, y) which can be 

regarded as production frontiers. With regard to a graph representation of the 

technology, any feasible production process (x, y) is efficient if it belongs to the graph 

efficient subset of T(x, y):  
 
 { }),(T),(),()','(),,(T),(:),()T(Eff yxyxyxyxyxyxyxx,y ∉−⇒−≤−∈=         (8) 
 
Hence, if (x, y) belongs to Eff T(x, y), any increase and/or reduction in the (x, y) vectors 

will render infeasible production vectors and DO(x, y) = DI(x, y) = DH(x, y) =1. However, 

when strong disposability characterizes the technology, even if the production vector (x,y) 

presents a unitary distance function, it may not be efficient according to (8). However, It 

does present a weaker notion of efficiency by belonging to the isoquant subset, 
 
  Isoq T(x, y) = {(x, y): (x, y) ∈  T(x, y), (θx, y/θ) ∉  T(x, y), 0 < θ < 1}        (9) 
 

                     
5 Färe and Primont (1995) show how the output and input distance functions are inversely related 
to Farrell’s (1957) output and input efficiency measures. 
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Thus, if a vector (x, y) is efficient, it is isoquant efficient but not conversely. The 

measurement of technical efficiency through distance functions do not characterize 

efficiency in the Koopmans (1951) sense but in the weaker sense provided by (9); i.e. 

whether the evaluated unit belongs to the isoquant subset or not. 

  

Empirical implementation of technical efficiency measures requires calculation of 

distance functions either through mathematical programming DEA techniques or 

parametric frontier regressions. In any case, the true technology is unknown but it can be 

approximated through ex-post or ex–ante representations. The technique known as Data 

Envelopment Analysis approximates the technology from the observed units through 

piecewise linear combinations thus defining an ex-post representation of T(x,y) −for an 

updated discussion of DEA see Cooper, Seiford and Tone (2000). Econometric analysis 

requires an ex-ante functional definition of the technology, which should satisfy several 

properties -regularity conditions- to adequately characterize it, e.g. Chambers (1988). In 

the next section we present a parametric hyperbolic distance function based on the 

flexible translog production function, which has been extensively used in the literature 

since it was introduced by Christensen, Jorgenson and Lau (1971, 1973). 

 
 
3. Translog Distance Functions 
 
Before introducing the translog hyperbolic distance function we briefly survey its 

conventional output and input counterparts.  

 

3.1. Translog Output and Input Distance Functions 

As previously noted, in production analysis based on parametric techniques it is 

mandatory to choose an ex-ante functional form for the distance function.  The form for 

the distance function would ideally be flexible, amenable to homogeneity imposition, 

and easy to calculate. Many authors have selected the translog form because it 

satisfies these requirements, see Lovell et al. (1994) and Grosskopf et al. (1997). For 

the particular i-th process in the sample, the translog output distance function in the 

case of K inputs and M outputs is specified as: 
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,N1,2,...,,lnlnδlnlnβ

2
1

lnβlnlnα
2
1lnααDln

K

1

M

1

K

1

K

1

K

1
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1

M

1

M

1
0O

∑∑∑∑
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= == =

== ==

=++

++++=

k m
mikikm

k l
likikl

k
kik

m n
nimimn

m
mimi

iyxxx

xyyy
         (10) 

 
complying with the usual regularity conditions −including DO.1-DO.3.  Note that in order 

to obtain the production frontier (i.e., the transformation function) one would set DO(x,y) 

= 1, which implies that the left-hand side of equation (10) is equal to zero. 

 

The restrictions required for homogeneity of degree one in outputs are obtained from 

the application of the Euler Theorem:  

                                               ∑
=

=α
M

1
1

m
m ,                                                          (11) 

                                      M,...,2,1,0
M

1

==α∑
=

m
n

mn ,                                      (12) 

                                      K,...,2,1,0
M

1

==δ∑
=m

km k ,                                        (13) 

 
completed with the usual symmetry conditions. A convenient method of imposing the 

homogeneity constraints upon (10) is to follow Lovell et al. (1994). From DO.1, 

homogeneity implies that DO(x,µ y) = µ DO(x, y), µ > 0 and by arbitrarily choosing one of 

the outputs −such as the M-th output−, we can set µ =1/yM: 

                                          
( )
M

O

M
O

,D
,D

y
yx

y
yx =





                                           (14) 

For the translog form this provides: 

 

              
( )

∑∑∑∑
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=

−

== =

=

−

=

−

=

−

=

=δ+β+

+β+α+α+α=

K

1

1M

1

*
K

1

K

1

K

1

1M

1

1M

1

**
1M

1

*
0MO

N,...,2,1,lnlnlnln
2
1

lnlnln
2
1ln/Dln

k m
mikikm

k l
likikl

k
kik

m n
nimimn

m
mimii

iyxxx

xyyyy
     (15) 

 

where *
miy = ymi/yMi.  Note that when ymi = yMi , the ratio *

miy is equal to one and its log is 



 10 

zero. Thus, all terms involving the M-th output also become zero, i.e. summations 

involving *
miy  in the above expression are over the M-1 outputs not used for 

normalization, and not over M. 

 
In the input case, a translog distance function is obtained by imposing homogeneity of 

degree one in inputs. Setting µ =1/xK one obtains DI (x/xK,y) = DI (x,y) /xK, and the 

translog input distance function becomes: 

 

           
( )

∑∑∑∑

∑∑∑∑
−

= =

−

=

−

=

−

== ==

=δ+β+

+β+α+α+α=
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*
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1
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M

1
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lnlnln
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1ln/Dln
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mikikm

k l
likikl

k
kik

m n
nimimn

m
mimii

iyxxx

xyyyx
          (16) 

 

where *
kix = xki/xKi. 

 
3.2. Translog Hyperbolic Distance Function, THDF. 

As was earlier remarked, we intend to define a parametric distance function that allows 

estimation of hyperbolic technical efficiency using a translog form. For this purpose, to 

impose the necessary conditions of almost homogeneity on the translog distance 

function we follow Cuesta, Kumbhakar and Zofío (2001). These authors rely on the 

modified Euler Theorem introduced by Lau (1972: 283) to obtain the restrictions 

required for almost homogeneity. Departing from (6), and assuming that F(x,y) is a 

continuously differentiable function, to be almost homogenous it should satisfy: 
 

      Fy
y
Fx

x
F

m
m

mk
k

k
3

M

1
2

K

1
1 kkk =

∂
∂+

∂
∂ ∑∑

==
,        (17) 

 
which taking logs, and for the particular hyperbolic case that requires almost 

homogeneity of degrees −1, 1, 1, yields: 

 

          1
ln
ln

ln
ln M

1

K

1

=
∂
∂+

∂
∂− ∑∑

== m mk k y
F

x
F

.        (18)  

 
Assuming now a translog specification for F(x,y): 
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and taking derivatives with respect to inputs and outputs: 

  K,,...,2,1,lnδlnββ
ln
ln M

1

K

1

=++=
∂
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==

kyx
x
F

m
mkm

l
lklk

k
                       (20) 

  M,...,2,1,lnδlnαα
ln
ln K

1

M

1

=++=
∂
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==

mxy
y
F

k
kkm

n
nmnm

m
,                   (21) 

it is possible to obtain the following relation using (20) and (21) in (18): 

 

     1)lnδlnαα()lnδlnββ(
M

1

K

1

M

1

K

1

M

1

K

1
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n
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Finally, since (22) involves all ln x and ln y, to impose the almost homogeneity 

condition of degrees −1, 1, 1, the following (1+K+M) constraints apply: 

 

                                          ,1βα
K

1

M

1
=− ∑∑

== k
k

m
m                                                    (23) 

        K,...,2,1,0βδ
M

1

K

1

==−∑ ∑
= =

k
m l

klkm ,                  (24) 

      .M,...,2,1,0δα
M

1

K

1

==−∑ ∑
= =

m
n k

kmmn                   (25) 

 
 
One can impose (23), (24) and (25) on the translog specification modifying the 

approach initiated by Lovell et al. (1994). Using the almost homogeneity condition (7), 

and choosing once again the M-th output for normalizing purposes, µ=1/yM, we obtain: 
 

                                      
( )
M

H

M
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,D
,D

y
yx

y
yyx =





.                                         (26) 

For the translog hyperbolic distance function THDF this provides: 
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where *
miy = ymi/yMi and **

kix = xkiyMi. Once again when ymi = yMi the ratio *
miy is equal to 

one. Thus all log terms involving the normalizing M-th output are null; however, this is 

not observed on the input side. That is why summations involving *
miy  in equation (27) 

are over M-1 while summations involving **
kix  are over K. 

Therefore, using (27) we can compute the maximum equiproportionate input reduction 

and output expansion required to place (x,y) on the production frontier while fulfilling 

DH.1-DH.3. With respect to the relevant homogeneity condition DH.1, it is easy to 

demonstrate how the translog hyperbolic distance function (27) satisfies it by dividing 

inputs and multiplying outputs by a scalar λ > 0. Concerning the monotonicity 

conditions, the hyperbolic distance function must be non-decreasing in outputs and non-

increasing in inputs, DH.2 and DH.3. In the THDF case, one needs to evaluate the 

derivatives for each data point. The output derivatives should be non-negative and the 

input derivatives non-positive.  

 

With regard to the THDF when taking into account constant returns to scale, DH. 4, it 

must be homogeneous of degree 0 in inputs and outputs. To proof that our THDF 

satisfies this property, it is mandatory to derive the constant returns to scale restrictions. 

The scale elasticity is given by  

 

    ,
λln
θln ) (Ε
   
    =y  ,x 

∂
∂

          (29) 

where 

 

    ,1 )  (DH  =y   ,x   θλ           (30) 

and applying the implicit function theorem to (27) we obtain: 
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and the scale elasticity is defined as the negative of the sum of the input elasticities over 

the sum of the output elasticities. Simple manipulations of (27) to obtain the sale 

elasticity of the translog hyperbolic distance functions yield: 

     ( )
∑∑∑

∑∑∑

===

===

+++

++
−= K

1

*
K

1

**
K

1

K

1

*
K

1

**
K

1

lnδlnββ1

lnδlnββ
,Ε

k
mikm

l
kikl

k
k

k
mikm

l
kikl

k
k

yx

yx
yx .                             (32) 

From (32), the constant returns to scale restrictions are:  

         K,...,2,1,
2
1β

K

1
=−=∑

=

k
k

k ,         (33) 

         ,K,...,2,1,0
K

1

==β∑
=

l
l

kl         (34) 

         M,...,2,1,0
K

1
==δ∑

=k
km m .        (35) 

 
Hence, when the translog hyperbolic distance function is homogeneous of degree –1/2 in 

inputs, it exhibits constant returns to scale. Imposing these restrictions on the THDF (27) 

we obtain the following specification:  
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where *
miy  = ymi/yMi and *

kix = xki/xMi. Observe that when ymi = yMi and xki = xKi the ratios 
*
miy and *

kix are equal to one and hence their log is zero. Thus, all terms involving the 

M−th output and K−th input also become zero, i.e. all summations in the above 

expression are over M-1 and K-1.  For (36), if we multiply both inputs and outputs by the 

same positive scalar, λ > 0, we obtain the same function: 
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Once we have shown all the properties and relationships that allow a complete 

characterization of the translog hyperbolic distance function, it is important to remark its 

potential uses in production analysis. The usefulness of this proposal when imposing the 

almost homogeneity condition on the THDF can be easily verified in all applications 

where a flexible functional form such as (27) is required. There are two immediate 

examples: (i) environmental efficiency and (ii) Malmquist productivity indexes. Looking at 

the relevant literature in the first case, hyperbolic distance functions have been 

implemented to measure environmental performance. Relevant articles are Färe et al. 

(1989) -paper mills-, Ball et al. (1994) -US agriculture- and Zofio and Prieto (2001) 

−OECD manufacturing industry−. In the second case, Zofio and Lovell (2001) extended 

efficiency analysis to productivity analysis, calculating and decomposing productivity 

change by means of hyperbolic distance functions. All these applications have been 

developed using non-parametric DEA techniques, and the translog hyperbolic distance 

function can be used to calculate environmental efficiencies and productivity indexes 

taking advantage of the possibilities offered by parametric regressions6.  

  
 
4. Empirical Implementation of the Translog Hyperbolic Distance Function. 
 

To implement the translog hyperbolic distance function, one may choose from all the 

available programming and regression analysis techniques when estimating deterministic 

                     
6 With regard to environmental efficiency as well as Malmquist productivity indexes incorporating 
undesirable outputs, one would define three sets of variables: desirable outputs, undesirable 
outputs and inputs. Imposing the almost homogeneity condition on the output sets, the 
environmental efficiency index that one obtains would yield the maximum equiproportionate 
undesirable output reduction and desirable output expansion for a given input set. This could be 
extended to productivity change allowing for a contemporary reduction in input usage. 
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or stochastic specifications. Here, we rely on a panel data model with a stochastic 

specification. Considering the i = 1,2,...,N observed firms in t = 1,2,...,T time periods, the 

stochastic hyperbolic distance function model is:  
 
    )h( ),( D =1 H     , ; x   ,y t it it ii εδβα ,        (38) 
 
where deviations from one are accommodated in the composed error  ) (h   itε . As in 

Aigner Lovell and Schmidt (1977), an empirical formulation of the error term that includes 

the stochastic specification is the following one: 
 
            ) ( exp) (h itiit v + u  =   ε               (39) 
 
 In this case, the additive error includes a one-sided component ui, and a standard noise 

term symmetrically distributed around zero, vit → N(0, 2
vσ ). The one side component ui, 

captures the distance between the observed output vector and the production possibility 

set, i.e. it is assumed to have a one tail −half normal− distribution, ui →  N(0, 2
uσ ) . 

Taking logs from (38) and substituting (39), it is possible to obtain the actual hyperbolic 

distance function to be estimated 
 
     v + u +   , ; x   ,y itiititi ), (Dln  = 0 H δβα ,       (40) 
 
where the proposed specification for DHi (yit, xit; α, β, δ) corresponds to (27). 

 

Finally, handling this panel data characterization through the standard maximum-

likelihood methodology introduced by Pitt and Lee (1981) and extended by Battese and 

Coelli (1988), it is possible to obtain the individual conditional distribution of the one side 

error, )εE( t ii  u . These values are then substituted into  

 
                             )(exp]),, ,,(Dln[expTE H  u -   = xy   = iititi γβα                  (41) 
 
to obtain time invariant hyperbolic technical efficiency estimates for each producer. 
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5. Empirical illustration to Spanish savings banks 
 

5.1. Data 

In order to illustrate our model, the proposed THDF distance function is estimated using 

a sample of Spanish savings banks, Confederación Española de Cajas de Ahorros 

(CECA). The observed data corresponds to the 1985-1994 period when an important 

number of mergers and acquisitions occurred, thus raising questions about the best way 

to treat this issue. The approach followed in this paper leads to an unbalanced panel. 

The observations to merge disappear from the sample in a given period to show up in 

the subsequent year as different ones result from the mergers or acquisitions7. In the 

present panel, the number of firms declines from 77 in 1985 to 34 in 1998. 

 

To select the relevant variables, we follow the commonly accepted intermediation 

approach proposed by Sealey and Lindley (1977), which treats deposits as inputs and 

loans as outputs. Four inputs are employed to produce three outputs. Inputs are time 

and saving deposits (x1), deposits from banks and other funds (x2), personnel expenses 

(x3), and capital (x4), measured by the value of fixed assets in the balance. On the 

output side, production is represented by loans to non-banks (y1), bonds, cash and 

other assets (y2), and non-interest income (y3). This last output is included to account 

for off-balance-sheets activities such as securitization, brokerage services and 

management of financial assets for customers −a growing activity in the Spanish 

banking sector. These monetary variables are expressed in millions of real 1985 

Spanish pesetas by means of the GDP deflator index. A summary of their descriptive 

statistics appears in Table 1.  

                     
7 Cuesta and Orea (2002) further discuss these issues. All firms involved in mergers could have 
been removed from the data set, however this procedure would have reduced the sample 
dramatically due to the high number of entities in such situation. An alternative way to handle the 
problem, which is broadly used in the literature, considers the merged firms as unique entities in 
the periods previous to the merger, thus aggregating their data. This procedure results in a 
balanced panel but requires the use of fictitious firms, which may have great influence on the 
efficient frontier. Therefore, as none of these methods seem to be fully appropriate, we settle for an 
unbalanced panel which, nevertheless, also poses some limitations since data loss might not just 
be related to mergers and acquisitions, but also to attrition problems. In this scheme, if the 
probability of observation disappearance from the sample is correlated with the experimental 
answer, then traditional statistical methods result in biased and inconsistent estimates, Hsiao 
(1986). We will not pursue this issue here, since the correction of the possible bias would require a 
new investigation in itself using a limited dependent variables model, Heckman (1976). All these 
issues underlie this application and, therefore, caution must be exercised when interpreting the 
results beyond the model illustrating goal. 
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Table 1. Descriptive statistics and selected variables. 
Variable Mean Standard Dev. Minimum Maximum 

  y1  134,814 248,596 1,066 2,641,366 
  y2    74,122 167,109 583 1,737,633 
  y3 1,473 3,866 5 51,670 
  x1 225,926 409,389 2,802 3,539,309 
  x2 32,002 95,096 38 1,184,926 
  x3 4,516 7,427 69 68,081 
  x4 2,924 5,106 33 46,767 
Source: Confederación Española de Cajas de Ahorro, CECA  
 

For convenience purposes all variables have been mean-corrected prior to estimation, 

i.e. each output and input variable is divided by its geometric mean.  Proceeding this 

way, first order coefficients can be interpreted as distance elasticities evaluated at the 

sample means. In addition, the almost homogeneity condition is imposed using loans, 

y1, as numeraire. 

 

The particular translog hyperbolic distance function specification corresponding to (40) 

is the following one −enhanced with time dummies intended to capture the presence of 

neutral technical change as well as other temporal effects:  
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where *

mity = ymit/y1it, 
**

kitx = xkity1it and Dτ,t = 1 for τ=t, Dτ,t = 0 for τ ≠ t. 

 

5.2. Results and discussion 

The obtained results for the estimated model are presented in Table 2. All elasticities 

estimates for inputs and outputs present the expected sign and their associated t-ratios 

indicate that they are significantly different from zero. This outcome is consistent with 

the above stated monotonicity conditions DH.2 and DH.3, reflecting how the translog 

hyperbolic distance function is non-decreasing in outputs and non-increasing in inputs. 

On the input side, time and savings deposits x1, present the highest elasticity. Its value 
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doubles that of personnel expenses x3, and it is way ahead of the remaining and less 

important productive factors. On the output side, elasticities show how bonds, cash and 

other assets y2, are still far more relevant that the increasingly important non-interest 

income, y3. It is noteworthy to remark that alternative normalizations using y1 or y2 do 

not alter the estimates.  

 

With respect to the time dummies intended to capture neutral technical change, all 

coefficients present the expected negative sign, reflecting the existence of technical 

progress by an aggregated value of 19,04% in the fourteen years period −which 

corresponds to a mean annual growth rate of 1,35%. The existence of technical 

progress is a well established result in international banking studies and quite 

specifically in the Spanish saving banks literature; e.g. using the same database, 

Grifell-Tatjé and Lovell (1997) report a 1,90% average annual rate of technical progress 

from 1986 to 1993.  

 

One may use the obtained parameters values for the translog hyperbolic distance 

function to estimate firm specific efficiency, (41). With regard to technical efficiency, the 

significant parameters σ2 and λ indicate that the one side error is a relevant source 

when explaining a producer’s deviation from the transformation function. Average 

hyperbolic technical efficiency is 0.95, showing how the Spanish savings banks sector 

can improve its productive performance by increasing its outputs by 5,6% while 

simultaneously reducing its inputs by 5%.   

 

As discussed in what follows, this average value is among the higher ones reported in 

banking studies, showing the consistency of our model with distance function theory.  

Färe, Grosskopf and Lovell (1985) demonstrate how under a constant returns to scale 

assumption, the hyperbolic distance function is related to its output and input oriented 

counterparts8: DH(x,y;CRS) = DO(x,y;CRS)1/2 = DI(x,y;CRS)-1/2, i.e. the hyperbolic distance 

function is numerically greater its output counterpart. In the present application, where 

variable returns to scale are allowed, the difference between hyperbolic and output 

efficiency scores depends on the magnitude of returns to scale. However, since our 

estimated scale elasticity (−0.51) is not far from the constant returns to scale value of 

                     
8 Cuesta and Zofio (1999) define and provide an example of this equivalence between distance 
functions for the translog hyperbolic and output distance functions. 
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−0.5 introduced in (33), it would be expected that our hyperbolic efficiency scores were 

greater than their output oriented counterparts. To confirm the case we have solved an 

output oriented model equivalent to (40) using (15) as the parametric specification for 

the distance function. As in the hyperbolic specification, the estimated scale elasticity of 

1.02 is not far from the unitary value corresponding to constant returns to scale, being 

the average output efficiency value 0.90 −quite smaller than its hyperbolic counterpart.  

 

Also, the magnitude of our average hyperbolic efficiency value is consistent with recent 

results obtained from the same database by Cuesta and Orea (2002). Also deciding for 

an output oriented translog specification −but allowing for a time varying formulation of 

the one side error, these authors report similar scale elasticity and average efficiency 

values to those obtained by us for our output oriented model9. Therefore, as scale 

normally plays a limited role in banking applications, one would generally expect 

hyperbolic technical efficiency estimates to be higher than their output oriented 

counterparts10.  

 

 In fact, our hyperbolic results yield higher average efficiency values than most of 

studies focused on depository financial institutions, thus reinforcing our conclusion. In 

an extensive review of the bank efficiency literature, Berger and Humphrey (1997:181-

183) survey all relevant studies in the international field. For the Spanish case, average 

efficiency values are in the 70%-80% range. Nine out of the ten surveyed studies −all of 

them, as ours, using the same database− report much lower average technical 

efficiency scores −except for Lovell and Pastor (1992), who dealing with branch 

performance, report a 0.91 value. We can remark here the studies that culminate in 

Grifell−Tatjé and Lovell (1997), who employed Data Envelopment Analysis deterministic 

techniques to obtain an average value of 0.82 under a constant returns to scale 

assumption; Maudos (1996), who use Stochastic Frontier Analysis, 0.82, and Lozano-

Vivas (1997), who employ Thick Frontier Analysis, 0.72. Even if these studies present a 

                     
9 Cuesta and Orea (2002) introduce a −quadratic− time varying specification of technical 
efficiency in order to capture if mergers had an effect on the efficiency paths of non-merged 
banks compared to the newly created firms. 
10 The existence of limited scales elasticities (economies) in the banking sector is well 
documented in the literature. However recent studies employing innovative production and cost 
functions specifications (Fourier, Kernel and Spline), as well as alternative explanatory variables 
(capital structure and risk-taking), suggest that substantial scales economies may be available, 
see Hughes, Mester and Moon (2001).  
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wide range of model specifications −although authors tend to settle for a value added 

approach when defining the production process, see Berger and Humphrey (1992)− 

and estimation techniques, their calculated average efficiency scores are quite lower 

than the one presented in Table 1. 

 

Table 2. Estimated parameters for the translog hyperbolic distance function. 

Parameter 

Estimated 

Value t-statistic Parameter 

Estimated 

Value t-statistic 

α0 0.0553 8.0200 δ13 0.0347 1.9480 
α2 0.1118 19.9790 δ22 -0.0018 -0.5210 
α3 0.0360 5.5330 δ23 0.0061 1.4230 
α22 0.0847 9.1110 δ32 0.0565 3.3220 
α33 -0.0139 -1.4360 δ33 -0.0193 -1.2170 
α23 -0.0283 -4.2590 δ42 0.0299 1.9640 
β1 -0.3012 -21.8190 δ43 -0.0205 -1.2030 
β2 -0.0332 -9.3930 ψ86 -0.0098 -2.2170 
β3 -0.1190 -7.6200 ψ87 -0.0335 -6.8210 
β4 -0.0556 -4.6150 ψ88 -0.0639 -11.8590 
β11 0.1382 1.7850 ψ89 -0.0549 -9.7660 
β22 -0.0223 -6.7230 ψ90 -0.0953 -16.9330 
β33 0.0925 1.0640 ψ91 -0.0964 -15.9060 
β44 0.0036 0.0960 ψ92 -0.0987 -15.470 
β12 0.0230 2.1160 ψ93 -0.0809 -12.0850 
β13 -0.1409 -1.6990 ψ94 -0.1093 -16.3240 
β14 -0.0222 -0.7550 ψ95 -0.1187 -17.3470 
β23 0.0035 0.3590 ψ96 -0.1348 -18.9440 
β24 -0.0023 -0.2280 ψ97 -0.1597 -21.1510 
β34 0.0325 0.7500 ψ98 -0.1904 -22.9940 
δ12 -0.0856 -4.7300    

σ2 0.0057 6,323 Mean L.L.F. 2.0365  
λ 0.1475 5,186     Mean T.E.     0.9466  

Source: Own elaboration. 
Note: The following parameterization applies: σ2 =σ2

u+σ2
v, λ = σ2

v / σ2
u 

 

This same pattern can be found when considering results for additional countries 

reported in the cited survey. For the extensively studied American case in the target 

period corresponding to the late eighties and early nineties, and focusing mainly on 

panel data SFA applications as the one employed here, Bauer, Berger and Humphrey 

(1993) report values around 0.85, Elyasiany and Mehdian (1990), 0.88, Ferrier and 

Lovell (1993), 0.79, Hasan and Hunter (1996), 0.81, Kaparakis, Miller and Noulas 

(1994), 0.90, Kwan and Esenbeis (1994), 0.86, Mester (1997), 0.88, Pi and Timme 
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(1993), 0.87, and Zhu, Ellinger and Shumway (1995), 0.85. Thus, our proposal to 

assess hyperbolic technical efficiency yield results which situate on the upper bound of 

these studies. As researches normally employ partially oriented approaches to assess 

technical efficiency such as the output or input functions, the resulting efficiency 

patterns tend to be substantially lower that those attained when allowing for a more 

comprehensive path toward the frontier, i.e. the hyperbolic distance function projects 

the input-output vector onto the boundary of the technology by equiproportionally 

expanding outputs and reducing inputs.   

 

 

6. Conclusions 
 
In this paper we have introduced a new definition and estimation procedure of distance 

functions through parametric techniques. Distance functions are usually defined in the 

partially oriented input or output production possibility sets, which restricts technical and 

economic efficiency analysis to the output (revenue) or input (cost) side of the production 

process. It can be anticipated that such a restrictive analytical framework may cause 

unrest among researches who do not welcome these limitations, so more flexible 

specifications which simultaneously take into account outputs and inputs are required. 

Therefore, we relax the output or input partial orientations by defining a new tool: the 

translog hyperbolic distance function THDF, which is based on the graph representation 

of the technology and allows for simultaneous output increase and input reduction.  

 

We show how this new distance function satisfies customary theoretical properties and 

regularity conditions and how it relates to its output and input counterparts. Also we 

illustrate how the THDF function can be empirically implemented by means of standard 

econometric techniques. Actually, practical implementation of this function proves to be 

rather simple even in a panel data context. To illustrate efficiency analysis based on our 

translog hyperbolic distance function, we rely on an extensively researched panel data 

set of Spanish savings banks and depart from the well-known and widely applied model 

of Battese and Coelli (1988).  

 

The potential of the translog hyperbolic distance function is not exhausted with 

productive efficiency analysis. On the contrary, it can be extended to many research 
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fields where hyperbolic distance functions are being increasingly applied. Particularly, 

environmental efficiency and productivity change analysis where just DEA applications 

have been undertaken. We hope that this new analytical tool will be welcomed by 

practitioners in the efficiency and productivity field, as it provides yet another possibility to 

study firms performance in a parametric context. 



 23 

References 
 
Aczel, J. (1966), Lectures on Functional Equations and their Applications, New York: Academic 

Press. 

Aigner, D., C.A K. Lovell and P. Schmidt (1977), “Formulation and Estimation of Stochastic Frontier 
Production Functions Models”, International Economic Review 17, 377-396.  

Bauer, P.W., A. N. Berger and D.B. Humphrey (1993), “Efficiency and Productivity Growth in US 
Banking”, in H. Fried, C.A.K. Lovell and S. Schmidt (eds.), The Measurement of 
Productive Efficiency: Techniques and Applications, Oxford: Oxford University Press. 

Ball, V.E., C.A.K. Lovell, R. Nehring and A. Somwaru (1994), “Incorporating Undesirable Outputs 
into Models of Production: An Application to US Agriculture”, Cahiers d’économie et 
sociologie rurales,  3, 60-74. 

Berger, A.N. and D.B. Humphrey (1992), “Measurement and Efficiency Issues in Commercial 
Banking”, in Z. Griliches (edt.) Output Measurement in the Service Sector, NBER Studies in 
Income and Wealth , 56, The University of Chicago Press, Chicago. 

Berger, A.N and D.B. Humphrey (1997), “Efficiency of Financial Institutions: International Survey 
and Directions for Future Research”, European Journal of Operational Research, 98, 175-
212. 

Battese, G.E. and T.J. Coelli (1988), "Prediction of Firm-level Technical Efficiencies with a 
Generalized Production Function and Panel Data". Journal of Econometrics 38, 387-399. 

Bosco, B. (1996), “Excess-input Expenditure by Means of an Input Distance Function: the Case of 
Public Railways”, Applied Economics, 28, 491-497. 

Chambers, R. (1988), Applied Production Analysis, New York: Cambridge University Press. 

Chambers, R., Y. Chung and R. Färe (1996), “Benefit and Distance Functions”, Journal of 
Economic Theory, 70, 407-419. 

Charnes, A., W.W. Cooper, A. Lewin and L. Seiford (1994), Data Envelopment Analysis: Theory, 
Methodology and Applications, Boston: Kluwer Academic Publishers.  

Christensen, L., Jorgenson, D. and L. Lau (1971), “Conjugate Duality and the Trascendental 
Logarithmic Production Function”, Econometrica, 39 (4), 255-256.  

Christensen, L., Jorgenson, D. and L. Lau (1973), "Trascendental Logarithmic Production 
Frontiers", Review of Economics and Statistics, 55 (1), 28-45.  

Chung, Y.H., R. Färe and S. Grosskopf (1997), “Productivity and Undesirable Outputs: A 
Directional Distance Function Approach”, Journal of Environmental Management, 51, 229-
240. 

Coelli, T.J. and S. Perelman (1996), "Efficiency Measurement, Multiple-output Technologies and 
Distance Functions: With Application to European Railways", CREPP Working Paper, 96/05. 
University of Liege, Belgium. 

Coelli, T.J. and S. Perelman (2000), “Technical Efficiency of European Railways: A Distance 
Function Approach", Applied Economics, 32, 1967-1997. 

Cooper, W.W., L.M Seiford and K. Tone (2000), Data Envelopment Analysis, A Comprehensive 
Text with Models, Applications, References and DEA−Software, Boston: Kluwer Academic 
Publishers. 

Cuesta, R. A., S. Kumbhakar and J.L. Zofío (2001), Generalized Distance Functions and 
Technical Efficiency: A Parametric Approach, Seventh European Workshop on Efficiency 
and Productivity Analysis, Universidad de Oviedo, September, Oviedo, Spain  

Cuesta, R. A. and L. Orea, (2002) “Mergers and Technical Efficiency in Spanish Saving Banks: A 
Stochastic Distance Function Approach”, Journal of Banking and Finance, 26, 2231-2247. 



 24 

Cuesta, R. A. and J.L. Zofío (1999), Hyperbolic Efficiency and Distance Functions: a Parametric 
Approach", Seminar presented at the Department of Econometrics. School of Economics, 
University of New England, Armidale, Australia.  

Debreu, G. (1951), “The Coefficient of Resource Utilization”, Econometrica, 19 (3), 273-292. 

Elyasiany, E. and S. Mehdian (1990), “Efficiency in the Commercial Banking Industry. A Production 
Frontier Approach”, Applied Economics, 22, 539-551. 

English, M., S. Grosskopf, K. Hayes and S. Yaisawarng (1993), "Output Allocative and Technical 
Efficiency of Banks", Journal of Banking and Finance, 17, 349-366. 

Färe, R. and S. Grosskopf (2001), New Directions: Efficiency and Productivity, Boston: Kluwer 
Academic Publishers (forthcoming).   

Färe, R., S. Grosskopf and C. A. K. Lovell (1985), The Measurement of Efficiency of Production. 
Boston:  Kluwer Nijhoff Publishing. 

Färe, R., S. Grosskopf and C. A. K. Lovell (1994), Production Frontiers, New York:  Cambridge 
University Press. 

Färe, R., S. Grosskopf, C. A. K. Lovell and C. Pasurka (1989), "Multilateral Productivity 
Comparisons When Some Outputs are Undesirable: a Non-parametric Approach", Review 
of Economics and Statistics, 75, 90-98. 

Färe, R. and D. Primont (1995), Multi-output Production and Duality: Theory and Applications, 
Boston: Kluwer Academic Publishers. 

Farrell, M. (1957), “The Measurement of Productive Efficiency”, Journal of the Royal Statistical 
Society, Series A, General, 120 (3), 282-284. 

Ferrier, G. and C.A.K. Lovell (1990), “Measuring Cost Efficiency in Banking: Econometric and 
Linear Programming Evidence”, Journal of Econometrics, 46, 229-245.  

Grifell-Tajté, E. and C.A.K. Lovell (1997), “The Sources of Productivity Change in Spanish 
Banking”, European Journal of Operational Research, 98, 364-380. 

Grosskopf, S. and K. Hayes (1993), “Local Public Sector Bureaucrats and Their Input Choices”, 
Journal of Urban Economics”, 33, 151-166. 

Grosskopf, S., D. Margaritis and V. Valdamis (1995), "Estimating Output Substitutability of Hospital 
Services", European Journal of Operational Research, 80, 575-587. 

Grosskopf, S., K. Hayes and J. Hirschberg (1995), “Fiscal Stress and the Production of Public 
Safety: a Distance Function Approach”, Journal of Public Economics, 57, 277-296. 

Grosskopf, S., K. Hayes, L. Taylor and W. Weber (1997), “Budget Constraint Frontier Measures of 
Fiscal Equality and Efficiency in Schooling”, Review of Economics and Statistics, 79, 116-24. 
  

Hasan, I. and W. Hunter (1996),  “Efficiency of Japanese Multinational Banks in the US”, Research 
in Finance, 14, 157-173.  

Heckman, J. (1976), “The Common Structure of Statistical Models of Truncation, Sample 
Selection, and Limited Dependent Variables and a Simple Estimator for Such Models", 
Annals of Economic and Social Measurement, 5 , 475-492. 

Hsiao, C. (1986), Analysis of Panel Data. Econometric Society Monographs, 11, Cambridge: 
Cambridge University Press. 

Hughes, J. L. Mester and C. Moon (2001), “Are Scale Economies in Banking Elusive? Evidence 
Obtained by Incorporating Capital Structure and Risk-taking into Models of Bank 
Production”, Journal of Banking and Finance, 15, 2169-2208.   

Kaparakis, E., S. Miller, and A. Noulas (1994), “Short-run Cost Inefficiency and Commercial 
Banks: A Flexible Stochastic Frontier Approach”, Journal of Money, Credit and Banking, 



 25 

27, 165-185.   

Koopmans, T.C. (1951), “Analysis of Production as an Efficient Combination of Activities”, in 
Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, New York: Wiley and 
Sons. 

Kwan, S.H. and R.A. Esenbies (1994), “An Analysis of Inefficiencies in Banking: A Stochastic Cost 
Frontier Approach”, Working Paper, Federal Reserve Bank of San Francisco.  

Lau, L.J. (1972), “Profit Functions of Technologies With Multiple Inputs and Outputs”, Review of 
Economics and Statistics, 54 (3), pp. 281-289. 

Lovell, C.A.K. and J.T. Pastor (1997), “Target setting: An application to a branch bank network”, 
European Journal of Operational Research, 98, 291-300.  

Lovell, C.A.K., S. Richardson, P. Travers and L. Wood (1994), “Resources and functionings: a new 
view of inequality in Australia”, in W. Eichhorn (ed.) Models and Measurement of Welfare 
and Inequality, Berlin: Springer-Verlag.  

Lozano-Vivas, A. (1997), “Profit Efficiency for Spanish Savings Banks”, European Journal of 
Operational Research, 98, 382-395. 

Maudos, J. (1996), A Comparison of Different Stochastic Frontier Techniques with Panel Data: An 
Application for Efficiency in Spanish Savings Banks, Working Paper, University of Valencia, 
Spain.    

Mester, L.J. (1997), “Measuring Efficiency at US Banks: Accounting for Heterogeneity is Important”, 
European Journal of Operational Research, 98, 230-243.    

Morrison, C.P., W.E. Johnston and G.A. Frengley (2001), “Efficiency in New Zealand Sheep and 
Beef Farming: The Impacts of Regulatory Reform”, The Review of Economics and Statistics, 
82(2), 325-337.  

Pi, L. and S. Timme (1993), “Corporate Control and Bank Efficiency”, Journal of banking and 
Finance, 17, pp. 515-530. 

Pitt, M. and L. Lee (1981), “The Measurement and Sources of Technical Inefficiency in the 
Indonesian Weaving Industry”, Journal of Development Economics, 9, 43-64. 

Sealey, C.W. and J.T. Lindley (1977), “Inputs, Outputs and a Theory of Production and Cost at 
Depository Financial Institutions”, Journal of Finance, 32 (4), 1251-1266. 

Shephard, R.W. (1953), Cost and Production Functions, Princeton: Princeton University Press. 

Shephard, R. W. (1970), Theory of Cost and Production Functions, Princeton: Princeton University 
Press. 

Zhu, S., P.M. Ellinger and C.R. Shumway (1995), “The Choice of Functional Form and 
Estimation of Banking Efficiency”, Applied Economic Issues, 2(10), 375-379. 

Zofío, J.L. and C.A.K. Lovell (2001), “Graph Efficiency and Productivity Measures: an Application to 
US Agriculture”, Applied Economics¸ 33, 1433-1442.  

Zofío, J.L. and A.M. Prieto (2001), “Environmental Efficiency and Regulatory Standards: The Case 
of CO2 Emissions from OECD Industries”, Resource and Energy Economics, 23, 63-86. 


